

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[penta- μ -aqua- μ_6 -methylenedisulfonato- μ_5 -methylenedisulfonatotetrasodium(I)]

Dan-Dan Cao and Zai-Chao Zhang*

Department of Chemistry, Huaiyin Teachers College, 111 West Changjiang Road, Huaian 223300, Jiangsu, People's Republic of China Correspondence e-mail: overloadzz@hotmail.com

Received 1 May 2008; accepted 10 May 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (S–C) = 0.002 Å; R factor = 0.031; wR factor = 0.093; data-to-parameter ratio = 13.6.

The title compound, $[Na_4(CH_2O_6S_2)_2(H_2O)_5]_n$, was crystallized from an aqueous solution. The sodium ions are surrounded and bridged by O atoms from coordinated water molecules and sulfonate ions in a three-dimensional neutral network. The crystal structure is also stabilized by an intricate system of hydrogen bonds.

Related literature

The supramolecular chemistry of the sulfonate group in extended solids constructed by cooperative coordination and other weak intermolecular interactions, as well as the structural and functional properties of Ba^{2+} and Ag^+ sulfonates, has been reviewed by Côté & Shimizu (2003). For a review of the structural chemistry and properties of metal arenesulfonates, see: Cai (2004). For related literature, see: Li *et al.* (2008); Mi *et al.* (2007); Videnova-Adrabinska (2007).

 $\gamma = 87.227 \ (2)^{\circ}$

Z = 2

V = 860.19 (11) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.25 \times 0.25$ mm

10702 measured reflections

3321 independent reflections

3050 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.74 \text{ mm}^{-1}$

T = 296 (2) K

 $R_{\rm int} = 0.022$

244 parameters

 $\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-1}$

 $\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

Experimental

Crystal data

 $\begin{bmatrix} Na_4(CH_2O_6S_2)_2(H_2O)_5 \end{bmatrix} \\ M_r = 530.33 \\ Triclinic, P\overline{1} \\ a = 8.7758 (7) Å \\ b = 9.5339 (7) Å \\ c = 10.7878 (8) Å \\ a \approx 81.425 (2)^{\circ} \\ \beta = 74.545 (2)^{\circ} \end{bmatrix}$

Data collection

Bruker SMART APEX2 diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{min} = 0.81, T_{max} = 0.84$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.093$ S = 1.003321 reflections

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O13-H13A\cdots O8^{i}$	0.97	1.93	2.868 (2)	163
$O13-H13B\cdots O5^{ii}$	0.97	1.87	2.824 (2)	166
$O14-H14A\cdots O9^{iii}$	0.97	2.00	2.871 (2)	148
$O15-H15B\cdots O3^{iv}$	0.97	1.97	2.877 (2)	155
O16−H16A···O9 ⁱⁱⁱ	0.97	1.87	2.794 (2)	158
O16−H16B···O12	0.97	2.18	3.034 (3)	147
$O17 - H17A \cdots O4^{v}$	0.97	2.17	2.879 (3)	129
$O17 - H17B \cdot \cdot \cdot O12^{vi}$	0.97	2.10	2.918 (3)	141

Symmetry codes: (i) x - 1, y, z; (ii) x, y - 1, z; (iii) -x + 2, -y + 1, -z + 1; (iv) x + 1, y, z; (v) -x, -y + 2, -z + 2; (vi) x - 1, y + 1, z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2003).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2114).

References

Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, J.-W. (2004). Coord. Chem. Rev. 248, 1061-1083.
- Côté, A. P. & Shimizu, G. K. H. (2003). Coord. Chem. Rev. 245, 49-60.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Li, M., Xiang, J.-F., Chen, S.-P., Wu, S.-M., Yuan, L.-J., Li, H., He, H.-J. & Sun, J.-T. (2008). J. Coord. Chem. 61, 372–383.
- Mi, L.-W., Hou, H.-W., Song, Z.-Y., Han, H.-Y., Xu, H., Fan, Y.-T. & Ng, S.-W. (2007). J. Cryst. Growth Des. 7, 2553–2561.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Videnova-Adrabinska, V. (2007). Coord. Chem. Rev. 251, 1987-2016.

supporting information

Acta Cryst. (2008). E64, m815 [doi:10.1107/S1600536808014037]

Poly[penta- μ -aqua- μ_6 -methylenedisulfonato- μ_5 -methylenedisulfonato-tetrasodium(I)]

Dan-Dan Cao and Zai-Chao Zhang

S1. Comment

Due to the weak coordination strength of monosulfonate ions, most metal complexes of these ligands obtained from aqueous solution are water-coordinated metal sulfonate salts, and the coordination chemistry of the sulfonate ion has been less well investigated in comparison with other organic acidato anions such as carbonates and phosfonates (Côté & Shimizu, 2003). However, by employing disulfonates, which can provide multiple potentially chelating coordination sites, stable networks sustained by sulfonate-metal interactions can be obtained with various dimensionalities (Cai, 2004; Li *et al.*, 2008; Mi *et al.*, 2007; Videnova-Adrabinska, 2007).

