

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(2,3-Dimethylphenyl)piperazin-1-ium chloride monohydrate

Imen Ben Gharbia,^a Riadh Kefi,^a Meher El Glaoui,^a Erwann Jeanneau^b and Cherif Ben Nasr^a*

^aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and ^bUniverstié Lyon1, Centre de Diffractométrie Henri Longchambon, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

Correspondence e-mail: cherif_bennasr@yahoo.fr

Received 18 June 2008; accepted 23 June 2008

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.036; data-to-parameter ratio = 17.2.

The title compound, $C_{12}H_{19}N_2^+ \cdot Cl^- \cdot H_2O$, contains a network of 4-(2,3-dimethylphenyl)piperazin-1-ium cations, water molecules and chloride anions. The crystal packing is influenced by $O-H\cdots Cl$, $N-H\cdots Cl$, $N-H\cdots O$, $C-H\cdots O$ and $C-H\cdots Cl$ hydrogen bonds, resulting in structure with an open-framework architecture.

Related literature

For related literature, see: Ben Gharbia *et al.* (2005, 2007); Bernstein *et al.* (1995); Pajewski *et al.* (2004); Sessler *et al.* (2003); Schmidtchen & Berge (1997). For the refinement weighting scheme, see: Prince (1982); Watkin (1994).

Experimental

Crystal data

 $\begin{array}{l} C_{12}H_{19}N_2^{+}\cdot Cl^{-}\cdot H_2O\\ M_r = 244.76\\ \text{Triclinic, }PI\\ a = 7.5439 (3) \text{ Å}\\ b = 9.4204 (3) \text{ Å}\\ c = 10.4347 (4) \text{ Å}\\ \alpha = 72.733 (2)^{\circ}\\ \beta = 74.152 (2)^{\circ} \end{array}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: none 5719 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.035$ S = 1.102491 reflections 3073 independent reflections 2601 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.016$

145 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N2-H3···Cl1	0.90	2.18	3.069 (1)	169
$N2-H4\cdots O1^{i}$	0.91	1.86	2.776 (2)	175
O1−H1···Cl1	0.82	2.32	3.120 (1)	165
O1−H2···Cl1 ⁱⁱ	0.83	2.31	3.136 (1)	171
C10-H15···Cl1 ⁱⁱⁱ	0.99	2.87	3.846 (1)	168
$C12-H20\cdots Cl1^{iv}$	0.97	2.84	3.779 (3)	161
$C12-H19\cdots O1^{v}$	0.99	2.73	3.448 (2)	130

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 2, -y + 1, -z; (iii) x - 1, y, z; (iv) x - 1, y, z + 1; (v) x - 1, y - 1, z + 1.

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *CRYSTALS*.

We acknowledge support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2207).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct., 220, 333–334.
- Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2007). Anal. Sci. (X-Ray Str. Anal. Online), 27, x243-x244.
- Bernstein, J., David, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

- Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pajewski, R., Ferdani, R., Schlesinger, P.-H. & Gokel, G.-W. (2004). Chem. Commun. pp. 160–161.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer.
- Schmidtchen, F. P. & Berge, M. (1997). Chem. Rev. 97, 1609-1646.
- Sessler, J. L., Camiolo, S. & Gale, P. A. (2003). *Coord. Chem. Rev.* **240**, 17–150. Watkin, D. (1994). *Acta Cryst.* A**50**, 411–437.

supporting information

Acta Cryst. (2008). E64, o1361 [doi:10.1107/S1600536808019016]

4-(2,3-Dimethylphenyl)piperazin-1-ium chloride monohydrate

Imen Ben Gharbia, Riadh Kefi, Meher El Glaoui, Erwann Jeanneau and Cherif Ben Nasr

