Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Trilithium scandium bis(orthoborate)

Lizhong Mao, Tianyong Zhou and Ning Ye*

Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
Correspondence e-mail: nye@fjirsm.ac.cn

Received 8 May 2008; accepted 15 May 2008

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{O}-\mathrm{B})=0.002 \AA$; R factor $=0.017 ; w R$ factor $=0.059$; data-to-parameter ratio $=9.2$.

Single crystals of the title compound, $\mathrm{Li}_{3} \mathrm{Sc}\left(\mathrm{BO}_{3}\right)_{2}$, have been obtained by spontaneous nucleation from a high-temperature melt. The title compound adopts a framework structure and is composed of distorted $\left[\mathrm{ScO}_{6}\right]$ octahedra, $\left[\mathrm{LiO}_{4}\right]$ tetrahedra, $\left[\mathrm{LiO}_{4}\right]$ rectangles and isolated $\left[\mathrm{BO}_{3}\right]$ triangles. Except for the Sc and one Li atom (both on inversion centres), all atoms are in general positions.

Related literature

For a review of structural data of BO_{3} groups, see: Zobetz (1982). For sodium scandium borates, see: Becker \& Held (2001); Zhang et al. (2006).

Experimental

Crystal data
$\mathrm{Li}_{3} \mathrm{Sc}\left(\mathrm{BO}_{3}\right)_{2}$
$M_{r}=183.4$
Monoclinic, $P 2_{1} / n$
$a=4.7831$ (17) \AA
$b=5.954$ (2) A
$c=8.163$ (3) \AA
$\beta=90.702(9)^{\circ}$

Data collection

Rigaku Mercury CCD diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000)
$T_{\text {min }}=0.833, T_{\text {max }}=0.858$
$V=232.44(15) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=1.53 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.12 \times 0.10 \times 0.10 \mathrm{~mm}$

1734 measured reflections
534 independent reflections 518 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$

Refinement

$\begin{array}{ll}R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017 & 58 \text { parameters } \\ w R\left(F^{2}\right)=0.058 & \Delta \rho_{\max }=0.28 \mathrm{e}^{-3} \\ S=1.10 & \Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}\end{array}$

534 reflections

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

$\mathrm{Sc}-\mathrm{O} 1$	2.0854 (12)	Li2-O2	1.946 (3)
$\mathrm{Sc}-\mathrm{O} 2^{\text {i }}$	2.1101 (12)	$\mathrm{Li} 2-\mathrm{O}^{\text {iv }}$	1.983 (3)
$\mathrm{Sc}-\mathrm{O3}^{\text {i }}$	2.1197 (13)	$\mathrm{Li} 2-\mathrm{O} 3^{\text {i }}$	2.137 (3)
Li1-O2	2.0107 (12)	$\mathrm{B}-\mathrm{O} 2$	1.376 (2)
Li1-O1 ${ }^{\text {ii }}$	2.1173 (12)	$\mathrm{B}-\mathrm{O}^{\text {v }}$	1.384 (2)
$\mathrm{Li} 2-\mathrm{O} 1^{\text {iii }}$	1.896 (3)	$\mathrm{B}-\mathrm{O}^{\text {vi }}$	1.385 (2)
$\mathrm{O} 2-\mathrm{B}-\mathrm{O} 3^{\text {v }}$	122.09 (14)	$\mathrm{O3}^{\mathrm{v}}-\mathrm{B}-\mathrm{O}^{\text {vi }}$	118.72 (14)
$\mathrm{O} 2-\mathrm{B}-\mathrm{O} 1^{\text {vi }}$	119.13 (14)		

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: enCIFer (Allen et al., 2004).

This project was supported by the National Science Foundation of China (grant No. 60608018).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2180).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Becker, P. \& Held, P. (2001). Z. Krist. New Cryst. Struct. 216, 35.
Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, Y., Ye, N. \& Keszler, D. A. (2006). Acta Cryst. E62, i266-i268.
Zobetz, E. (1982). Z. Kristallogr. 160, 81-92.

supporting information

Acta Cryst. (2008). E64, i38 [doi:10.1107/S1600536808014797]

Trilithium scandium bis(orthoborate)

