Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis[(dimethyl- λ^{4}-sulfanylidene)oxonium] hexabromidotellurate(IV) dimethyl sulfoxide disolvate

Martin D. Rudd, ${ }^{\text {a* }}$ Gregory Kokke ${ }^{\text {a }}$ and Sergey V. Lindeman ${ }^{\text {b }}$
${ }^{\text {a }}$ University of Wisconsin-Fox Valley, Menasha, Wisconsin 54952, USA, and
${ }^{\mathbf{b}}$ Marquette University, Milwaukee, Wisconsin 53201, USA
Correspondence e-mail: martin.rudd@uwc.edu

Received 3 April 2008; accepted 22 May 2008
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{S}-\mathrm{C})=0.005 \AA$; R factor $=0.021 ; w R$ factor $=0.057$; data-to-parameter ratio $=13.3$.

The structure of the title salt, $2 \mathrm{C}_{2} \mathrm{H}_{7} \mathrm{OS}^{+} \cdot \mathrm{Br}_{6} \mathrm{Te}^{2-} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$, displays $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between one protonated dimethyl sulfoxide molecule and a neighboring dimethyl sulfoxide molecule, and an octahedral geometry for the Te atom; the latter is situated on a center of inversion.

Related literature

For the structure of the related compound [(dmso-H) $)_{2}$][TeCl_{6}], see: Laitinen et al. (2002); Viossat et al. (1981). For related literature, see Abriel (1987); Abriel \& du Bois (1989); Borgias et al. (1985); Jaswal et al. (1990); Keefer et al. (1988).

Experimental

Crystal data

$2 \mathrm{C}_{2} \mathrm{H}_{7} \mathrm{OS}^{+} \cdot \mathrm{Br}_{6} \mathrm{Te}^{2-} .2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$
$M_{r}=921.59$
Triclinic, $P \overline{1}$
$a=8.0087$ (2) A
$b=9.2428$ (2) \AA
$c=10.5249$ (3) A
$\alpha=66.280(1)^{\circ}$
$\beta=70.732(1)^{\circ}$
$\gamma=66.340(1)^{\circ}$
$V=639.98(3) \AA^{3}$
$Z=1$
$\mathrm{Cu} K \alpha$ radiation
$\mu=23.30 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
$0.23 \times 0.20 \times 0.16 \mathrm{~mm}$

Data collection

Bruker APEX2 CCD detector diffractometer
Absorption correction: numerical [based on real shape of the crystal; absorption correction followed by the application of

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.056$
$S=1.15$
2112 reflections

SADABS (Bruker, 2005)]
$T_{\text {min }}=0.075, T_{\text {max }}=0.118$
5232 measured reflections
2112 independent reflections
2112 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$

159 parameters
All H -atom parameters refined
$\Delta \rho_{\max }=1.02 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.68 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 O \cdots \mathrm{O} 1$	$0.83(7)$	$1.62(8)$	$2.448(4)$	$175(7)$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: XS in SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: $X P$ (Bruker, 1998); software used to prepare material for publication: $X C I F$ in SHELXTL (Sheldrick, 2008).

This work was supported in part by a University of Wisconsin Colleges Summer Faculty Research Grant. MDR acknowledges Marquette University for the use of X-ray diffraction facilities and the University of Wisconsin - Fox Valley's Professional Development Committee for travel funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2262).

References

Abriel, W. (1987). Z. Naturforsch. Teil B, 43, 415-420.
Abriel, W. \& du Bois, A. (1989). Acta Cryst. C45, 2002-2003.
Borgias, B. A., Scarrow, R. C., Seidler, M. D. \& Weiner, W. P. (1985). Acta Cryst. C41, 476-479.
Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Jaswal, J. S., Rettig, S. J. \& James, B. R. (1990). Can. J. Chem. 68, 1808-1817.
Keefer, L. J., Hrabie, J. A., Ohannesian, L., Flippen-Anderson, J. L. \& George, C. (1988). J. Am. Chem. Soc. 110, 3701-3708.