S1. Comment

The coordination chemistry of anions is a fast-growing area of supramolecular chemistry (Schmidtchen & Berge, 1997), on account of the importance of anion binding, recognition and transport in many biochemical processes (Pajewski et al., 2004). Thus, the Cl⁻ anion has been successfully used to assemble double-helical motifs of various molecules (Sessler et al., 2003). Here a new member of this family, the title compound, is presented, which was obtained during our studies of the preparation of new organic hydrochloride compounds. As shown in Fig. 1, the asymmetric unit of the crystal structure of the title compound contains a 4-(2,3-dimethylphenyl)piperazin-1-ium cation, a chloride anion and a water molecule, associated in a hydrogen-bonded network. Two water molecules and two Cl⁻ anions are interconnected through O-H···Cl hydrogen bonds, forming an 8-membered ring with graph-set $R_2^4(8)$ Bernstein et al., 1995). These entities are connected to two antiparallel organic cations via N-H···Cl, N-H···Cl and C-H···Cl hydrogen-bonding interactions to construct a convoluted hydrogen-bonded chain which runs in the c-axis direction (Fig. 2). When projected along the b axis, the chains have a marked zigzag structure and somewhat resemble a helix (Fig. 3). In addition to the hydrogen-bonding associations to Cl1 and O1, the organic cations have a second role by linking these chains to each other to form layers parallel to the bc plane through C—H···O hydrogen bonds. Fig. 3 shows that these planes are interconnected by NH_2^+ groups to form an open framework architecture through hydrogen-bond interactions. An examination of the organic group geometrical features shows that the carbon atoms in the benzene ring of the title compound have a good coplanarity and they form a conjugated ring with an average deviation of 0.013 Å. The mean value of the C-C bond lengths [1.3967 (17) Å], which is between a single bond and a double bond, agrees with that in phenylpiperazinium tetrachloridozincate(II) [1.384 (4) Å] (Ben Gharbia et al., 2005). The piperazine-1,4-diium ring of the title compound adopts a typical chair conformation and its geometric parameters $[d_{av}(C-N) = 1.4818 (16) \text{ and } d_{av}(C-C) = 1.5437 (17)$ Å] are in full agreement with those found in 4-(2,3-dimethylphenyl)piperazin-1-ium tetrachloridozincate(II) (Ben Gharbia et al., 2007).

S2. Experimental

An aqueous 1M HCl solution and 1-(2,3-dimethylphenyl)piperazine in a 1:1 molar ratio were mixed and dissolved in sufficient ethanol. Crystals of (I) grew as the ethanol evaporated at 293 K over the course of a few days.

S3. Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 and O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints. Low-angle reflections possibly affected by the beam-stop and some other outliers were omitted from the refinement.

Figure 1

The asymmetric unit of (I), showing 40% probability displacement ellipsoids.

Figure 2

The packing of (I), viewed down the *a* axis, showing the O—H…Cl, N—H…Cl, N—H…O, C—H…O and C—H…Cl interactions (dashed lines) between the 4-(2,3-dimethylphenyl)piperazin-1-ium cation, water molecule and chloride anion.

Figure 3

The packing of (I), viewed down the b axis, showing the zigzag character of the structure. Hydrogen bonds are indicated by dashed lines.

4-(2,3-Dimethylphenyl)piperazin-1-ium chloride monohydrate

Crystal data	
$\begin{array}{l} C_{12}H_{19}N_{2}^{+} \cdot Cl^{-} \cdot H_{2}O \\ M_{r} = 244.76 \\ \text{Triclinic, } P\overline{1} \\ \text{Hall symbol: -P 1} \\ a = 7.5439 \ (3) \ \text{\AA} \\ b = 9.4204 \ (3) \ \text{\AA} \\ c = 10.4347 \ (4) \ \text{\AA} \\ a = 72.733 \ (2)^{\circ} \\ \beta = 74.152 \ (2)^{\circ} \\ \gamma = 70.250 \ (2)^{\circ} \\ V = 654.05 \ (4) \ \text{\AA}^{3} \end{array}$	Z = 2 F(000) = 264 $D_x = 1.243 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 2750 reflections $\theta = 0.4-27.9^{\circ}$ $\mu = 0.28 \text{ mm}^{-1}$ T = 150 K Block, colorless $0.13 \times 0.12 \times 0.09 \text{ mm}$
Data collection	
 Nonius KappaCCD diffractometer Graphite monochromator φ and ω scans 5719 measured reflections 3073 independent reflections 	2601 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 27.9^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -9 \rightarrow 9$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 13$

