organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4,4'-Dimethoxybenzophenone: a triclinic polymorph

Hoong-Kun Fun,^a* S. Franklin,^b Samuel Robinson Jebas^a‡ and T. Balasubramanian^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, and ^bDepartment of Physics, National Institute of Technology, Tiruchirappalli 620 015, India Correspondence e-mail: hkfun@usm.my

Received 31 May 2008; accepted 9 June 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.060; wR factor = 0.170; data-to-parameter ratio = 19.7.

The title compound, $C_{15}H_{14}O_3$, has been found to crystallize as a new triclinic polymorph. The asymmetric unit of the present structure, as in the previously reported monoclinic structure [Norment & Karle (1962). Acta Cryst. 15, 873-878], contains two independent molecules, which differ slightly in the orientations of the two benzene rings. The crystal packing of the triclinic polymorph is stabilized by intermolecular C-H···O hydrogen bonds and C-H·· π interactions.

Related literature

For the monoclinic polymorph of 4,4'-dimethoxybenzophenone, see: Norment & Karle (1962). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data	
$C_{15}H_{14}O_3$	a = 9.4296 (2) Å
$M_r = 242.26$	b = 9.4569 (2) Å
Triclinic, P1	c = 14.7963 (3) Å

$\alpha = 76.945 \ (1)^{\circ}$	
$\beta = 78.813 \ (1)^{\circ}$	
$\gamma = 70.670 \ (1)^{\circ}$	
V = 1202.65 (4) Å ³	
Z = 4	

Data collection

Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\rm min} = 0.955, T_{\rm max} = 0.985$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	329 parameters
$wR(F^2) = 0.170$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.67 \ {\rm e} \ {\rm \AA}^{-3}$
6478 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

T = 100.0 (1) K

 $R_{\rm int} = 0.035$

 $0.50 \times 0.19 \times 0.16$ mm

26162 measured reflections 6478 independent reflections

4651 reflections with $I > 2\sigma(I)$)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C14B - H14E \cdots O1B^{i}$	0.96	2.59	3.446 (2)	149
$C9B - H9B \cdot \cdot \cdot Cg1^{ii}$	0.93	2.84	3.5252 (17)	132
$C12B - H12B \cdot \cdot \cdot Cg1^{iii}$	0.93	2.78	3.5223 (16)	137
$C4B - H4B \cdots Cg2^{iv}$	0.93	2.88	3.6301 (18)	138
$C9A - H9A \cdots Cg3^{iii}$	0.93	2.92	3.5723 (16)	128
$C12A - H12A \cdot \cdot \cdot Cg3^{ii}$	0.93	2.88	3.5651 (16)	132
$C4A - H4A \cdots Cg4^{\tilde{v}}$	0.93	2.90	3.6376 (17)	138

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x, -y, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) x + 1, y, z; (v) x, y, z - 1. Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1A-C6A, C8A-C13A, C1B-C13B and C8B-C13B rings, respectively.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/ PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2608).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Norment, H. G. & Karle, I. L. (1962). Acta Cryst. 15, 873-878.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

‡ Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

supporting information

Acta Cryst. (2008). E64, o1256 [doi:10.1107/S1600536808017315]

4,4'-Dimethoxybenzophenone: a triclinic polymorph

Hoong-Kun Fun, S. Franklin, Samuel Robinson Jebas and T. Balasubramanian

S1. Comment

The crystal structure of the title compound has previously been reported in the monoclinic space group $P_{1/a}$ (Norment & Karle, 1962). We report here the structure of a second polymorph which crystallizes in the triclinic space group $P_{\overline{1}}$.

The asymmetric unit of the triclinic polymporph contains two crystallographically independent molecules (Fig.1), similar to the monoclinic form. Bond lengths and angles of the molecules agree with each other and show normal values (Allen *et al.*, 1987). The two independent molecules differ slightly in the orientations of the two benzene rings. The dihedral angle formed by C1A-C6A and C8A-C13A rings is 52.12 (8)° and that between C1B-C6B and C8B-C13B planes is 55.73 (7)°. These dihedral angles are comparable to those observed in the monoclinic polymorph.

