

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-(3,5-Dichlorophenyl)benzamide

B. Thimme Gowda,^a* Sabine Foro,^b B. P. Sowmya^a and Hartmut Fuess^b

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and ^bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany Correspondence e-mail: gowdabt@yahoo.com

Received 5 June 2008; accepted 5 June 2008

Key indicators: single-crystal X-ray study; T = 299 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.133; data-to-parameter ratio = 13.8.

The conformation of the H–N–C=O unit in the title compound, $C_{13}H_9Cl_2NO$, is *trans*, similar to the conformation observed in N-(3-chlorophenyl)benzamide, N-(2,3-dichlorophenyl)benzamide, N-(2,4-dichlorophenyl)benzamide, N-(2,6dichlorophenyl)benzamide and N-(3,4-dichlorophenyl)benzamide. The amide group makes dihedral angles of 14.3 (8) and 44.4 (4)° with the benzoyl and aniline rings, respectively, while the benzoyl and aniline rings form a dihedral angle of 58.3 (1)°. The molecules are linked by N–H···O hydrogen bonds into infinite chains running along the *c* axis.

Related literature

For related literature, see: Gowda et al. (2003, 2007, 2008a,b).

Experimental

Crystal data

C ₁₃ H ₉ Cl ₂ NO	<i>b</i> = 9.9929 (8) Å
$M_r = 266.11$	c = 9.4447 (7) Å
Monoclinic, $P2_1/c$	$\beta = 106.357 \ (9)^{\circ}$
a = 13.520 (1) Å	$V = 1224.37 (16) \text{ Å}^3$

Z = 4
Mo $K\alpha$ radiation
$\mu = 0.51 \text{ mm}^{-1}$

Data collection

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.037 \\ wR(F^2) &= 0.133 \\ S &= 1.12 \end{split}$$

2493 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$M1 - H1N \cdots O1^{i}$	0.83 (3)	2.18 (3)	2.964 (2)	157 (2)

Symmetry code: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2007); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2007); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2720).

References

- Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
- Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, 03365.
- Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, 0462.
- Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, 0950.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

T = 299 (2) K $0.48 \times 0.36 \times 0.26 \text{ mm}$

 $R_{\rm int} = 0.013$

181 parameters

 $\Delta \rho_{\text{max}} = 0.44 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.29 \text{ e } \text{\AA}^{-3}$

Diffraction, 2007) $T_{\min} = 0.792, T_{\max} = 0.879$

7774 measured reflections 2493 independent reflections 1837 reflections with $I > 2\sigma(I)$

Only H-atom coordinates refined

supporting information

Acta Cryst. (2008). E64, o1243 [doi:10.1107/S1600536808017017]

N-(3,5-Dichlorophenyl)benzamide

B. Thimme Gowda, Sabine Foro, B. P. Sowmya and Hartmut Fuess

S1. Comment

In the present work, the structure of *N*-(3,5-dichlorophenyl)-benzamide (N35DCPBA) has been determined to explore the effect of substituents on the solid state geometries of benzanilides (Gowda *et al.*, 2003, 2007, 2008*a*, 2008*b*). The conformation of the H-N-C=O unit in is trans (Fig. 1), similar to that observed in *N*-(3-chlorophenyl)-benzamide (Gowda *et al.*, 2008*a*), *N*-(2,3-dichlorophenyl)-benzamide and *N*-(3,4-dichlorophenyl)- benzamide (Gowda *et al.*, 2007), *N*-(2,4-dichlorophenyl)-benzamide and *N*-(2,6-dichlorophenyl)-benzamide(Gowda *et al.*, 2008*b*). The amide group –NHCO– makes the dihedral angles of 14.3 (8)° and 44.4 (4)° with the benzoyl and aniline rings, respectively, while the benzoyl and aniline rings form the dihedral angle of 58.3 (1)°). Part of the crystal structure of the title compound with infinite molecular chains running along the *c* axis is shown in Fig. 2. The chains are generated by N—H···O hydrogen bonds (Table 1)

S2. Experimental

The title compound was prepared according to the literature method (Gowda *et al.*, 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

S3. Refinement

The H atoms were located in a difference map, and their positional parameters were refined freely with U(H) set to $1.2U_{eq}$ of the parent atom.