Lizhong Mao, Tianyong Zhou and Ning Ye

S1. Comment

$\mathrm{Li}_{3} \mathrm{Sc}\left(\mathrm{BO}_{3}\right)_{2}$, (I), was found from analysis of phase equilibria in the system $\mathrm{Li}_{2} \mathrm{O}-\mathrm{Sc}_{2} \mathrm{O}_{3}-\mathrm{B}_{2} \mathrm{O}_{3}$, in which it is the first characterized pseudo-ternary phase. For the heavier Na homologue, two phases are already known, viz. $\mathrm{Na}_{3} \mathrm{Sc}_{2}\left(\mathrm{BO}_{3}\right)_{3}$ (Zhang et al., 2006) and $\mathrm{NaScB}_{2} \mathrm{O}_{5}$ (Becker \& Held, 2001).
The framework structure of (I) is made up of distorted $\left[\mathrm{ScO}_{6}\right]$ octahedra, $\left[\mathrm{LiO}_{4}\right]$ tetrahedra, $\left[\mathrm{LiO}_{4}\right]$ rectangles and $\left[\mathrm{BO}_{3}\right]$ triangles as single building units. The $\left[\mathrm{ScO}_{6}\right]$ octahedra are linked via $\left[\mathrm{LiO}_{4}\right]$ rectangles by sharing edges to form columns parallel to [010]. The columns are linked to each other through $\left[\mathrm{LiO}_{4}\right]$ tetrahedra and $\left[\mathrm{BO}_{3}\right]$ triangles by sharing edges and corners (Figs 1 and 2).
The B atom is coordinated to three oxygen atoms forming nearly trigonal planar $\left[\mathrm{BO}_{3}\right]^{3-}$ anions. The $\mathrm{B}-\mathrm{O}$ bond lengths range from 1.376 (2) to 1.385 (2) \AA, and the $\mathrm{O} — \mathrm{~B} — \mathrm{O}$ angles are close to 120° (Table 1), values that are typical for BO_{3} groups (Zobetz, 1982). The Sc^{3+} cation is coordinated by six oxygen atoms to form a distorted [ScO_{6}] ocahedron with Sc -O bond lengths ranging from 2.0854 (12) to 2.1197 (13) \AA. There are two crystallographically different Li atoms. One is situated on an inversion centre ($\overline{1}$ symmetry) and is coordinated to four oxygen atoms forming a nearly planar [LiO_{4}] rectangle with $\mathrm{Li} 1 — \mathrm{O}$ bond lengths ranging from 2.0107 (12) to 2.1173 (12) \AA. The other Li atom is also coordinated to four O atoms, but is in the centre of a distorted tetrahedron with Li2-O bond lengths from 1.896 (3) to 2.137 (3) \AA (Table 1). The average $\mathrm{Li}-\mathrm{O}$ bond length of the $\left[\mathrm{LilO}_{4}\right]$ rectangle $\left(2.064 \AA\right.$) is slightly longer than that of the $\left[\mathrm{Li2O}_{4}\right]$ tetrahedron (1.991 \AA).

S2. Experimental

Single crystals of compound (I) were grown using a LiBO_{2}-containing flux. The composition of the mixture for crystal growth was $4: 1: 4$ of $\mathrm{Li}_{2} \mathrm{CO}_{3}$ (Sinopharm Reagents, 99.99%), $\mathrm{Sc}_{2} \mathrm{O}_{3}$ (Sinopharm Reagents, 4 N), and $\mathrm{B}_{2} \mathrm{O}_{3}$ (Sinopharm Reagents, 99%). This mixture was heated in a platinum crucible to 1373 K , held at this temperature for several hours, and then cooled at a rate of $10 \mathrm{~K} / \mathrm{h}$ from 1373 to 873 K . The remaining flux attached to the crystals was readily dissolved in water. Crystals with an average size of 0.5 mm and mostly block shaped habit were obtained.

Figure 1
The structure of (I) in a projection approximatly along the [001] direction with displacement ellipsoids drawn at the 85% probability level.