Laitinen, R. S., Pietikäinen, J., Maaninen, A., Oilunkaniemi, R. \& Valkonen, J. (2002). Polyhedron, 21, 1089-1095.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Viossat, B., Khodadad, P. \& Rodier, N. (1981). J. Mol. Struct. 71, 237-241.

supporting information

Acta Cryst. (2008). E64, o1161 [doi:10.1107/S1600536808015468]

Bis[(dimethyl- λ^{4}-sulfanylidene)oxonium] hexabromidotellurate(IV) dimethyl sulfoxide disolvate

Martin D. Rudd, Gregory Kokke and Sergey V. Lindeman

S1. Comment

The structure of (I) consists of two units of two H^{+}hydrogen bonded dimethylsulfoxide molecules, Fig. 1, and a centrosymmetric hexabromotellurate(IV) anion, Fig. 2. At 2.448 (4) \AA, the $\mathrm{O} 1 \cdots \mathrm{O} 2$ distance is relatively short, and is consistent with the presence of a moderately strong hydrogen bond (Keefer et al., 1988). The IR spectrum reveals peaks typical for the $\left[(\mathrm{dmso})_{2} \mathrm{H}\right]^{+}$cation with a strong band at $731 \mathrm{~cm}^{-1}$. This is in line with similar samples in which the same cation has been analyzed (Jaswal et al., 1990). A closely related tellurium complex, $\left[(\mathrm{dmso})_{2} \mathrm{H}\right]_{2}\left[\mathrm{TeCl}_{6}\right]$ has been structurally reported at room temperature (Viossat et al., 1981) and at low temperature (Laitinen et al., 2002). The cation in the latter experiment shows a $\mathrm{O} 1 \cdots \mathrm{O} 2$ distance of 2.435 (3) \AA and the authors describe this as a "relatively strong hydrogen bond".
The hexabromotellurate(IV) anion in (I) shows an approximately octahedral geometry as expected. A review of some related structures shows that there are packing factors that slightly distort the geometry. One example where $\left[\mathrm{TeBr}_{6}\right]^{2-}$ shows deviations away from the regular octahedral geometry indicates that there is a $0.024 \AA$ difference between the longest and shortest bond $\mathrm{Te}-\mathrm{Br}$ bond lengths (Borgias et al., 1985). In that report, the Te atom is located in a general position. In other literature, the Te is located at a center of inversion and displays a larger angular deviation from 90° [87.56(3)-92.44 (3) ${ }^{\circ}$ (Abriel \& du Bois, 1989) which is greater than those reported here [less than 0.9° away from 90°]. A review of structural data for $M X_{6} \mathrm{E}^{2-}$ compounds $(M=\mathrm{Se}, \mathrm{Te}$ and $X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ was published to provide an explanation of the stereochemistry of the lone pair electrons (Abriel, 1987).
The unit cell shows, Fig. 3, the pairs of hydrogen bonded dmso molecule and dmso-H ions and anions, Table 1.

S2. Experimental

Compound (I) was prepared by the slow cooling to room temperature of a hot solution (333 K) of tellurium dioxide (0.30 $\mathrm{g}, 0.19 \mathrm{mmol})$ dissolved in hydrobromic acid $(1 \mathrm{~mL})$ to which dimethylsulfoxide $(5 \mathrm{~mL})$ had been added. After 2 weeks, a crop of orange crystals formed although they are prone to solvent loss and decomposition. Analysis found: C 10.57; H 2.91; $\mathrm{C}_{8} \mathrm{H}_{26} \mathrm{Br}_{6} \mathrm{O}_{4} \mathrm{~S}_{4}$ Te requires: C 10.42, H 2.84. The IR spectrum showed strong bands at $3392,1056,731 \mathrm{~cm}^{-1}$.

S3. Refinement

The maximum and minimum electron density peaks of 1.01 and -0.68 e \AA^{-3}, respectively, are located 0.88 and $1.53 \AA$, respectively, from the Te atom. Hydrogen atoms positions were refined freely with C-H = 0.83 (7) - 1.03 (6) \AA.