The present structral study of the title compound $\{Na_4(mds)_2(H_2O)_5\}_n$ (I) reveals the existence of sulfonate-sodium interactions. The asymmetric unit consists of four sodium ions, five coordinated μ_2 -H₂O molecules and two CH₃(SO₃)₂²⁻ ligands (Fig. 1). Of the four sodium ions, Na1, Na2 and Na4 are six-coordinated. Na3 is coordinated by five oxygen atoms (O2^{vi}, O13, O14, O16 and O16^{iv}). The Na—O bond lengths fall in the range of 2.334 (2) to 2.5609 (18) Å. All sulfonate oxygens are deprotonated. Three sulfonate oxygen atoms (O5, O9 and O12) are not coordinated to sodium atoms and do instead act as hydrogen bonding acceptors towards coordinated water molecules. All other hydrogen bonds are from water molecules towards Na coordinated sulfonate oxygen atoms (Table 1).

Each sodium atom is bridged to an equivalent neighbour, forming $\{Na_2O_2\}$ dimers with inversion centers in the middle. O1 and O7 connect the dimers of Na1 and Na2 into an infinite chain. Na1-Na2 chains are joined to dimers of Na3 and Na4 through intricate bridges of oxygens from sulfonate groups and coordinated waters, and O—S—O connectivities, thus generating a three-dimensional network (Fig. 2).

S2. Experimental

An 1 mol L^{-1} NaOH aqueous solution was droped into one of mdsH₂ (0.14 g, 1 mmol in 20 ml H₂O) until the pH value of the solution reached 7 to 9. Slow evaporation for several days yieled colorless prismlike crystals of the title compound. Anal. Calcd for C₂H₁₄O₁₇Na₄S₄ (530.34): C 4.51, H 2.69%; Found: C 4.53, H 2.66%.

S3. Refinement

All the non-hydrogen atoms were located from the Fourier maps, and were refined anisotropically. H atoms from μ_2 -H₂O can be suitably placed in calculated positions, so all the H atoms, including those attached to carbon atoms and from water molecules, were positioned geometrically, and the isotropic vibration parameters related to the atoms which they are bonded to with U_{iso} = 1.2 U_{eq}.

Figure 1

The asymmetric unit of I with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms attached to carbon atoms are omitted for clarity. Symmetry codes: (i) -1+x, *y*, *z*; (ii) 1+x, *y*, *z*; (iii) *-x*, 2*-y*, 2*-z*. (iv) 1-x, 1-y, 1-z; (v) 1-x, 1-y, 2-z; (vi) 1-x, 2-y, 1-z; (vii) 1-x, 2-y, 2-z; (viii) 2-x, 2-y, 1-z;

Figure 2

Packing diagram of compound I. Na-O bond is showed by black line, H atoms are omitted for clarity.

Poly[penta- μ -aqua- μ_6 -methylenedisulfonato- μ_5 -methylenedisulfonato- tetrasodium(I)]

Z = 2

F(000) = 540 $D_x = 2.048 \text{ Mg m}^{-3}$

 $\theta = 2.6 - 21.1^{\circ}$

 $\mu = 0.74 \text{ mm}^{-1}$

Prismlike, colourless

 $0.30 \times 0.25 \times 0.25$ mm

10702 measured reflections

 $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$

3321 independent reflections

3050 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.022$

 $h = -10 \rightarrow 10$

 $k = -11 \rightarrow 11$

 $l = -13 \rightarrow 13$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 202 reflections

Crystal data

 $\begin{bmatrix} Na_4(CH_2O_6S_2)_2(H_2O)_5 \end{bmatrix}$ $M_r = 530.33$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.7758 (7) Å b = 9.5339 (7) Å c = 10.7878 (8) Å $a = 81.425 (2)^{\circ}$ $\beta = 74.545 (2)^{\circ}$ $\gamma = 87.227 (2)^{\circ}$ $V = 860.19 (11) \text{ Å}^3$

Data collection

Bruker SMART APEX2 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.81, T_{\max} = 0.84$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H-atom parameters constrained
$wR(F^2) = 0.093$	$w = 1/[\sigma^2(F_o^2) + (0.0428P)^2 + 0.7023P]$
S = 1.00	where $P = (F_o^2 + 2F_c^2)/3$
3321 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
244 parameters	$\Delta ho_{ m max} = 0.47$ e Å ⁻³
0 restraints	$\Delta ho_{ m min} = -0.56 \ m e \ m A^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick 2008), $F^*=F(1+0.002xF^2(sin(2\theta))^{-0.25})$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.00025 (5)
map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotr	opic or equivalent	isotropic displacement	parameters $(Å^2)$
---	--------------------	------------------------	--------------------