Refinement

Refinement on F Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.035$	$w = \frac{[1 - (F_0 - F_c)^2 / 36\sigma^2(F)]^2}{[0.443T_0(x) + 10^2]}$
S = 1.10	$0.129T_1(x) + 0.131T_2(x)$]
2491 reflections	where T_i are Chebychev polynomials and $x =$
145 parameters	F_{c}/F_{max} (Prince, 1982; Watkin, 1994)
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.000359$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Fractional	atomic	coordinates	and	isotropic	or	equivalent	isotropic	displacement	parameters	(Å	$^{2})$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
C1	-0.09326 (17)	0.26100 (14)	0.53871 (13)	0.0211
C2	-0.08069 (18)	0.18226 (14)	0.67481 (13)	0.0224
C3	-0.24822 (19)	0.15986 (14)	0.76843 (13)	0.0243
C4	-0.42381 (18)	0.21709 (15)	0.72522 (14)	0.0270
C5	-0.43454 (18)	0.29399 (16)	0.59077 (14)	0.0285
C6	-0.26999 (18)	0.31526 (15)	0.49687 (13)	0.0255
C7	0.18840 (18)	0.14963 (15)	0.38467 (14)	0.0276
C8	0.38588 (19)	0.16564 (16)	0.30991 (15)	0.0313
C9	0.24578 (19)	0.45044 (15)	0.26085 (13)	0.0260
C10	0.05184 (17)	0.42554 (14)	0.33543 (13)	0.0230
C11	0.1080 (2)	0.12337 (17)	0.72288 (15)	0.0320
C12	-0.2398 (2)	0.07656 (18)	0.91485 (14)	0.0353
Cl1	0.77820 (5)	0.34324 (4)	0.11653 (4)	0.0340
01	0.78625 (14)	0.68790 (12)	0.00994 (10)	0.0353
N1	0.07922 (14)	0.28419 (12)	0.44468 (11)	0.0216
N2	0.36750 (15)	0.31276 (13)	0.20308 (12)	0.0278
H1	0.7848	0.5995	0.0526	0.0528*
H2	0.9007	0.6873	-0.0182	0.0528*
Н3	0.4845	0.3270	0.1661	0.0430*
H4	0.3144	0.3085	0.1358	0.0437*
H5	-0.5385	0.2058	0.7916	0.0322*
H6	-0.5565	0.3352	0.5610	0.0341*
H7	-0.2770	0.3659	0.4045	0.0295*
H8	0.1198	0.1410	0.3200	0.0321*
H9	0.2040	0.0561	0.4575	0.0315*
H10	0.4588	0.0790	0.2644	0.0369*
H11	0.4582	0.1695	0.3749	0.0356*
H12	0.3114	0.4642	0.3220	0.0314*
H13	0.2299	0.5429	0.1850	0.0309*
H14	-0.0266	0.5162	0.3773	0.0269*
H15	-0.0141	0.4180	0.2684	0.0273*
H16	0.2087	0.1594	0.6514	0.0467*
H17	0.1484	0.0098	0.7464	0.0473*
H18	0.0940	0.1606	0.8047	0.0484*

supporting information

H19	-0.1476	-0.0282	0.9197	0.0537*	
H20	-0.2011	0.1364	0.9587	0.0526*	
H21	-0.3671	0.0679	0.9639	0.0532*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0204 (5)	0.0193 (5)	0.0239 (6)	-0.0065 (4)	-0.0025 (4)	-0.0057 (5)
C2	0.0250 (6)	0.0184 (5)	0.0251 (6)	-0.0079 (5)	-0.0054 (5)	-0.0040 (5)
C3	0.0289 (6)	0.0211 (6)	0.0243 (6)	-0.0104 (5)	-0.0022 (5)	-0.0059 (5)
C4	0.0243 (6)	0.0269 (6)	0.0298 (7)	-0.0099 (5)	0.0020 (5)	-0.0098 (5)
C5	0.0213 (6)	0.0308 (7)	0.0331 (7)	-0.0073 (5)	-0.0039 (5)	-0.0081 (6)
C6	0.0231 (6)	0.0273 (6)	0.0250 (6)	-0.0079 (5)	-0.0040 (5)	-0.0040 (5)
C7	0.0241 (6)	0.0215 (6)	0.0347 (7)	-0.0077 (5)	0.0025 (5)	-0.0088 (5)
C8	0.0229 (6)	0.0274 (7)	0.0392 (8)	-0.0073 (5)	0.0025 (5)	-0.0088 (6)
C9	0.0289 (6)	0.0260 (6)	0.0255 (6)	-0.0128 (5)	-0.0024 (5)	-0.0061 (5)
C10	0.0236 (6)	0.0224 (6)	0.0220 (6)	-0.0081 (5)	-0.0026 (5)	-0.0034 (5)
C11	0.0286 (7)	0.0337 (7)	0.0317 (7)	-0.0115 (6)	-0.0113 (5)	0.0038 (6)
C12	0.0452 (8)	0.0378 (8)	0.0246 (7)	-0.0210 (7)	-0.0034 (6)	-0.0016 (6)
Cl1	0.02788 (17)	0.0430 (2)	0.03519 (18)	-0.01831 (14)	-0.00224 (13)	-0.00861 (14)
01	0.0303 (5)	0.0377 (6)	0.0367 (5)	-0.0128 (4)	0.0007 (4)	-0.0094 (4)
N1	0.0205 (5)	0.0191 (5)	0.0234 (5)	-0.0059 (4)	-0.0013 (4)	-0.0044 (4)
N2	0.0229 (5)	0.0332 (6)	0.0291 (6)	-0.0136 (4)	0.0028 (4)	-0.0101 (5)