Figure 1

Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Figure 2

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

N-(3,5-Dichlorophenyl)benzamide

Crystal data	
$C_{13}H_9Cl_2NO$	$\beta = 106.357 \ (9)^{\circ}$
$M_r = 266.11$	V = 1224.37 (16) Å ³
Monoclinic, $P2_1/c$	Z = 4
Hall symbol: -P 2ybc	F(000) = 544
a = 13.520 (1) Å	$D_{\rm x} = 1.444 { m Mg m^{-3}}$
<i>b</i> = 9.9929 (8) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
c = 9.4447 (7) Å	Cell parameters from 3450 reflections

 $\theta = 2.4-28.1^{\circ}$ $\mu = 0.51 \text{ mm}^{-1}$ T = 299 K

Data collection

Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector	7774 measured reflections 2493 independent reflections
Radiation source: fine-focus sealed tube	1837 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.013$
Rotation method data acquisition using ω and φ	$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$
scans	$h = -12 \rightarrow 16$
Absorption correction: multi-scan	$k = -12 \rightarrow 12$
(CrysAlis RED; Oxford Diffraction, 2007)	$l = -11 \rightarrow 11$
$T_{\min} = 0.792, \ T_{\max} = 0.879$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.133$	Only H-atom coordinates refined
S = 1.12	$w = 1/[\sigma^2(F_o^2) + (0.0671P)^2 + 0.5267P]$
2493 reflections	where $P = (F^2 + 2F^2)/3$

S = 1.12
2493 reflections
181 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Prism, colourless $0.48 \times 0.36 \times 0.26$ mm