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.4436 (2)	1.0561 (2)	0.8451 (2)	0.0189 (4)
H1A	0.4297	0.9743	0.9121	0.023*

H1R	0 5440	1 0983	0 8394	0.023*
C^2	0.9094 (3)	0.4391(2)	0.8842(2)	0.023
H2A	1 0010	0.3786	0.8863	0.0217 (4)
H2R	0.8798	0.4796	0.0605	0.026*
Na1	0.55562 (10)	0.66480 (9)	0.86815 (9)	0.020
Na2	0.85901 (11)	0.87496 (9)	0.50317(9)	0.0255(2)
Na3	0.54875 (13)	0.67712(11)	0.59597(9) 0.52620(12)	0.0200(2) 0.0421(3)
Na4	0.08149(10)	0.88263 (9)	0.88189 (8)	0.0421(3) 0.0240(2)
01	0.57149(19)	0.87897 (16)	0.60105(0)	0.0240(2) 0.0261(4)
02	0.5/142(12)	1 11297 (17)	0.59433(15)	0.0201(4) 0.0278(4)
03	0.3105(2) 0.29960(18)	0.94639(19)	0.59435(15) 0.70181(15)	0.0270(4) 0.0287(4)
04	0.29900(10)	1,21026(19)	1.01825(16)	0.0287(4) 0.0334(4)
05	0.3102(2)	1.21020(17) 1.30241(17)	0.79628(18)	0.0354(4)
05	0.3122(2) 0.13001(10)	1.30241(17) 1.11171(17)	0.79028(13) 0.91904(17)	0.0333(4)
00	0.13991(19) 0.82527(18)	0.65404(17)	0.31904(17) 0.73482(15)	0.0290(4)
08	1.06688(10)	0.05404(17)	0.73482(13) 0.80084(17)	0.0239(4)
08	1.00000(19) 1.0542(2)	0.00037(17) 0.51641(18)	0.60004(17)	0.0230(4)
09	1.0342(2)	0.31041(18) 0.41828(18)	0.04174(10)	0.0325(4)
010	0.0110(2) 0.7435(2)	0.41828(18) 0.21006(18)	0.9018(2) 0.00171(18)	0.0300(4)
012	0.7433(2) 0.7016(2)	0.21990(18) 0.27615(10)	0.991/1(10) 0.75861(17)	0.0332(4)
012	0.7910(2) 0.2062(2)	0.27013(19) 0.50164(17)	0.73801(17)	0.0307(4)
015	0.3902 (2)	0.39104 (17)	0.74440 (17)	0.0310 (4)
ПІЗА 1112D	0.2921	0.0330	0.7642	0.038*
H13B	0.3834	0.4895	0.7581	0.038^{+}
014	0.8208 (2)	0.7545(2)	0.42800 (17)	0.0301 (4)
HI4A	0.8995	0.0740	0.4159	0.043*
H14B	0.8388	0.8170	0.3470	0.043*
015	1.1401 (2)	0.88559 (19)	0.51526 (17)	0.0338 (4)
HI5A	1.1832	0.8177	0.4560	0.041*
HI5B	1.1927	0.8759	0.5846	0.041*
016	0.6570 (2)	0.43211 (19)	0.54436 (17)	0.0355 (4)
HI6A	0.7614	0.4243	0.4860	0.043*
H16B	0.6587	0.3945	0.6326	0.043*
017	-0.1158 (2)	0.97729 (18)	0.77543 (16)	0.0308 (4)
H17A	-0.2173	0.9697	0.8396	0.037*
H17B	-0.0951	1.0776	0.7471	0.037*
S1	0.45658 (6)	0.99467 (5)	0.69417 (5)	0.01723 (13)
S2	0.29091 (6)	1.18145 (5)	0.89699 (5)	0.02035 (14)
S3	0.96766 (6)	0.58056 (5)	0.75349 (5)	0.01822 (14)
S4	0.75141 (6)	0.33016 (5)	0.88177 (5)	0.01945 (14)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0163 (10)	0.0213 (10)	0.0196 (9)	-0.0008 (8)	-0.0062 (8)	-0.0015 (8)
C2	0.0201 (11)	0.0206 (10)	0.0249 (10)	-0.0059 (8)	-0.0097 (9)	0.0031 (8)
Na1	0.0236 (5)	0.0240 (5)	0.0298 (5)	-0.0020 (3)	-0.0086 (4)	-0.0049 (4)
Na2	0.0269 (5)	0.0246 (5)	0.0278 (5)	-0.0050 (4)	-0.0061 (4)	-0.0010 (4)
Na3	0.0352 (6)	0.0290 (5)	0.0592 (7)	-0.0041 (4)	-0.0151 (5)	0.0090 (5)

