organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(3,6-Dichloropyridin-2-yl)(3,5-dimethyl-1*H*-pyrazol-1-yl)methanone

Yue Zhuang,^a Shan-Shan Zhang,^b Xian-Hong Yin,^b* Kai Zhao^a and Cui-Wu Lin^c

^aDepartment of Chemistry, Guangxi University for Nationalities, Nanning 530004, People's Republic of China, ^bDepartment of Chemistry, Guangxi University, Nanning 530006, People's Republic of China, and ^cCollege of Chemistry and Chemical Engineering, Guangxi University, Nanning 530006, People's Republic of China Correspondence e-mail: yxhphd@163.com

Received 10 April 2008; accepted 18 May 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.045; wR factor = 0.127; data-to-parameter ratio = 13.6.

In the crystal structure of the title compound, $C_{11}H_9Cl_2N_3O$, molecules are held together by short intermolecular $Cl \cdot \cdot Cl$ contacts [3.319 (1) Å] and $C-H \cdot \cdot \cdot N$ hydrogen bonds, forming two-dimensional networks parallel to $(01\overline{1})$.

Related literature

For related literature, see: Mann *et al.* (1992); Perevalov *et al.* (2001).

Experimental

Crystal data

C11H9Cl2N3O
$M_r = 270.11$
Triclinic, P1
a = 7.3440 (10) Å
<i>b</i> = 8.7981 (12) Å
c = 9.6490 (14) Å

 $\alpha = 75.554 (2)^{\circ}$ $\beta = 89.627 (3)^{\circ}$ $\gamma = 86.819 (2)^{\circ}$ $V = 602.79 (15) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.52 \text{ mm}^{-1}$ T = 298 (2) K

Data collection

Bruker SMART CCD area-detector	3145 measured reflections
diffractometer	2102 independent reflections
Absorption correction: multi-scan	1543 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.038$
$T_{\min} = 0.780, \ T_{\max} = 0.787$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	154 parameters
$wR(F^2) = 0.126$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
2101 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

 $0.50 \times 0.49 \times 0.48 \text{ mm}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11-H11C\cdots N1^{i}$	0.96	2.56	3.514 (4)	174

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Natural Science Foundation of China (20761002). This research was sponsored by the Fund of the Talent Highland Research Program of Guangxi University (205121), the Science Foundation of the State Ethnic Affairs Commission (07GX05), the Development Foundation of Guangxi Research Institute of Chemical Industry and the Science Foundation of Guangxi University for Nationalities (0409032, 0409012, 0509ZD047).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2182).

References

- Mann, F., Chiment, F., Balasco, A., Cenicola, M. L., Amico, M. D., Parrilo, C., Rossi, F. & Marmo, E. (1992). *Eur. J. Med. Chem.* 27, 633–639.
- Perevalov, S. G., Burgart, Y. V., Saloutin, V. I. & Chupakhin, O. N. (2001). Russ. Chem. Rev. 70, 921–925.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2008). E64, o1224 [doi:10.1107/S1600536808015006]

(3,6-Dichloropyridin-2-yl)(3,5-dimethyl-1*H*-pyrazol-1-yl)methanone

Yue Zhuang, Shan-Shan Zhang, Xian-Hong Yin, Kai Zhao and Cui-Wu Lin

S1. Comment

The chemical and pharmacological properties of pyrazoles have been investigated extensively, owing to their chelating ability with metal ions and their potentially beneficial chemical and biological activities (Mann *et al.*, 1992, Perevalov *et al.*, 2001). As part of our studies on the synthesis and characterization of these compounds, we report here the synthesis and crystal structure of (3,6-dichloropyridin-2-yl)(3,5-dimethyl-1*H*-pyrazol-1-yl)methanone.

The crystal structure of the monomeric title compound is built up by $C_{11}H_9Cl_2N_3O$ molecules (Fig.1), linked by intermolecular C—H···N hydrogen bonds along [100] (Table 1) and by Cl···Cl short contacts along the [011] direction (Cl1···Cl1ⁱⁱ: 3.319 (1)Å, (ii): 2-x, 1-y, 1-z), forming a two-dimensional network parallel to (011).