Figure 2
The structure of (I) given in the polyhedral description. [ScO_{6}] octahedra are blue, $\left[\mathrm{LiO}_{4}\right]$ tetrahedra are green, $\left[\mathrm{LiO}_{4}\right]$ rectangles are purple, and $\left[\mathrm{BO}_{3}\right]$ units are yellow.

trilithium scandium bis(orthoborate)

Crystal data
$\mathrm{Li}_{3} \mathrm{Sc}\left(\mathrm{BO}_{3}\right)_{2}$
$M_{r}=183.4$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=4.7831$ (17) \AA
$b=5.954(2) \AA$
$c=8.163(3) \AA$
$\beta=90.702(9)^{\circ}$
$V=232.44(15) \AA^{3}$
$Z=2$
$F(000)=176$
$D_{\mathrm{x}}=2.62 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 623 reflections
$\theta=4.2-23.6^{\circ}$
$\mu=1.53 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless

Data collection

Rigaku Mercury CCD
diffractometer
Radiation source: Sealed Tube
Graphite Monochromator monochromator
Detector resolution: 14.6306 pixels mm^{-1}
CCD_Profile_fitting scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
$T_{\text {min }}=0.833, T_{\text {max }}=0.858$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$
$w R\left(F^{2}\right)=0.058$
$S=1.10$
534 reflections
58 parameters
0 restraints
$0.12 \times 0.10 \times 0.10 \mathrm{~mm}$

> 1734 measured reflections
> 534 independent reflections
> 518 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.015$
> $\theta_{\max }=27.5^{\circ}, \theta_{\min }=4.2^{\circ}$
> $h=-6 \rightarrow 4$
> $k=-7 \rightarrow 7$
> $l=-10 \rightarrow 10$

Primary atom site location: structure-invariant direct methods
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0318 P)^{2}+0.216 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.28$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Sc	0	0	0	$0.00510(15)$
Li1	0	-0.5	0	$0.0209(10)$
Li2	$-0.0144(6)$	$-0.2513(5)$	$0.2977(4)$	$0.0133(6)$
B	$0.5149(4)$	$-0.3045(3)$	$0.1254(2)$	$0.0061(3)$
O1	$0.3101(2)$	$0.24622(18)$	$0.00179(14)$	$0.0077(2)$
O2	$0.2330(2)$	$-0.26155(19)$	$0.11029(14)$	$0.0086(3)$
O3	$0.1280(2)$	$-0.08686(19)$	$-0.23947(13)$	$0.0086(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sc	$0.0050(2)$	$0.0054(2)$	$0.0049(2)$	$-0.00002(13)$	$0.00011(14)$	$0.00009(12)$
Li1	$0.015(2)$	$0.012(2)$	$0.035(3)$	$0.0000(15)$	$-0.008(2)$	$-0.0062(17)$
Li2	$0.0119(13)$	$0.0182(15)$	$0.0098(13)$	$-0.0025(11)$	$-0.0018(10)$	$0.0015(10)$
B	$0.0074(7)$	$0.0042(7)$	$0.0067(7)$	$-0.0009(6)$	$0.0000(6)$	$-0.0014(6)$
O1	$0.0065(5)$	$0.0095(5)$	$0.0070(5)$	$-0.0013(4)$	$0.0004(4)$	$0.0005(4)$
O2	$0.0060(5)$	$0.0099(5)$	$0.0099(6)$	$0.0013(4)$	$0.0000(4)$	$0.0012(4)$
O3	$0.0084(5)$	$0.0102(6)$	$0.0071(5)$	$0.0006(4)$	$-0.0009(4)$	$-0.0023(4)$

Geometric parameters (A, ${ }^{\circ}$)