Na4	0.0222 (5)	0.0225 (4)	0.0275 (4)	-0.0026 (3)	-0.0064 (4)	-0.0035 (3)
01	0.0236 (8)	0.0227 (8)	0.0298 (8)	0.0048 (6)	-0.0047 (6)	-0.0026 (6)
O2	0.0333 (9)	0.0226 (8)	0.0217 (8)	0.0005 (7)	-0.0009(7)	0.0034 (6)
O3	0.0179 (8)	0.0449 (10)	0.0253 (8)	-0.0059 (7)	-0.0055 (6)	-0.0102 (7)
04	0.0336 (10)	0.0408 (10)	0.0289 (9)	-0.0089 (8)	-0.0056 (7)	-0.0161 (8)
05	0.0451 (11)	0.0193 (8)	0.0410 (10)	0.0027 (7)	-0.0139 (8)	0.0013 (7)
O6	0.0177 (8)	0.0302 (9)	0.0412 (9)	-0.0024 (7)	-0.0055 (7)	-0.0149 (7)
O7	0.0199 (8)	0.0258 (8)	0.0296 (8)	0.0012 (6)	-0.0064 (6)	0.0031 (6)
08	0.0241 (8)	0.0224 (8)	0.0401 (9)	-0.0078 (6)	-0.0080 (7)	-0.0050 (7)
09	0.0320 (9)	0.0296 (9)	0.0299 (9)	-0.0016 (7)	0.0049 (7)	-0.0088 (7)
O10	0.0195 (8)	0.0249 (9)	0.0626 (12)	-0.0013 (7)	-0.0085 (8)	-0.0010 (8)
011	0.0371 (10)	0.0292 (9)	0.0376 (9)	-0.0137 (8)	-0.0151 (8)	0.0151 (7)
O12	0.0471 (11)	0.0332 (10)	0.0309 (9)	-0.0113 (8)	-0.0073 (8)	-0.0097 (7)
013	0.0273 (9)	0.0237 (8)	0.0458 (10)	-0.0008 (7)	-0.0128 (8)	-0.0051 (7)
O14	0.0411 (11)	0.0366 (10)	0.0339 (9)	0.0084 (8)	-0.0144 (8)	-0.0096 (8)
015	0.0280 (9)	0.0371 (10)	0.0331 (9)	0.0018 (7)	-0.0063 (7)	0.0011 (7)
016	0.0296 (9)	0.0405 (10)	0.0330 (9)	-0.0025 (8)	-0.0060 (7)	0.0020 (8)
O17	0.0318 (9)	0.0290 (9)	0.0328 (9)	-0.0004 (7)	-0.0097 (7)	-0.0061 (7)
S 1	0.0149 (3)	0.0180 (3)	0.0175 (2)	-0.00013 (19)	-0.00291 (19)	-0.00080 (19)
S2	0.0192 (3)	0.0183 (3)	0.0247 (3)	-0.0022 (2)	-0.0057 (2)	-0.0062 (2)
S3	0.0165 (3)	0.0157 (3)	0.0210 (3)	-0.00201 (19)	-0.00272 (19)	-0.00110 (19)
S4	0.0192 (3)	0.0153 (3)	0.0240 (3)	-0.00369 (19)	-0.0073 (2)	0.00080 (19)

Geometric parameters (Å, °)