The short C=O bond length (1.199 (3)Å) indicates that the molecule is in a keto form (Fig.1). The two rings are nearly perpendicular to each other (dihedral angle: 82.319 (84) °), and this fact helps in minimizing steric effects between them. Finally, there is an intermolecular $\pi - \pi$ contact between pyridine groups with and intercentroid distance of 3.40 (1) Å, which contributes to the stability of the crystal packing.

S2. Experimental

A solution of 3,6-dichloropicolinoyl chloride (10 mmol) in 50 ml toluene was added to a solution of 3,5-dimethyl-1*H*-pyrazole (10 mmol) in 10 ml toluene. The reaction mixture was refluxed for 1 h with stirring then the resulting white precipitate was obtained by filtration, washed several times with ethanol and dried *in vacuo* (yield 90%). Elemental analysis calculate: Elemental analysis: found: C, 48.89; H, 3.33; N, 15.56; calc. for $C_{11}H_9Cl_2N_3O$: C, 48.99; H, 3.23; N, 15.46.

S3. Refinement

Data collection: 2102 independent reflections but 2101 in Refinement. H atoms on C atoms were positoned geometrically and refined using a riding model with C—H = 0.96Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The structure of the title compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

Crystal packing of (I) showing the short contacts interactions as dashed lines.

(3,6-Dichloropyridin-2-yl)(3,5-dimethyl-1*H*-pyrazol-1-yl)methanone

Crystal data			
$C_{11}H_9Cl_2N_3O$ $M_r = 270.11$ Triclinic, P1 Hall symbol: -P 1 a = 7.344 (1) Å b = 8.7981 (12) Å c = 9.6490 (14) Å a = 75.554 (2)° $\beta = 89.627$ (3)° $\gamma = 86.819$ (2)° V = 602.79 (15) Å ³	Z = 2 F(000) = 276 $D_x = 1.488 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1363 reflections $\theta = 2.2-27.4^{\circ}$ $\mu = 0.52 \text{ mm}^{-1}$ T = 298 K Block, colourless $0.50 \times 0.49 \times 0.48 \text{ mm}$		
Data collection			
Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.780, T_{\max} = 0.787$	3145 measured reflections 2102 independent reflections 1543 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -8 \rightarrow 8$ $k = -9 \rightarrow 10$ $l = -9 \rightarrow 11$		

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.126$	neighbouring sites
S = 1.04	H-atom parameters constrained
2101 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0468P)^2 + 0.2168P]$
154 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
Cl1	0.60627 (11)	0.85128 (9)	0.94981 (8)	0.0634 (3)
Cl2	0.90422 (12)	0.19393 (9)	0.92556 (10)	0.0712 (3)
N1	0.8160 (3)	0.4899 (3)	0.8173 (2)	0.0434 (5)
N2	0.6305 (3)	0.7559 (2)	0.5846 (2)	0.0415 (5)
N3	0.4844 (3)	0.6627 (2)	0.6266 (2)	0.0421 (5)
01	0.8838 (3)	0.8463 (3)	0.6636 (2)	0.0712 (7)
C1	0.7630 (4)	0.7572 (3)	0.6853 (3)	0.0440 (6)
C2	0.7517 (3)	0.6330 (3)	0.8231 (2)	0.0368 (6)
C3	0.6925 (3)	0.6653 (3)	0.9493 (3)	0.0407 (6)
C4	0.6996 (4)	0.5468 (3)	1.0739 (3)	0.0469 (7)
H4	0.6596	0.5662	1.1598	0.056*
C5	0.7666 (4)	0.4004 (3)	1.0686 (3)	0.0488 (7)
Н5	0.7746	0.3181	1.1508	0.059*
C6	0.8220 (4)	0.3782 (3)	0.9384 (3)	0.0445 (7)
C7	0.7566 (5)	0.9440 (4)	0.3653 (3)	0.0670 (9)
H7A	0.7593	1.0332	0.4056	0.101*
H7B	0.7259	0.9789	0.2654	0.101*
H7C	0.8743	0.8890	0.3764	0.101*
C8	0.6167 (4)	0.8362 (3)	0.4409 (3)	0.0483 (7)
С9	0.4615 (4)	0.7924 (3)	0.3939 (3)	0.0548 (8)
Н9	0.4145	0.8254	0.3013	0.066*
C10	0.3819 (4)	0.6865 (3)	0.5110 (3)	0.0444 (6)
C11	0.2080 (4)	0.6066 (4)	0.5140 (3)	0.0622 (8)
H11A	0.1074	0.6782	0.5223	0.093*
H11B	0.2091	0.5166	0.5944	0.093*