The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds (Fig.2) and C—H··· π interactions.

S2. Experimental

The title compound was purchased from Merck and single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of an ethanol solution.

S3. Refinement

H atoms were positioned geometrically [C-H = 0.93 Å (aromatic) and 0.96 Å (methyl)] and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(methyl C)$. A rotating group model was used for the methyl group.

Figure 1

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

The crystal packing of the title compound, viewed along the *b* axis. Hydrogen bonds are shown as dashed lines.

bis(4-methoxyphenyl) ketone bis(4-methoxyphenyl)methanone

Crystal data	
C ₁₅ H ₁₄ O ₃ $M_r = 242.26$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.4296 (2) Å b = 9.4569 (2) Å c = 14.7963 (3) Å a = 76.945 (1)° $\beta = 78.813$ (1)° $\gamma = 70.670$ (1)° V = 1202.65 (4) Å ³	Z = 4 F(000) = 512 $D_x = 1.338 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5758 reflections $\theta = 2.3-28.8^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K Needle, colourless $0.50 \times 0.19 \times 0.16 \text{ mm}$
Data collection	
Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{\min} = 0.955, T_{\max} = 0.985$	26162 measured reflections 6478 independent reflections 4651 reflections with $I > 2\sigma(I)$) $R_{int} = 0.035$ $\theta_{max} = 29.3^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -12 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -20 \rightarrow 20$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.170$ S = 1.09 6478 reflections 329 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0952P)^2 + 0.106P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.67$ e Å ⁻³ $\Delta\rho_{min} = -0.24$ e Å ⁻³

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso}$ */ $U_{\rm eq}$ Ζ х v 0.0249(3)O1A -0.28278(12)0.49910 (12) 0.23294 (8) O2A 0.34179 (12) 0.13120(12) 0.02987(7)0.0214(3)O3A 0.64984 (7) 0.0229(3)-0.28335(13)0.14327 (12) C1A 0.08731 (17) 0.22148 (16) 0.23864 (10) 0.0184(3)0.0909 0.022* H1A 0.1987 0.3028 C2A 0.21523 (18) 0.16537 (16) 0.17906 (11) 0.0194 (3) 0.023* H2A 0.3048 0.1064 0.2030 C3A 0.21106 (17) 0.19668 (15) 0.08281 (10) 0.0178 (3) C4A 0.07749 (17) 0.28874 (16) 0.04661 (10) 0.0191 (3) H4A 0.0742 0.3113 -0.01760.023* C5A -0.04971(18)0.34589 (16) 0.10750 (10) 0.0193(3)-0.13820.4080 0.0834 0.023* H5A C6A -0.04823(17)0.31234(15)0.20434(10)0.0174(3)C7A -0.18690(17)0.38447 (16) 0.26527(10)0.0183(3)C8A -0.20800(16)0.31981 (16) 0.36677 (10) 0.0173(3)C9A -0.28139(17)0.41828 (16) 0.43012 (11) 0.0191(3)0.023* H9A -0.31350.5225 0.4081 C10A 0.36486 (16) 0.52506 (10) 0.0196 (3) -0.30776(17)H10A -0.35460.4328 0.024* 0.5663 C11A -0.26370(17)0.20849 (16) 0.55851 (10) 0.0176(3)C12A -0.19281(17)0.10750 (16) 0.49558 (11) 0.0193 (3) 0.023* H12A -0.16540.0031 0.5172 C13A -0.16374(17)0.16278 (16) 0.40171 (10) 0.0182(3)H13A -0.11400.0950 0.3607 0.022* C14A 0.3446(2)0.1650(2) -0.07020(11)0.0283 (4) H14A 0.4420 0.1114 -0.09910.042* H14B 0.3261 0.2725 -0.09140.042* H14C 0.2675 0.1338 -0.08690.042* -0.3511(2)C15A 0.24333 (18) 0.71693 (11) 0.0272(4)0.041* H15A -0.35310.1843 0.7789 H15B 0.3008 0.041* -0.45280.7051 H15C -0.29280.3117 0.7115 0.041* O1B 0.29024 (13) 0.75911 (8) -0.00749(12)0.0274(3)O2B 0.28485 (12) 0.35935 (12) 0.34377 (7) 0.0210(3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