C1—S2	1.783 (2)	Na4—O17	2.3942 (19)
C1—S1	1.785 (2)	Na4—O11 ⁱⁱ	2.3972 (19)
C1—H1A	0.9700	Na4—O6 ^{viii}	2.4881 (18)
C1—H1B	0.9700	Na4—Na4 ^{viii}	3.6050 (17)
C2—S4	1.780 (2)	Na4—Na2 ^{vii}	4.1000 (13)
C2—S3	1.785 (2)	O1—S1	1.4562 (16)
C2—H2A	0.9700	O2—S1	1.4398 (16)
C2—H2B	0.9700	O2—Na3 ^v	2.3339 (18)
Na1—O4 ⁱ	2.3382 (19)	O3—S1	1.4512 (16)
Na1—013	2.3644 (19)	O4—S2	1.4528 (17)
Na1—O10	2.3709 (19)	O4—Na1 ⁱ	2.3382 (19)
Na1—O7	2.4260 (18)	O5—S2	1.4437 (18)
Na1—O10 ⁱⁱ	2.552 (2)	O6—S2	1.4577 (17)
Na1—O1	2.5607 (18)	O6—Na4 ^{viii}	2.4881 (18)
Na1—O11 ⁱⁱ	2.913 (2)	O7—S3	1.4492 (16)
Na1—S4 ⁱⁱ	3.2699 (10)	O8—S3	1.4569 (16)
Na1—Na3	3.6898 (15)	O8—Na4 ⁱⁱⁱ	2.3763 (18)
Na1—Na2	3.7975 (13)	O9—S3	1.4460 (16)
Na1—Na1 ⁱⁱ	3.8822 (18)	O10—S4	1.4432 (17)
Na2—O14	2.3389 (19)	O10—Na1 ⁱⁱ	2.552 (2)
Na2—O17 ⁱⁱⁱ	2.3816 (19)	O11—S4	1.4515 (17)
Na2—O15	2.3866 (19)	O11—Na4 ⁱⁱ	2.3972 (19)
Na2—07	2.3893 (18)	O11—Na1 ⁱⁱ	2.913 (2)

Na2—O15 ^{iv}	2.4057 (19)	O12—S4	1.4462 (17)
Na2—O1	2.4623 (18)	O13—H13A	0.9700
Na2—Na2 ^{iv}	3.5152 (18)	O13—H13B	0.9700
Na2—Na3	3.6688 (15)	O14—H14A	0.9700
Na2—Na4 ⁱⁱⁱ	4.1000 (13)	O14—H14B	0.9700
Na3—O2 ^v	2.3339 (18)	O15—Na2 ^{iv}	2.4057 (19)
Na3—O13	2.420 (2)	O15—H15A	0.9700
Na3—O16 ^{vi}	2.465 (2)	O15—H15B	0.9700
Na3—016	2.479 (2)	O16—Na3 ^{vi}	2.465 (2)
Na3—014	2.486 (2)	016—H16A	0.9700
Na3—01	2.856 (2)	O16—H16B	0.9700
Na3—Na3 ^{vi}	3.683 (2)	O17—Na2 ^{vii}	2.3816 (19)
Na4—O3	2.3635 (18)	017—H17A	0.9700
Na4—O ^{8vii}	2.3763 (18)	017—H17B	0.9700
Na4—06	2 3816 (18)	S4—Na1 ⁱⁱ	3 2699 (10)
	2.5010 (10)	ST Thui	5.2099 (10)
S2—C1—S1	117.32 (11)	O13—Na3—Na2	100.89 (6)
S2—C1—H1A	108.0	O16 ^{vi} —Na3—Na2	172.47 (6)
S1—C1—H1A	108.0	O16—Na3—Na2	101.22 (6)
S2—C1—H1B	108.0	O14—Na3—Na2	39.03 (5)
S1—C1—H1B	108.0	O1—Na3—Na2	42.08 (4)
H1A—C1—H1B	107.2	O2 ^v —Na3—Na3 ^{vi}	123.29 (7)
S4—C2—S3	117.32 (12)	O13—Na3—Na3 ^{vi}	81.18 (5)
S4—C2—H2A	108.0	O16 ^{vi} —Na3—Na3 ^{vi}	41.99 (5)
S3—C2—H2A	108.0	O16—Na3—Na3 ^{vi}	41.70 (5)
S4—C2—H2B	108.0	O14—Na3—Na3 ^{vi}	116.43 (7)
S3—C2—H2B	108.0	O1—Na3—Na3 ^{vi}	151.94 (6)
H2A—C2—H2B	107.2	Na2—Na3—Na3 ^{vi}	142.60 (5)
O4 ⁱ —Na1—O13	166.18 (8)	O2 ^v —Na3—Na1	121.20 (6)
O4 ⁱ —Na1—O10	111.23 (8)	O13—Na3—Na1	38.99 (5)
O13—Na1—O10	82.42 (7)	O16 ^{vi} —Na3—Na1	124.37 (6)
O4 ⁱ —Na1—O7	80.23 (6)	O16—Na3—Na1	85.67 (5)
O13—Na1—O7	105.45 (7)	O14—Na3—Na1	96.42 (5)
O10—Na1—O7	78.58 (6)	O1—Na3—Na1	43.79 (4)
O4 ⁱ —Na1—O10 ⁱⁱ	81.40 (7)	Na2—Na3—Na1	62.14 (3)
O13—Na1—O10 ⁱⁱ	100.65 (7)	Na3 ^{vi} —Na3—Na1	109.09 (4)
O10—Na1—O10 ⁱⁱ	75.97 (7)	O3—Na4—O8 ^{vii}	88.53 (6)
O7—Na1—O10 ⁱⁱ	140.45 (7)	O3—Na4—O6	78.83 (6)
O4 ⁱ —Na1—O1	91.18 (7)	O8 ^{vii} —Na4—O6	167.28 (7)
O13—Na1—O1	78.18 (6)	O3—Na4—O17	95.65 (7)
O10—Na1—O1	142.97 (7)	08 ^{vii} —Na4—O17	87.86 (6)
07—Na1—01	76.66 (6)	06—Na4—017	92.01 (6)
O10 ⁱⁱ —Na1—O1	138.45 (6)	03—Na4—011 ⁱⁱ	90.43 (7)
O4 ⁱ —Na1—O11 ⁱⁱ	88.36 (6)	O8 ^{vii} —Na4—O11 ⁱⁱ	92.18 (7)
O13—Na1—O11 ⁱⁱ	82.51 (6)	06—Na4—O11 ⁱⁱ	89.29 (7)
010—Na1—O11 ⁱⁱ	120.57 (6)	017—Na4—O11 ⁱⁱ	173.92 (7)
07—Na1—011 ⁱⁱ	160.46 (6)	O3—Na4—O6 ^{viii}	163.22 (7)
$O10^{ii}$ —Na1—O11 ⁱⁱ	51.33 (5)	O8 ^{vii} —Na4—O6 ^{viii}	108.07 (6)