$w = 1/(\sigma(F_o^2) + (0.06/1F)^2)$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.010$ $\Delta\rho_{max} = 0.44 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.29 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. (CrysAlis RED; Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.18869 (16)	0.6454 (2)	0.5651 (2)	0.0370 (5)	
C2	0.11990 (16)	0.6605 (2)	0.4259 (2)	0.0389 (5)	
H2	0.1002 (18)	0.753 (2)	0.384 (3)	0.047*	
C3	0.07367 (17)	0.5473 (2)	0.3519 (2)	0.0412 (5)	
C4	0.09118 (18)	0.4206 (2)	0.4131 (3)	0.0452 (5)	
H4	0.0558 (19)	0.332 (3)	0.354 (3)	0.054*	
C5	0.15740 (19)	0.4104 (2)	0.5533 (3)	0.0446 (5)	
C6	0.20746 (18)	0.5197 (2)	0.6309 (2)	0.0429 (5)	
H6	0.2544 (19)	0.506 (3)	0.726 (3)	0.051*	
C7	0.29164 (16)	0.8484 (2)	0.5806 (2)	0.0357 (4)	
C8	0.34903 (16)	0.9572 (2)	0.6776 (2)	0.0358 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C9	0.4140 (2)	1.0369 (3)	0.6232 (3)	0.0525 (6)	
H9	0.419 (2)	1.022 (3)	0.530 (4)	0.063*	
C10	0.4693 (2)	1.1390 (3)	0.7066 (3)	0.0628 (7)	
H10	0.509 (2)	1.189 (3)	0.663 (3)	0.075*	
C11	0.4590 (2)	1.1653 (3)	0.8447 (3)	0.0601 (7)	
H11	0.497 (2)	1.235 (3)	0.898 (3)	0.072*	
C12	0.3940 (2)	1.0892 (3)	0.8994 (3)	0.0573 (7)	
H12	0.379 (2)	1.110 (3)	0.989 (3)	0.069*	
C13	0.33965 (19)	0.9850 (2)	0.8168 (2)	0.0450 (5)	
H13	0.296 (2)	0.942 (3)	0.852 (3)	0.054*	
N1	0.24216 (15)	0.75725 (18)	0.64286 (19)	0.0395 (4)	
H1N	0.2559 (19)	0.753 (2)	0.734 (3)	0.047*	
01	0.29162 (14)	0.84106 (17)	0.45101 (16)	0.0518 (4)	
Cl1	-0.00774 (6)	0.56249 (7)	0.17406 (7)	0.0640 (2)	
Cl2	0.18142 (6)	0.25339 (6)	0.63392 (8)	0.0716 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0448 (11)	0.0354 (10)	0.0335 (10)	-0.0010 (9)	0.0157 (9)	-0.0022 (8)
C2	0.0456 (12)	0.0359 (11)	0.0347 (10)	0.0036 (9)	0.0103 (9)	0.0004 (9)
C3	0.0435 (12)	0.0443 (12)	0.0335 (10)	0.0036 (9)	0.0071 (9)	-0.0037 (9)
C4	0.0516 (13)	0.0381 (12)	0.0453 (12)	-0.0011 (10)	0.0129 (10)	-0.0066 (10)
C5	0.0552 (13)	0.0331 (11)	0.0468 (12)	0.0031 (10)	0.0163 (10)	0.0038 (9)
C6	0.0512 (13)	0.0432 (12)	0.0325 (10)	0.0001 (10)	0.0090 (9)	0.0027 (9)
C7	0.0421 (11)	0.0355 (10)	0.0295 (9)	0.0026 (9)	0.0103 (8)	0.0006 (8)
C8	0.0390 (11)	0.0354 (11)	0.0329 (10)	0.0029 (8)	0.0098 (8)	0.0016 (8)
C9	0.0641 (16)	0.0570 (15)	0.0413 (12)	-0.0134 (12)	0.0226 (11)	-0.0022 (11)
C10	0.0679 (17)	0.0681 (18)	0.0550 (15)	-0.0263 (14)	0.0213 (13)	0.0010 (13)
C11	0.0656 (16)	0.0569 (16)	0.0548 (15)	-0.0226 (13)	0.0120 (12)	-0.0103 (12)
C12	0.0697 (17)	0.0625 (16)	0.0418 (13)	-0.0181 (13)	0.0195 (12)	-0.0142 (12)
C13	0.0530 (13)	0.0470 (13)	0.0383 (11)	-0.0120 (11)	0.0181 (10)	-0.0051 (10)
N1	0.0544 (11)	0.0387 (10)	0.0257 (8)	-0.0073 (8)	0.0120 (8)	-0.0025 (7)
01	0.0769 (11)	0.0517 (10)	0.0306 (8)	-0.0128 (8)	0.0215 (7)	-0.0043 (7)
C11	0.0752 (5)	0.0601 (4)	0.0419 (3)	0.0005 (3)	-0.0076 (3)	-0.0028 (3)
C12	0.0945 (6)	0.0372 (3)	0.0729 (5)	0.0021 (3)	0.0066 (4)	0.0131 (3)

Geometric parameters (Å, °)

C1—C2	1.389 (3)	С7—С8	1.491 (3)	
C1—C6	1.392 (3)	C8—C13	1.385 (3)	
C1—N1	1.419 (3)	C8—C9	1.387 (3)	
С2—С3	1.383 (3)	C9—C10	1.375 (4)	
С2—Н2	1.01 (2)	С9—Н9	0.91 (3)	
C3—C4	1.384 (3)	C10—C11	1.375 (4)	
C3—Cl1	1.736 (2)	C10—H10	0.91 (3)	
C4—C5	1.377 (3)	C11—C12	1.369 (4)	
C4—H4	1.09 (3)	C11—H11	0.92 (3)	