O3B	-0.31914 (13)	0.37626 (12)	0.96641 (7)	0.0235 (3)
C1B	0.09869 (17)	0.26402 (16)	0.57589 (11)	0.0186 (3)
H1B	-0.0001	0.2827	0.6062	0.022*
C2B	0.12419 (17)	0.32062 (16)	0.48158 (10)	0.0182 (3)
H2B	0.0426	0.3759	0.4487	0.022*
C3B	0.27200 (17)	0.29506 (15)	0.43542 (10)	0.0167 (3)
C4B	0.39422 (17)	0.20963 (16)	0.48461 (10)	0.0189 (3)
H4B	0.4930	0.1920	0.4544	0.023*
C5B	0.36678 (17)	0.15134 (16)	0.57903 (10)	0.0189 (3)
H5B	0.4481	0.0927	0.6113	0.023*
C6B	0.21978 (17)	0.17880 (15)	0.62655 (10)	0.0177 (3)
C7B	0.19627 (17)	0.10850 (16)	0.72667 (10)	0.0189 (3)
C8B	0.05613 (17)	0.17899 (16)	0.78730 (10)	0.0182 (3)
C9B	-0.00698 (18)	0.08532 (16)	0.85877 (10)	0.0199 (3)
H9B	0.0361	-0.0197	0.8657	0.024*
C10B	-0.13333 (18)	0.14621 (17)	0.92001 (11)	0.0205 (3)
H10B	-0.1757	0.0824	0.9667	0.025*
C11B	-0.19608 (17)	0.30392 (16)	0.91082 (10)	0.0184 (3)
C12B	-0.13197 (18)	0.39894 (16)	0.84036 (10)	0.0192 (3)
H12B	-0.1723	0.5040	0.8351	0.023*
C13B	-0.00913 (17)	0.33727 (16)	0.77866 (10)	0.0183 (3)
H13B	0.0310	0.4012	0.7308	0.022*
C14B	0.43412 (18)	0.33423 (19)	0.29271 (11)	0.0255 (4)
H14D	0.4277	0.3875	0.2295	0.038*
H14E	0.4804	0.2273	0.2926	0.038*
H14F	0.4942	0.3711	0.3219	0.038*
C15B	-0.3891 (2)	0.28448 (19)	1.04042 (12)	0.0302 (4)
H15D	-0.4787	0.3487	1.0709	0.045*
H15E	-0.3195	0.2299	1.0850	0.045*
H15F	-0.4159	0.2134	1.0149	0.045*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
OIA	0.0211 (6)	0.0212 (5)	0.0269 (6)	-0.0024 (4)	-0.0026 (5)	0.0003 (5)
O2A	0.0190 (6)	0.0234 (5)	0.0185 (5)	-0.0032 (4)	-0.0011 (4)	-0.0030 (4)
O3A	0.0277 (6)	0.0198 (5)	0.0190 (5)	-0.0045 (4)	-0.0032 (5)	-0.0024 (4)
C1A	0.0218 (8)	0.0164 (7)	0.0184 (7)	-0.0070 (6)	-0.0060 (6)	-0.0011 (5)
C2A	0.0189 (8)	0.0160 (7)	0.0230 (8)	-0.0052 (6)	-0.0072 (6)	0.0007 (6)
C3A	0.0181 (8)	0.0146 (6)	0.0219 (7)	-0.0067 (6)	-0.0022 (6)	-0.0029 (6)
C4A	0.0224 (8)	0.0178 (7)	0.0175 (7)	-0.0070 (6)	-0.0042 (6)	-0.0009(5)
C5A	0.0205 (8)	0.0171 (7)	0.0213 (7)	-0.0072 (6)	-0.0054 (6)	-0.0007 (6)
C6A	0.0190 (8)	0.0135 (6)	0.0208 (7)	-0.0067 (5)	-0.0033 (6)	-0.0021 (5)
C7A	0.0180 (8)	0.0159 (7)	0.0224 (7)	-0.0071 (6)	-0.0038 (6)	-0.0023 (6)
C8A	0.0139 (7)	0.0188 (7)	0.0206 (7)	-0.0066 (5)	-0.0031 (6)	-0.0030 (6)
C9A	0.0162 (7)	0.0159 (7)	0.0246 (8)	-0.0044 (5)	-0.0030 (6)	-0.0030 (6)
C10A	0.0188 (8)	0.0187 (7)	0.0217 (7)	-0.0048 (6)	-0.0016 (6)	-0.0064 (6)
C11A	0.0159 (7)	0.0198 (7)	0.0183 (7)	-0.0061 (6)	-0.0049 (6)	-0.0021 (6)