$O1$ Na1 $O11^{ij}$	97 96 (5)		94 51 (6)
O_1 No1 S_4^{ii}	87.80 (3) 85.44 (5)	00 Na4 00	82.85 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.84(5)	$O11^{ii}$ No4 $O6^{viii}$	82.85(0)
$\begin{array}{c} 010 \text{Na1} 54 \\ 010 \text{Na1} 54 \\ \end{array}$	90.07(3)	$O_1 = N_0 4$ $N_0 4^{\text{viii}}$	91.30(7)
O7 No1 $S4$	162 26 (5)	O_{3} N_{a4} N_{a4}	122.20(0)
$O_1 = Na_1 = S_4$	102.30(3)	$O_6 = N_0 4 = N_0 4^{\text{viii}}$	149.13(0)
010° Na1 54°	25.05 (4)	O_1 Na4 Na4''''	43.39 (4)
O1—Na1—S4"	114.07(5)	O1/ $Na4$ $Na4$ $Na4$	86.40 (5)
$O11^{\circ}$ Na1 S4"	26.35 (3)	OII^{III} Na4 Na4 Na4	90.47 (6)
$O4^{-}$ Na1 $-$ Na3	135.93 (6)	O_{0}^{vm} Na4—Na4 $^{\text{vm}}$	41.12 (4)
Ol3—Nal—Na3	40.08 (5)	O_3 —Na4—Na2 ^{vii}	81.93 (5)
Olo—Nal—Na3	95.38 (6)	$O8^{vn}$ —Na4—Na2 ^{vn}	60.20 (5)
O7—Nal—Na3	71.14 (5)	O6—Na4—Na2 ^{vn}	115.90 (5)
O10 ⁿ —Na1—Na3	140.70 (6)	O17—Na4—Na2 ^{vn}	30.76 (4)
O1—Na1—Na3	50.52 (4)	O11 ⁿ —Na4—Na2 ^{vn}	151.34 (6)
O11 ⁱⁱ —Na1—Na3	108.04 (5)	O6 ^{viii} —Na4—Na2 ^{vii}	103.86 (5)
S4 ⁱⁱ —Na1—Na3	126.48 (3)	Na4 ^{viii} —Na4—Na2 ^{vii}	117.00 (4)
O4 ⁱ —Na1—Na2	78.15 (5)	S1—O1—Na2	131.01 (10)
O13—Na1—Na2	98.51 (5)	S1—O1—Na1	125.55 (9)
O10—Na1—Na2	114.45 (6)	Na2—O1—Na1	98.21 (6)
O7—Na1—Na2	37.60 (4)	S1—O1—Na3	114.45 (9)
O10 ⁱⁱ —Na1—Na2	159.32 (5)	Na2—O1—Na3	86.90 (5)
O1—Na1—Na2	39.92 (4)	Na1—O1—Na3	85.68 (5)
O11 ⁱⁱ —Na1—Na2	124.52 (4)	S1—O2—Na3 ^v	148.85 (11)
S4 ⁱⁱ —Na1—Na2	147.72 (3)	S1	131.30 (9)
Na3—Na1—Na2	58.66 (3)	S2-O4-Nali	150.62 (11)
O4 ⁱ —Na1—Na1 ⁱⁱ	97.06 (6)	S2	130.70 (10)
O13—Na1—Na1 ⁱⁱ	92.35 (5)	S2—O6—Na4 ^{viii}	123.77 (9)
O10—Na1—Na1 ⁱⁱ	39.63 (5)	Na4—O6—Na4 ^{viii}	95.49 (6)
O7—Na1—Na1 ⁱⁱ	112.71 (5)	S3—O7—Na2	116.86 (9)
O10 ⁱⁱ —Na1—Na1 ⁱⁱ	36.33 (4)	S3—O7—Na1	134.13 (9)
O1—Na1—Na1 ⁱⁱ	168.41 (6)	Na2—O7—Na1	104.11 (6)
O11 ⁱⁱ —Na1—Na1 ⁱⁱ	84.25 (4)	S3—O8—Na4 ⁱⁱⁱ	144.64 (11)
S4 ⁱⁱ —Na1—Na1 ⁱⁱ	58.81 (2)	S4—O10—Na1	135.88 (11)
Na3—Na1—Na1 ⁱⁱ	124.47 (4)	S4—O10—Na1 ⁱⁱ	106.52 (10)
Na2—Na1—Na1 ⁱⁱ	150.21 (4)	Na1—O10—Na1 ⁱⁱ	104.03 (7)
014—Na2—017 ⁱⁱⁱ	174.53 (8)	S4—O11—Na4 ⁱⁱ	136.83 (11)
014—Na2—015	94,48 (7)	S4—O11—Na1 ⁱⁱ	90.67 (9)
017^{iii} Na2-015	87 48 (7)	$Na4^{ii}$ O11 Na1 ⁱⁱ	117 01 (7)
014—Na2—07	88 36 (7)	Na1-013-Na3	100.93(7)
017^{iii} Na2-07	86 24 (6)	Na1-013-H13A	111.6
$015 - Na^2 - 07$	$101 \ 40 \ (7)$	Na3_013_H13A	111.6
013 - 102 = 07 $014 - 102 - 015^{iv}$	99.06(7)	Na1_013_H13B	111.6
017^{iii} Na2 013	86 17 (7)	Na3_013_H13B	111.6
$015 - Na2 - 015^{iv}$	85 64 (7)	$H_{13} = 013 = H_{13}B$	109.4
013 - 102 - 013 07 No2 015iv	160.04(7)	$M_{2} = 014 M_{2}^{2}$	08 04 (7)
014 No2 01	107.40(7)	$\frac{1}{1} \frac{1}{2} \frac{1}$	20.24 (7) 112 0
014 Na2 01	91.30 (<i>1</i>) 96.72 (6)	$\frac{1}{1}$	112.0
$O_1 / -I_Na2 - O_1$	00.75(0)	$INa = O I 4 - \Pi I 4 A$	112.0
015—Na2—01	1/4.12(/)	Na2—014—H14B	112.0