C5—C6	1.382 (3)	C12—C13	1.381 (3)
C5—Cl2	1.734 (2)	C12—H12	0.95 (3)
С6—Н6	0.95 (3)	C13—H13	0.87 (3)
C7—O1	1.226 (2)	N1—H1N	0.83 (3)
C7—N1	1.358 (3)		
C2—C1—C6	120.66 (19)	C13—C8—C9	118.3 (2)
C2C1N1	120.79 (19)	C13—C8—C7	123.98 (19)
C6C1N1	118.54 (19)	C9—C8—C7	117.74 (18)
C3—C2—C1	118.4 (2)	C10—C9—C8	120.9 (2)
С3—С2—Н2	121.4 (14)	С10—С9—Н9	119.7 (19)
C1—C2—H2	120.0 (14)	С8—С9—Н9	119.5 (19)
C2—C3—C4	122.5 (2)	C11—C10—C9	120.1 (2)
C2—C3—C11	119.37 (17)	C11—C10—H10	123 (2)
C4—C3—C11	118.13 (17)	C9—C10—H10	116 (2)
C5—C4—C3	117.3 (2)	C12—C11—C10	120.0 (2)
C5—C4—H4	120.5 (14)	C12—C11—H11	121.7 (19)
C3—C4—H4	122.3 (14)	C10-C11-H11	118 (2)
C4—C5—C6	122.7 (2)	C11—C12—C13	120.1 (2)
C4—C5—Cl2	118.68 (18)	C11—C12—H12	122.4 (19)
C6—C5—Cl2	118.63 (18)	C13—C12—H12	117.3 (19)
C5—C6—C1	118.4 (2)	C12—C13—C8	120.7 (2)
С5—С6—Н6	118.9 (17)	C12—C13—H13	118.0 (18)
С1—С6—Н6	122.7 (17)	C8—C13—H13	121.0 (18)
O1—C7—N1	122.05 (19)	C7—N1—C1	123.09 (16)
O1—C7—C8	120.68 (18)	C7—N1—H1N	119.4 (17)
N1—C7—C8	117.25 (17)	C1—N1—H1N	115.4 (17)
C6—C1—C2—C3	-2.5 (3)	O1—C7—C8—C9	-9.3 (3)
N1—C1—C2—C3	176.84 (19)	N1—C7—C8—C9	169.2 (2)
C1—C2—C3—C4	1.9 (3)	C13—C8—C9—C10	1.3 (4)
C1—C2—C3—C11	-176.86 (16)	C7—C8—C9—C10	180.0 (2)
C2—C3—C4—C5	0.1 (3)	C8-C9-C10-C11	-1.4 (4)
Cl1—C3—C4—C5	178.90 (17)	C9-C10-C11-C12	0.2 (5)
C3—C4—C5—C6	-1.6 (4)	C10-C11-C12-C13	0.8 (5)
C3—C4—C5—Cl2	-179.98 (17)	C11—C12—C13—C8	-0.8(4)
C4—C5—C6—C1	1.0 (3)	C9—C8—C13—C12	-0.2 (4)
Cl2—C5—C6—C1	179.39 (17)	C7—C8—C13—C12	-178.8(2)
C2—C1—C6—C5	1.1 (3)	O1—C7—N1—C1	1.4 (3)
N1—C1—C6—C5	-178.3 (2)	C8—C7—N1—C1	-177.06 (19)
O1—C7—C8—C13	169.3 (2)	C2—C1—N1—C7	-47.9 (3)
N1—C7—C8—C13	-12.2 (3)	C6—C1—N1—C7	131.4 (2)
Hydrogen-bond geometry (Å.	<i>°</i>)		

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A

supporting information

N1—H1 N ···O1 ⁱ 0.83 (3) 2.18 (3) 2.964 (2) 157 (2)						
	N1—H1 <i>N</i> ···O1 ⁱ	0.83 (3)	2.18 (3)	2.964 (2)	157 (2)	

Symmetry code: (i) x, -y+3/2, z+1/2.