Geometric parameters (Å, °)

C9—C10	1.5176 (17)	С6—Н7	0.947
C9—N2	1.4986 (17)	C5—C4	1.3851 (19)
С9—Н12	0.966	С5—Н6	0.968
С9—Н13	0.985	C4—C3	1.3957 (19)
C10—N1	1.4686 (16)	C4—H5	0.965
С10—Н14	1.005	C3—C2	1.4070 (17)
С10—Н15	0.993	C3—C12	1.5038 (19)
С7—С8	1.5159 (17)	C2—C11	1.5090 (17)
C7—N1	1.4701 (16)	C12—H21	0.975
С7—Н9	0.974	C12—H20	0.974
С7—Н8	0.991	C12—H19	0.993
C8—N2	1.4900 (18)	C11—H18	0.983
C8—H11	0.995	C11—H16	0.981
C8—H10	0.989	C11—H17	0.981
C1—C6	1.3979 (17)	O1—H1	0.822
C1—C2	1.4060 (17)	O1—H2	0.831
C1—N1	1.4391 (15)	N2—H3	0.900
C6—C5	1.3886 (18)	N2—H4	0.914
C10-C9-N2	109.56 (10)	С4—С5—Н6	120.8
С10—С9—Н12	111.0	C5—C4—C3	120.72 (12)
N2—C9—H12	108.8	C5—C4—H5	120.5

C10-C9-H13	110.3	C3—C4—H5	118 7
N2 C0 H13	108.5	C_{4} C_{3} C_{2}	110.7
$H_1^2 = C_2 = H_1^3$	108.6	$C_{1} = C_{2} = C_{2}$	119.03(12) 110.84(12)
$C_{0} = C_{10} = N_{10}$	100.0	$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	119.64(12) 120.53(12)
$C_{2} = C_{10} = M_{14}$	109.41 (10)	$C_2 = C_3 = C_{12}$	120.33(12)
C9—C10—H14	109.0	$C_3 = C_2 = C_1$	119.20 (11)
N1 - C10 - H14	108.9	$C_3 = C_2 = C_{11}$	119.40 (12)
С9—С10—Н15	108.6		121.39 (11)
N1—C10—H15	111.3	C3—C12—H21	109.5
H14—C10—H15	109.6	C3—C12—H20	109.5
C8—C7—N1	110.04 (10)	H21—C12—H20	107.6
С8—С7—Н9	108.4	C3—C12—H19	110.4
N1—C7—H9	109.2	H21—C12—H19	109.8
С8—С7—Н8	109.4	H20—C12—H19	109.9
N1—C7—H8	110.2	C2-C11-H18	109.7
Н9—С7—Н8	109.5	С2—С11—Н16	110.8
C7—C8—N2	109.88 (11)	H18—C11—H16	109.0
C7—C8—H11	110.1	C2—C11—H17	110.4
N2-C8-H11	107.8	H18—C11—H17	108.5
C7—C8—H10	111.2	H16—C11—H17	108.4
N2-C8-H10	108.0	H1—O1—H2	107.1
H11—C8—H10	109.9	C7—N1—C10	109.62 (10)
C6—C1—C2	120.31 (11)	C7—N1—C1	112.16 (9)
C6—C1—N1	121.24 (11)	C10—N1—C1	115.19 (10)
C2-C1-N1	118.45 (11)	C9—N2—C8	112.04 (10)
C1—C6—C5	119.86 (12)	C9—N2—H3	107.5
С1—С6—Н7	119.9	C8—N2—H3	109.3
С5—С6—Н7	120.2	C9—N2—H4	108.6
C6—C5—C4	120.27 (12)	C8—N2—H4	110.2
С6—С5—Н6	118.9	H3—N2—H4	109.1

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	$D \cdots A$	D—H···A
N2—H3…Cl1	0.90	2.18	3.069(1)	169
N2—H4···O1 ⁱ	0.91	1.86	2.776 (2)	175
O1—H1…Cl1	0.82	2.32	3.120(1)	165
O1—H2···Cl1 ⁱⁱ	0.83	2.31	3.136(1)	171
C10—H15···Cl1 ⁱⁱⁱ	0.99	2.87	3.846 (1)	168
C12—H20…Cl1 ^{iv}	0.97	2.84	3.779 (3)	161
C12—H19…O1 ^v	0.99	2.73	3.448 (2)	130

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+2, -*y*+1, -*z*; (iii) *x*-1, *y*, *z*; (iv) *x*-1, *y*, *z*+1; (v) *x*-1, *y*-1, *z*+1.