O7—Na2—O1	79.24 (6)	Na3—O14—H14B	112.0
O15 ^{iv} —Na2—O1	92.95 (6)	H14A—O14—H14B	109.7
O14—Na2—Na2 ^{iv}	99.26 (6)	Na2—O15—Na2 ^{iv}	94.36 (7)
O17 ⁱⁱⁱ —Na2—Na2 ^{iv}	85.67 (6)	Na2—O15—H15A	112.9
O15—Na2—Na2 ^{iv}	43.03 (5)	Na2 ^{iv} —O15—H15A	112.9
O7—Na2—Na2 ^{iv}	143.79 (6)	Na2—O15—H15B	112.9
O15 ^{iv} —Na2—Na2 ^{iv}	42.61 (5)	Na2 ^{iv} —O15—H15B	112.9
O1—Na2—Na2 ^{iv}	135.28 (6)	H15A—O15—H15B	110.3
O14—Na2—Na3	42.03 (5)	Na3 ^{vi} —O16—Na3	96.30 (7)
O17 ⁱⁱⁱ —Na2—Na3	134.64 (6)	Na3 ^{vi} —O16—H16A	112.5
O15—Na2—Na3	134.80 (6)	Na3—O16—H16A	112.5
O7—Na2—Na3	71.87 (5)	Na3 ^{vi} —O16—H16B	112.5
O15 ^{iv} —Na2—Na3	108.79 (6)	Na3—O16—H16B	112.5
O1—Na2—Na3	51.02 (5)	H16A—O16—H16B	110.0
Na2 ^{iv} —Na2—Na3	134.34 (4)	Na2 ^{vii} —O17—Na4	118.30 (8)
O14—Na2—Na1	96.33 (6)	Na2 ^{vii} —O17—H17A	107.7
O17 ⁱⁱⁱ —Na2—Na1	78.85 (5)	Na4—O17—H17A	107.7
O15—Na2—Na1	137.49 (5)	Na2 ^{vii} —O17—H17B	107.7
O7—Na2—Na1	38.29 (4)	Na4—O17—H17B	107.7
O15 ^{iv} —Na2—Na1	132.48 (5)	H17A—O17—H17B	107.1
O1—Na2—Na1	41.87 (4)	O2—S1—O3	113.99 (10)
Na2 ^{iv} —Na2—Na1	164.30 (4)	O2—S1—O1	113.19 (9)
Na3—Na2—Na1	59.20 (3)	O3—S1—O1	112.55 (10)
O14—Na2—Na4 ⁱⁱⁱ	146.42 (6)	O2—S1—C1	106.32 (10)
O17 ⁱⁱⁱ —Na2—Na4 ⁱⁱⁱ	30.94 (5)	O3—S1—C1	106.12 (9)
O15—Na2—Na4 ⁱⁱⁱ	66.79 (5)	O1—S1—C1	103.62 (10)
O7—Na2—Na4 ⁱⁱⁱ	69.72 (5)	O5—S2—O4	114.42 (11)
O15 ^{iv} —Na2—Na4 ⁱⁱⁱ	106.56 (5)	O5—S2—O6	112.59 (11)
O1—Na2—Na4 ⁱⁱⁱ	108.29 (5)	O4—S2—O6	111.20 (10)
Na2 ^{iv} —Na2—Na4 ⁱⁱⁱ	85.84 (3)	O5—S2—C1	107.49 (10)
Na3—Na2—Na4 ⁱⁱⁱ	139.39 (3)	O4—S2—C1	102.79 (10)
Na1—Na2—Na4 ⁱⁱⁱ	82.22 (3)	O6—S2—C1	107.57 (10)
O2 ^v —Na3—O13	123.40 (7)	O9—S3—O7	113.00 (10)
O2 ^v —Na3—O16 ^{vi}	86.03 (7)	O9—S3—O8	112.97 (10)
O13—Na3—O16 ^{vi}	85.41 (7)	O7—S3—O8	112.99 (10)
O2 ^v —Na3—O16	152.16 (8)	O9—S3—C2	106.55 (10)
O13—Na3—O16	81.48 (6)	O7—S3—C2	107.55 (10)
O16 ^{vi} —Na3—O16	83.70 (7)	O8—S3—C2	102.91 (10)
O2 ^v —Na3—O14	83.66 (7)	O10—S4—O12	113.60 (12)
O13—Na3—O14	134.23 (8)	O10—S4—O11	111.27 (11)
O16 ^{vi} —Na3—O14	136.85 (8)	O12—S4—O11	113.07 (11)
O16—Na3—O14	86.32 (7)	O10—S4—C2	106.45 (10)
O2 ^v —Na3—O1	79.21 (6)	O12—S4—C2	107.98 (11)
O13—Na3—O1	71.68 (6)	O11—S4—C2	103.70 (10)
O16 ^{vi} —Na3—O1	138.69 (7)	O10—S4—Na1 ⁱⁱ	48.45 (8)
O16—Na3—O1	124.33 (7)	O12—S4—Na1 ⁱⁱ	137.74 (8)