$\mathrm{Sc}-\mathrm{Ol}$	2.0854 (12)	Li2- $\mathrm{Ol}^{\text {x }}$	1.896 (3)
$\mathrm{Sc}-\mathrm{Ol}^{1}$	2.0854 (12)	Li2-O2	1.946 (3)
$\mathrm{Sc}-\mathrm{O}^{\text {i }}$	2.1101 (12)	Li2-O3 ${ }^{\text {xi }}$	1.983 (3)
$\mathrm{Sc}-\mathrm{O} 2$	2.1101 (12)	Li2- $\mathrm{O3}^{\text {i }}$	2.137 (3)
$\mathrm{Sc}-\mathrm{O}^{\text {i }}$	2.1197 (13)	Li2-B ${ }^{\text {viii }}$	2.659 (3)
$\mathrm{Sc}-\mathrm{O} 3$	2.1197 (13)	Li2- $\mathrm{B}^{\text {xi }}$	2.697 (3)
$\mathrm{Sc}-\mathrm{Li}^{2}{ }^{\text {i }}$	2.855 (3)	Li2-B ${ }^{\text {xii }}$	2.733 (4)
Sc-Li2	2.855 (3)	Li2-Scix	3.226 (3)
Sc-Lilii	2.9768 (11)	Li2-Li $1^{\text {iii }}$	3.234 (3)
Sc-Li1	2.9768 (11)	Li2-Sc ${ }^{\text {x }}$	3.297 (3)
$\mathrm{Sc}-\mathrm{Li}^{\text {iiii }}$	3.226 (3)	$\mathrm{B}-\mathrm{O} 2$	1.376 (2)
$\mathrm{Sc}-\mathrm{Li}^{\text {iv }}$	3.226 (3)	$\mathrm{B}-\mathrm{O}^{\text {xiii }}$	1.384 (2)
Li1-O2	2.0107 (12)	B-O1 ${ }^{\text {xiv }}$	1.385 (2)
Li1- $\mathrm{O}^{\text {v }}$	2.0107 (12)	B- $\mathrm{Li}^{\text {xv }}$	2.659 (3)
Lil-O1 ${ }^{\text {vi }}$	2.1173 (12)	B-Li2 ${ }^{\text {iv }}$	2.697 (3)
Lil-O1 ${ }^{\text {i }}$	2.1173 (12)	B-Li2 ${ }^{\text {x }}$	2.733 (4)
Li1-B ${ }^{\text {vii }}$	2.8008 (18)	B-Li1 ${ }^{\text {xv }}$	2.8008 (18)
Li1-B ${ }^{\text {viii }}$	2.8008 (18)	O1- $\mathrm{B}^{\text {xiv }}$	1.385 (2)
Li1-Li2 ${ }^{\text {v }}$	2.847 (3)	O1-Li2 ${ }^{\text {xii }}$	1.896 (3)
Li1-Li2	2.847 (3)	O1-Lili ${ }^{\text {if }}$	2.1173 (12)
Li1-Sc ${ }^{\text {vi }}$	2.9768 (11)	O3-Bx ${ }^{\text {xi }}$	1.384 (2)
Lil-Li2 ${ }^{\text {ix }}$	3.234 (3)	O3-Li2 ${ }^{\text {iv }}$	1.983 (3)
Li1-Li2 ${ }^{\text {iv }}$	3.234 (3)	O3-Li2 ${ }^{\text {i }}$	2.137 (3)
$\mathrm{O} 1-\mathrm{Sc}-\mathrm{Ol}^{\text {i }}$	180.00 (4)	$\mathrm{O} 1^{\mathrm{x}}-\mathrm{Li} 2-\mathrm{O3}^{\text {i }}$	109.04 (14)
$\mathrm{O} 1-\mathrm{Sc}-\mathrm{O}^{\text {i }}$	81.73 (5)	O2-Li2-O3 ${ }^{\text {i }}$	90.58 (12)
$\mathrm{Ol}^{\text {i }}-\mathrm{Sc}-\mathrm{O}^{\text {i }}$	98.27 (5)	$\mathrm{O} 3{ }^{\text {xi }}-\mathrm{Li} 2-\mathrm{O}^{\text {i }}$	101.95 (13)
$\mathrm{O} 1-\mathrm{Sc}-\mathrm{O} 2$	98.27 (5)	$\mathrm{O} 2-\mathrm{B}-\mathrm{O} 3^{\text {xiii }}$	122.09 (14)
$\mathrm{Ol}^{1}-\mathrm{Sc}-\mathrm{O} 2$	81.73 (5)	$\mathrm{O} 2-\mathrm{B}-\mathrm{O}^{\text {xiv }}$	119.13 (14)
$\mathrm{O} 2-\mathrm{Sc}-\mathrm{O} 2$	180.00 (8)	$\mathrm{O} 3^{\text {xiii }}-\mathrm{B}-\mathrm{Ol}^{\text {xiv }}$	118.72 (14)
$\mathrm{O} 1-\mathrm{Sc}-\mathrm{O3}^{\text {i }}$	92.04 (4)	$\mathrm{B}^{\text {xiv }}-\mathrm{O} 1-\mathrm{Li}^{\text {2xi }}$	109.58 (13)
$\mathrm{Ol}^{\text {i }}-\mathrm{Sc}-\mathrm{O3}^{\text {i }}$	87.96 (4)	$\mathrm{B}^{\text {xiv }}-\mathrm{O} 1-\mathrm{Sc}$	127.37 (10)
$\mathrm{O}^{\text {i }}-\mathrm{Sc}-\mathrm{O3}^{\text {i }}$	93.23 (5)	Li2 ${ }^{\text {xii- }}$ - $\mathrm{O} 1-\mathrm{Sc}$	111.74 (11)
$\mathrm{O} 2-\mathrm{Sc}-\mathrm{O3}^{\text {i }}$	86.77 (5)	Bxiv-O1-Lil ${ }^{\text {ii }}$	104.23 (9)
$\mathrm{O} 1-\mathrm{Sc}-\mathrm{O} 3$	87.96 (4)	Li2 ${ }^{\text {xii }}-\mathrm{O} 1-\mathrm{Lil}^{\text {ii }}$	110.73 (10)
$\mathrm{O1}{ }^{\text {i }}$ - $\mathrm{Sc}-\mathrm{O} 3$	92.04 (4)	$\mathrm{Sc}-\mathrm{O} 1-\mathrm{Lil}^{\text {ii }}$	90.19 (5)
$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{Sc}-\mathrm{O} 3$	86.77 (5)	B-O2-Li2	122.67 (13)
$\mathrm{O} 2-\mathrm{Sc}-\mathrm{O} 3$	93.23 (5)	B-O2-Lil	116.47 (10)
$\mathrm{O} 3{ }^{\text {i- }} \mathrm{Sc}-\mathrm{O} 3$	180.00 (5)	Li2-O2-Li1	92.02 (10)
O2-Lil- $\mathrm{O}^{\text {v }}$	180.00 (6)	B-O2-Sc	133.37 (10)
$\mathrm{O} 2-\mathrm{Li} 1-\mathrm{Ol}^{\text {vi }}$	96.68 (5)	Li2-O2-Sc	89.39 (10)
$\mathrm{O} 2{ }^{v}-\mathrm{Li} 1-\mathrm{O}^{\text {vi }}$	83.32 (5)	Li1-O2-Sc	92.47 (5)
O2-Lil-O1 ${ }^{\text {i }}$	83.32 (5)	$\mathrm{B}^{\mathrm{xvi}}-\mathrm{O} 3-\mathrm{Li}^{\text {iv }}$	102.89 (13)
$\mathrm{O} 2{ }^{\text {V}}-\mathrm{Li} 1-\mathrm{Ol}^{1}$	96.68 (5)	Bxi-O3-Sc	137.30 (10)
$\mathrm{O} 1^{\text {vi}}-\mathrm{Lil}-\mathrm{Ol}^{\text {i }}$	180	Li2 $2^{\text {iv }}-\mathrm{O} 3-\mathrm{Sc}$	103.64 (10)
$\mathrm{Ol}^{\mathrm{x}}-\mathrm{Li} 2-\mathrm{O} 2$	111.51 (16)	$\mathrm{B}^{\text {xij }}-\mathrm{O} 3-\mathrm{Li}^{2}{ }^{\text {i }}$	99.62 (12)