Figure 1
Numbering Scheme for $\left[(\mathrm{DMSO})_{2} \mathrm{H}\right]^{+}$(the hydrogen bond is shown as a dashed line). Displacement ellipsoids are shown at the 50% level.

Figure 2
Numbering Scheme for $\left[\mathrm{TeBr}_{6}\right]^{2-}$. Displacement ellipsoids are shown at the 50% level.

Figure 3
Hydrogen-bond formation and projection of the unit cell content of $\left[(\mathrm{DMSO})_{2} \mathrm{H}\right]_{2}\left[\mathrm{TeBr}_{6}\right]$. Symmetry operators: Te1A $[\mathrm{x}$, $\mathrm{y}+1, \mathrm{z}]$; O1A and O2A [1-x, 1-y, -z]; O1B and O2B $[\mathrm{x}, \mathrm{y}, \mathrm{z}+1]$

Bis[(dimethyl- λ^{4}-sulfanylidene)oxonium] hexabromidotellurate(IV) dimethyl sulfoxide disolvate

Crystal data

$2 \mathrm{C}_{2} \mathrm{H}_{7} \mathrm{OS}^{+} \cdot \mathrm{Br}_{6} \mathrm{Te}^{2-} \cdot 2 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$
$M_{r}=921.59$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=8.0087$ (2) \AA
$b=9.2428(2) \AA$
$c=10.5249(3) \AA$
$\alpha=66.280(1)^{\circ}$
$\beta=70.732(1)^{\circ}$
$\gamma=66.340(1)^{\circ}$
$V=639.98(3) \AA^{3}$

Data collection

Bruker APEX2 CCD detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator

ω scans

Absorption correction: numerical
[based on real shape of the crystal; absorption
correction followed by the application of
SADABS (Bruker, 2005)]
$Z=1$
$F(000)=432$
$D_{\mathrm{x}}=2.391 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 343 K
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 4736 reflections
$\theta=5-66^{\circ}$
$\mu=23.30 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, orange
$0.23 \times 0.20 \times 0.16 \mathrm{~mm}$
$T_{\text {min }}=0.075, T_{\text {max }}=0.118$
5232 measured reflections
2112 independent reflections
2112 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=66.8^{\circ}, \theta_{\text {min }}=4.7^{\circ}$
$h=-8 \rightarrow 9$
$k=-9 \rightarrow 10$
$l=0 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.056$
$S=1.15$
2112 reflections
159 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Experimental. Analysis found: C 10.57; H 2.91; C $\sim 8 \sim \mathrm{H} \sim 26 \sim \mathrm{Br} \sim 6 \mathrm{O} \sim 4 \sim \mathrm{~S} \sim 4 \sim$ Te requires: C 10.42, H 2.84
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
Te1	0.5000	0.0000	0.5000	$0.01240(12)$
Br 1	$0.47203(5)$	$0.30103(4)$	$0.30479(4)$	$0.01875(12)$
Br 2	$0.13998(5)$	$0.11843(5)$	$0.62389(4)$	$0.01970(12)$
Br 3	$0.39388(5)$	$-0.09389(5)$	$0.33507(4)$	$0.02004(12)$
S 1	$0.72250(12)$	$0.24280(11)$	$-0.11647(9)$	$0.0176(2)$
O 1	$0.8060(4)$	$0.2997(3)$	$-0.0395(3)$	$0.0229(6)$
C 1	$0.4776(5)$	$0.3040(5)$	$-0.0455(4)$	$0.0213(8)$
H 1 A	$0.459(7)$	$0.246(6)$	$0.054(5)$	$0.030(12)^{*}$
H 1 B	$0.440(7)$	$0.421(7)$	$-0.066(5)$	$0.032(13)^{*}$
H 1 C	$0.424(6)$	$0.263(6)$	$-0.088(5)$	$0.026(12)^{*}$
C2	$0.7743(6)$	$0.0237(5)$	$-0.0301(4)$	$0.0215(8)$
H 2 A	$0.700(7)$	$-0.016(6)$	$-0.060(5)$	$0.027(11)^{*}$
H2B	$0.741(6)$	$0.002(6)$	$0.070(5)$	$0.027(12)^{*}$
H2C	$0.907(7)$	$-0.020(6)$	$-0.066(5)$	$0.025(11)^{*}$
S2	$1.03170(12)$	$0.54942(12)$	$-0.30476(10)$	$0.0219(2)$
O2	$1.0726(4)$	$0.4039(4)$	$-0.1636(3)$	$0.0256(6)$
H2O	$0.985(10)$	$0.364(9)$	$-0.123(8)$	$0.07(2)^{*}$
C3	$1.2525(6)$	$0.5183(6)$	$-0.4190(5)$	$0.0266(9)$
H3A	$1.340(7)$	$0.519(6)$	$-0.369(5)$	$0.029(12)^{*}$
H3B	$1.245(7)$	$0.614(7)$	$-0.496(6)$	$0.040(14)^{*}$
H3C	$1.284(8)$	$0.410(7)$	$-0.440(6)$	$0.049(15)^{*}$
C4	$1.0161(7)$	$0.7251(6)$	$-0.2660(6)$	$0.0321(10)$