supporting information

0.1953	0	.5733	0.4272	0.093*	
Atomic displacement parameters ($Å^2$)					
U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
0.0743 (6)	0.0459 (4)	0.0697 (5)	0.0120 (4)	0.0039 (4)	-0.0172 (4)
0.0775 (6)	0.0408 (4)	0.0948 (7)	0.0118 (4)	-0.0144 (5)	-0.0188 (4)
0.0444 (13)	0.0417 (13)	0.0441 (13)	0.0003 (10)	-0.0022 (10)	-0.0110 (10)
0.0448 (13)	0.0369 (12)	0.0379 (12)	-0.0010 (10)	0.0017 (10)	-0.0006 (9)
0.0440 (13)	0.0414 (12)	0.0388 (12)	-0.0010 (10)	0.0006 (10)	-0.0062 (9)
0.0706 (15)	0.0756 (16)	0.0611 (14)	-0.0326 (13)	-0.0013 (11)	0.0012 (11)
0.0466 (16)	0.0413 (15)	0.0422 (15)	-0.0033 (13)	0.0020 (12)	-0.0066 (12)
0.0338 (13)	0.0387 (14)	0.0360 (13)	-0.0027 (11)	-0.0032 (10)	-0.0058 (11)
0.0382 (14)	0.0390 (14)	0.0438 (15)	0.0000 (12)	-0.0031 (11)	-0.0084 (12)
0.0507 (17)	0.0510 (17)	0.0380 (15)	-0.0034 (13)	-0.0011 (12)	-0.0088 (12)
0.0527 (18)	0.0462 (17)	0.0406 (15)	-0.0082 (13)	-0.0079 (13)	0.0036 (12)
0.0415 (15)	0.0343 (14)	0.0559 (17)	0.0001 (11)	-0.0102 (12)	-0.0083 (12)
0.079 (2)	0.062 (2)	0.0488 (18)	-0.0075 (18)	0.0099 (16)	0.0091 (15)
0.0604 (19)	0.0408 (15)	0.0373 (15)	0.0049 (13)	0.0037 (13)	0.0009 (12)
0.064 (2)	0.0595 (19)	0.0359 (15)	0.0079 (16)	-0.0081 (14)	-0.0047 (13)
0.0488 (16)	0.0445 (15)	0.0382 (14)	0.0057 (12)	-0.0024 (12)	-0.0090 (12)
0.0570 (19)	0.076 (2)	0.0561 (19)	-0.0005 (17)	-0.0078 (15)	-0.0219 (16)
	$\begin{array}{r} 0.1953\\ \hline \\ displacement part \hline U^{11}\\ \hline 0.0743 (6)\\ 0.0775 (6)\\ 0.0444 (13)\\ 0.0448 (13)\\ 0.0448 (13)\\ 0.0440 (13)\\ 0.0706 (15)\\ 0.0466 (16)\\ 0.0338 (13)\\ 0.0382 (14)\\ 0.0507 (17)\\ 0.0527 (18)\\ 0.0415 (15)\\ 0.079 (2)\\ 0.0604 (19)\\ 0.064 (2)\\ 0.0488 (16)\\ 0.0570 (19)\\ \end{array}$	0.1953 0 displacement parameters (Ų) U^{11} U^{22} 0.0743 (6) 0.0459 (4) 0.0775 (6) 0.0408 (4) 0.0444 (13) 0.0417 (13) 0.0448 (13) 0.0369 (12) 0.0440 (13) 0.0414 (12) 0.0706 (15) 0.0756 (16) 0.0466 (16) 0.0413 (15) 0.0382 (14) 0.0390 (14) 0.0507 (17) 0.0510 (17) 0.0527 (18) 0.0462 (17) 0.0415 (15) 0.0343 (14) 0.079 (2) 0.062 (2) 0.0604 (19) 0.0445 (15) 0.0488 (16) 0.0445 (15) 0.0570 (19) 0.076 (2)	0.1953 0.5733 displacement parameters (Ų) U^{11} U^{22} U^{33} 0.0743 (6) 0.0459 (4) 0.0697 (5) 0.0775 (6) 0.0408 (4) 0.0948 (7) 0.0444 (13) 0.0417 (13) 0.0441 (13) 0.0448 (13) 0.0369 (12) 0.0379 (12) 0.0440 (13) 0.0414 (12) 0.0388 (12) 0.0706 (15) 0.0756 (16) 0.0611 (14) 0.0466 (16) 0.0413 (15) 0.0422 (15) 0.0382 (14) 0.0387 (14) 0.0360 (13) 0.0507 (17) 0.0510 (17) 0.0380 (15) 0.0527 (18) 0.0462 (17) 0.0406 (15) 0.079 (2) 0.062 (2) 0.0488 (18) 0.0604 (19) 0.0445 (15) 0.0373 (15) 0.0488 (16) 0.0445 (15) 0.0382 (14) 0.0570 (19) 0.076 (2) 0.0561 (19)	0.1953 0.5733 0.4272 displacement parameters (\mathring{A}^2) U^{11} U^{22} U^{33} U^{12} 0.0743 (6) 0.0459 (4) 0.0697 (5) 0.0120 (4) 0.0775 (6) 0.0408 (4) 0.0948 (7) 0.0118 (4) 0.0444 (13) 0.0417 (13) 0.0441 (13) 0.0003 (10) 0.0448 (13) 0.0369 (12) 0.0379 (12) -0.0010 (10) 0.0706 (15) 0.0756 (16) 0.0611 (14) -0.0326 (13) 0.0466 (16) 0.0413 (15) 0.0422 (15) -0.0033 (13) 0.0382 (14) 0.0390 (14) 0.0360 (13) -0.0027 (11) 0.0507 (17) 0.0510 (17) 0.0380 (15) -0.0034 (13) 0.0527 (18) 0.0462 (17) 0.0406 (15) -0.0075 (18) 0.0604 (19) 0.0408 (15) 0.0373 (15) 0.0079 (16) 0.0644 (2) 0.0595 (19) 0.0359 (15) 0.0079 (16) 0.0488 (16) 0.0445 (15) 0.0382 (14) 0.0057 (12) 0.0570 (19) 0.076 (2) 0.0561 (19) -0.0005 (17)	0.1953 0.5733 0.4272 0.093^* displacement parameters (\hat{A}^2)U ¹¹ U^{22} U^{33} U^{12} U^{13} 0.0743 (6) 0.0459 (4) 0.0697 (5) 0.0120 (4) 0.0039 (4) 0.0775 (6) 0.0408 (4) 0.0948 (7) 0.0118 (4) -0.0144 (5) 0.0444 (13) 0.0417 (13) 0.0441 (13) 0.0003 (10) -0.0022 (10) 0.0448 (13) 0.0369 (12) 0.0379 (12) -0.0010 (10) 0.0017 (10) 0.0446 (13) 0.0414 (12) 0.0388 (12) -0.0010 (10) 0.0006 (10) 0.0706 (15) 0.0756 (16) 0.0611 (14) -0.0326 (13) -0.0013 (11) 0.0466 (16) 0.0413 (15) 0.0422 (15) -0.0033 (13) 0.0020 (12) 0.0381 (13) 0.0387 (14) 0.0360 (13) -0.0027 (11) -0.0032 (10) 0.0382 (14) 0.0390 (14) 0.0438 (15) -0.0034 (13) -0.0011 (12) 0.0577 (17) 0.0510 (17) 0.0380 (15) -0.0082 (13) -0.0079 (13) 0.0415 (15) 0.0343 (14) 0.0559 (17) 0.0001 (11) -0.0012 (12) 0.079 (2) 0.062 (2) 0.0488 (18) -0.0075 (18) 0.0099 (16) 0.0604 (19) 0.0445 (15) 0.0373 (15) 0.0079 (16) -0.0081 (14) 0.0488 (16) 0.0445 (15) 0.0382 (14) 0.0057 (12) -0.0024 (12) 0.0570 (19) 0.076 (2) 0.0561 (19) -0.0005 (17) -0.0078 (15)