supporting information

$\mathrm{O} 1^{\mathrm{x}}-\mathrm{Li} 2-\mathrm{O} 3^{\mathrm{xi}}$	$124.23(16)$	$\mathrm{Li}^{\mathrm{iv}}-\mathrm{O} 3-\mathrm{Li}^{\mathrm{i}}$	$135.08(11)$
$\mathrm{O} 2 — \mathrm{Li} 2-\mathrm{O} 3^{\mathrm{xi}}$	$113.33(15)$	$\mathrm{Sc}-\mathrm{O} 3-\mathrm{Li}^{\mathrm{i}}$	$84.24(9)$

Symmetry codes: (i) $-x,-y,-z$; (ii) $x, y+1, z$; (iii) $-x-1 / 2, y+1 / 2,-z+1 / 2$; (iv) $x+1 / 2,-y-1 / 2, z-1 / 2$; (v) $-x,-y-1,-z$; (vi) $x, y-1, z$; (vii) $-x+1,-y-1,-z$; (viii) $x-1, y, z$; (ix) $-x-1 / 2, y-1 / 2,-z+1 / 2$; (x) $-x+1 / 2, y-1 / 2,-z+1 / 2$; (xi) $x-1 / 2,-y-1 / 2, z+1 / 2$; (xii) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (xiii) $x+1 / 2,-y-1 / 2, z+1 / 2$; (xiv) $-x+1,-y,-z$; (xv) $x+1, y, z$; (xvi) $x-1 / 2,-y-1 / 2, z-1 / 2$.