H4A	$1.015(7)$	$0.822(7)$	$-0.346(6)$	$0.040(14)^{*}$
H4B	$0.913(8)$	$0.747(7)$	$-0.207(6)$	$0.043(15)^{*}$
H4C	$1.125(7)$	$0.695(6)$	$-0.222(5)$	$0.035(13)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Te 1	$0.01221(17)$	$0.01490(18)$	$0.01250(17)$	$-0.00478(12)$	$-0.00205(12)$	$-0.00641(12)$
Br 1	$0.0217(2)$	$0.0180(2)$	$0.0169(2)$	$-0.00800(15)$	$-0.00436(15)$	$-0.00352(15)$
Br 2	$0.0143(2)$	$0.0229(2)$	$0.0215(2)$	$-0.00556(15)$	$0.00073(15)$	$-0.01025(16)$
Br 3	$0.0237(2)$	$0.0221(2)$	$0.0211(2)$	$-0.00733(16)$	$-0.00826(16)$	$-0.01003(16)$
S 1	$0.0187(4)$	$0.0208(4)$	$0.0158(4)$	$-0.0096(4)$	$-0.0020(3)$	$-0.0059(3)$
O 1	$0.0228(14)$	$0.0314(15)$	$0.0234(13)$	$-0.0161(12)$	$-0.0018(11)$	$-0.0118(11)$
C 1	$0.0215(19)$	$0.026(2)$	$0.022(2)$	$-0.0115(17)$	$-0.0024(16)$	$-0.0095(17)$
C 2	$0.025(2)$	$0.0208(19)$	$0.021(2)$	$-0.0087(17)$	$-0.0077(17)$	$-0.0047(16)$
S 2	$0.0167(4)$	$0.0226(5)$	$0.0279(5)$	$-0.0070(4)$	$-0.0058(4)$	$-0.0075(4)$
O 2	$0.0243(15)$	$0.0295(15)$	$0.0261(14)$	$-0.0158(13)$	$-0.0052(12)$	$-0.0042(12)$
C 3	$0.026(2)$	$0.028(2)$	$0.028(2)$	$-0.0117(18)$	$0.0002(18)$	$-0.0107(18)$
C 4	$0.024(2)$	$0.025(2)$	$0.049(3)$	$-0.0039(18)$	$-0.002(2)$	$-0.021(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