Geometric parameters (Å, °)

Cl1—C3	1.722 (3)	C5—C6	1.375 (4)
Cl2—C6	1.732 (3)	С5—Н5	0.9300
N1—C6	1.325 (3)	C7—C8	1.496 (4)
N1-C2	1.334 (3)	C7—H7A	0.9600
N2—C1	1.382 (3)	С7—Н7В	0.9600
N2—N3	1.383 (3)	С7—Н7С	0.9600
N2—C8	1.392 (3)	C8—C9	1.340 (4)
N3—C10	1.316 (3)	C9—C10	1.419 (4)
O1—C1	1.199 (3)	С9—Н9	0.9300
C1—C2	1.502 (3)	C10—C11	1.488 (4)
С2—С3	1.380 (3)	C11—H11A	0.9600
C3—C4	1.380 (4)	C11—H11B	0.9600
C4—C5	1.366 (4)	C11—H11C	0.9600
C4—H4	0.9300		
C6—N1—C2	117.4 (2)	C5—C6—Cl2	119.8 (2)
C1—N2—N3	118.3 (2)	C8—C7—H7A	109.5
C1—N2—C8	130.2 (2)	C8—C7—H7B	109.5
N3—N2—C8	111.5 (2)	H7A—C7—H7B	109.5
C10-N3-N2	104.7 (2)	C8—C7—H7C	109.5
O1-C1-N2	123.1 (2)	H7A—C7—H7C	109.5
01—C1—C2	121.5 (2)	H7B—C7—H7C	109.5
N2-C1-C2	115.3 (2)	C9—C8—N2	105.3 (2)

N1—C2—C3	122.1 (2)	C9—C8—C7	131.3 (3)
N1—C2—C1	114.8 (2)	N2—C8—C7	123.4 (3)
C3—C2—C1	123.0 (2)	C8—C9—C10	107.6 (2)
C4—C3—C2	119.4 (3)	С8—С9—Н9	126.2
C4—C3—Cl1	120.5 (2)	С10—С9—Н9	126.2
C2—C3—Cl1	120.03 (19)	N3—C10—C9	110.9 (2)
C5—C4—C3	118.7 (3)	N3-C10-C11	120.8 (2)
C5—C4—H4	120.6	C9—C10—C11	128.3 (2)
C3—C4—H4	120.6	C10-C11-H11A	109.5
C4—C5—C6	118.1 (2)	C10-C11-H11B	109.5
C4—C5—H5	121.0	H11A-C11-H11B	109.5
С6—С5—Н5	121.0	C10-C11-H11C	109.5
N1—C6—C5	124.3 (3)	H11A—C11—H11C	109.5
N1—C6—Cl2	115.9 (2)	H11B—C11—H11C	109.5
C1—N2—N3—C10	179.3 (2)	Cl1—C3—C4—C5	179.1 (2)
C8—N2—N3—C10	-0.6 (3)	C3—C4—C5—C6	-0.7 (4)
N3—N2—C1—O1	-171.8 (3)	C2—N1—C6—C5	0.0 (4)
C8—N2—C1—O1	8.1 (5)	C2—N1—C6—Cl2	179.37 (18)
N3—N2—C1—C2	11.2 (3)	C4C5C6N1	0.5 (4)
C8—N2—C1—C2	-169.0 (2)	C4—C5—C6—Cl2	-178.9 (2)
C6—N1—C2—C3	-0.2 (4)	C1—N2—C8—C9	-179.9 (3)
C6—N1—C2—C1	175.1 (2)	N3—N2—C8—C9	0.0 (3)
O1-C1-C2-N1	-98.9 (3)	C1—N2—C8—C7	1.1 (5)
N2-C1-C2-N1	78.2 (3)	N3—N2—C8—C7	-179.1 (3)
O1—C1—C2—C3	76.4 (4)	N2-C8-C9-C10	0.5 (3)
N2—C1—C2—C3	-106.5 (3)	C7—C8—C9—C10	179.5 (3)
N1-C2-C3-C4	0.0 (4)	N2—N3—C10—C9	0.9 (3)
C1—C2—C3—C4	-174.9 (2)	N2—N3—C10—C11	-179.3 (2)
N1-C2-C3-Cl1	-178.62 (19)	C8—C9—C10—N3	-0.9 (3)
C1—C2—C3—C11	6.4 (3)	C8—C9—C10—C11	179.3 (3)
C2—C3—C4—C5	0.4 (4)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C11—H11 C ···N1 ⁱ	0.96	2.56	3.514 (4)	174

Symmetry code: (i) -x+1, -y+1, -z+1.