supporting information

O14—Na3—O1	79.74 (6)	O11—S4—Na1 ⁱⁱ	62.98 (8)
O2 ^v —Na3—Na2	87.04 (5)	C2—S4—Na1 ⁱⁱ	113.81 (8)

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+2; (iii) *x*+1, *y*, *z*; (iv) -*x*+2, -*y*+2, -*z*+1; (v) -*x*+1, -*y*+2, -*z*+1; (vi) -*x*+1, -*y*+1, -*z*+1; (vii) *x*-1, *y*, *z*; (viii) -*x*, -*y*+2, -*z*+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
013—H13 <i>A</i> ···O8 ^{vii}	0.97	1.93	2.868 (2)	163
O13—H13 <i>B</i> ···O5 ^{ix}	0.97	1.87	2.824 (2)	166
O14—H14 <i>A</i> ···O9 ^x	0.97	2.00	2.871 (2)	148
O15—H15B···O3 ⁱⁱⁱ	0.97	1.97	2.877 (2)	155
O16—H16A····O9 ^x	0.97	1.87	2.794 (2)	158
O16—H16B…O12	0.97	2.18	3.034 (3)	147
O17—H17A····O4 ^{viii}	0.97	2.17	2.879 (3)	129
O17—H17 <i>B</i> ···O12 ^{xi}	0.97	2.10	2.918 (3)	141

Symmetry codes: (iii) x+1, y, z; (vii) x-1, y, z; (viii) -x, -y+2, -z+2; (ix) x, y-1, z; (x) -x+2, -y+1, -z+1; (xi) x-1, y+1, z.