Te1- $\mathrm{Br}^{1}{ }^{\mathrm{i}}$	2.6865 (4)	C2-H2B	0.95 (5)
Te1-Br1	2.6865 (4)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.97 (5)
Te1—Br3	2.6956 (4)	S2-O2	1.576 (3)
$\mathrm{Te} 1-\mathrm{Br} 3{ }^{\text {i }}$	2.6956 (4)	S2-C3	1.767 (4)
$\mathrm{Te} 1-\mathrm{Br} 2^{\text {i }}$	2.7103 (4)	S2-C4	1.776 (4)
$\mathrm{Te} 1-\mathrm{Br} 2$	2.7103 (4)	$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O}$	0.83 (7)
S1-O1	1.537 (3)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	1.00 (5)
S1-C2	1.787 (4)	С3-H3B	0.92 (6)
S1-C1	1.791 (4)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	1.03 (6)
C1-H1A	0.96 (5)	C4-H4A	0.95 (6)
C1-H1B	0.95 (5)	C4-H4B	0.86 (6)
C1-H1C	0.97 (5)	C4-H4C	1.01 (5)
C2-H2A	0.98 (5)		
$\mathrm{Br} 1-\mathrm{Te} 1-\mathrm{Br} 1$	180.0	$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	117 (4)
$\mathrm{Br} 1-\mathrm{Te} 1-\mathrm{Br} 3$	89.604 (11)	$\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	107 (3)
$\mathrm{Br} 1-\mathrm{Te} 1-\mathrm{Br} 3$	90.395 (11)	$\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110 (3)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Te} 1-\mathrm{Br} 3{ }^{\text {i }}$	90.397 (11)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110 (4)
$\mathrm{Br} 1-\mathrm{Te} 1-\mathrm{Br} 3^{\text {i }}$	89.604 (11)	$\mathrm{S} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	103 (3)
$\mathrm{Br} 3-\mathrm{Te} 1-\mathrm{Br} 3{ }^{\text {i }}$	179.999 (1)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	112 (4)
$\mathrm{Br} 1^{\mathrm{i}}-\mathrm{Te} 1-\mathrm{Br} 2^{\mathrm{i}}$	89.151 (11)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	114 (4)
$\mathrm{Br} 1-\mathrm{Te} 1-\mathrm{Br} 2^{\mathrm{i}}$	90.849 (11)	$\mathrm{O} 2-\mathrm{S} 2-\mathrm{C} 3$	102.38 (19)
$\mathrm{Br} 3-\mathrm{Te} 1-\mathrm{Br} 2^{\text {i }}$	89.485 (12)	O2-S2-C4	102.5 (2)
$\mathrm{Br} 3{ }^{\text {i }}-\mathrm{Te} 1-\mathrm{Br}^{2}$	90.515 (11)	C3-S2-C4	100.2 (2)
$\mathrm{Br} 1-\mathrm{Te} 1-\mathrm{Br} 2$	90.848 (11)	$\mathrm{S} 2-\mathrm{O} 2-\mathrm{H} 2 \mathrm{O}$	112 (5)
$\mathrm{Br} 1-\mathrm{Te} 1-\mathrm{Br} 2$	89.151 (11)	$\mathrm{S} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	106 (3)

$\mathrm{Br} 3-\mathrm{Te} 1-\mathrm{Br} 2$	90.515 (11)	S2-C3-H3B	107 (3)
$\mathrm{Br} 3{ }^{\text {i }}-\mathrm{Te} 1-\mathrm{Br} 2$	89.485 (12)	H3A-C3-H3B	104 (4)
$\mathrm{Br} 2{ }^{\text {i }}-\mathrm{Te} 1-\mathrm{Br} 2$	180.0	S2-C3-H3C	107 (3)
O1-S1-C2	103.95 (17)	H3A-C3-H3C	115 (4)
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	104.47 (17)	$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	116 (5)
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1$	98.62 (19)	S2-C4-H4A	114 (3)
S1-C1-H1A	108 (3)	S2-C4-H4B	107 (4)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	106 (3)	H4A-C4-H4B	108 (5)
H1A-C1-H1B	113 (4)	S2-C4-H4C	108 (3)
S1- $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	106 (3)	H4A-C4- 44 C	110 (4)
H1A-C1-H1C	108 (4)	$\mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	111 (5)

Symmetry code: (i) $-x+1,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 O \cdots \mathrm{O} 1$	$0.83(7)$	$1.62(8)$	$2.448(4)$	$175(7)$