C12A	0.0200 (8)	0.0132 (6)	0.0240 (8)	-0.0047 (6)	-0.0034 (6)	-0.0014 (6)
C13A	0.0158 (7)	0.0157 (7)	0.0241 (8)	-0.0048 (5)	-0.0021 (6)	-0.0058 (6)
C14A	0.0262 (9)	0.0313 (9)	0.0202 (8)	-0.0025 (7)	0.0004 (7)	-0.0024 (6)
C15A	0.0318 (9)	0.0270 (8)	0.0204 (8)	-0.0048 (7)	-0.0011 (7)	-0.0072 (6)
O1B	0.0300 (7)	0.0210 (5)	0.0235 (6)	0.0013 (5)	-0.0042 (5)	-0.0016 (4)
O2B	0.0181 (6)	0.0246 (5)	0.0178 (5)	-0.0045 (4)	-0.0018 (4)	-0.0023 (4)
O3B	0.0216 (6)	0.0232 (5)	0.0215 (6)	-0.0039 (4)	0.0014 (4)	-0.0033 (4)
C1B	0.0170 (7)	0.0168 (7)	0.0238 (8)	-0.0065 (6)	-0.0018 (6)	-0.0058 (6)
C2B	0.0158 (7)	0.0174 (7)	0.0216 (7)	-0.0019 (6)	-0.0072 (6)	-0.0044 (6)
C3B	0.0189 (8)	0.0139 (6)	0.0191 (7)	-0.0056 (5)	-0.0036 (6)	-0.0041 (5)
C4B	0.0162 (7)	0.0192 (7)	0.0220 (7)	-0.0056 (6)	-0.0008 (6)	-0.0059 (6)
C5B	0.0187 (8)	0.0154 (7)	0.0223 (7)	-0.0032 (6)	-0.0058 (6)	-0.0029 (6)
C6B	0.0197 (8)	0.0136 (6)	0.0202 (7)	-0.0046 (5)	-0.0029 (6)	-0.0038 (5)
C7B	0.0213 (8)	0.0153 (7)	0.0208 (7)	-0.0056 (6)	-0.0038 (6)	-0.0033 (6)
C8B	0.0198 (8)	0.0181 (7)	0.0172 (7)	-0.0061 (6)	-0.0036 (6)	-0.0025 (5)
C9B	0.0234 (8)	0.0150 (7)	0.0215 (7)	-0.0063 (6)	-0.0051 (6)	-0.0013 (6)
C10B	0.0235 (8)	0.0196 (7)	0.0198 (7)	-0.0101 (6)	-0.0040 (6)	0.0006 (6)
C11B	0.0175 (8)	0.0205 (7)	0.0177 (7)	-0.0044 (6)	-0.0060 (6)	-0.0033 (6)
C12B	0.0233 (8)	0.0146 (6)	0.0200 (7)	-0.0049 (6)	-0.0064 (6)	-0.0020 (5)
C13B	0.0221 (8)	0.0162 (7)	0.0179 (7)	-0.0075 (6)	-0.0060 (6)	-0.0002 (5)
C14B	0.0215 (8)	0.0314 (8)	0.0200 (8)	-0.0050 (7)	0.0012 (6)	-0.0050 (6)
C15B	0.0244 (9)	0.0311 (9)	0.0293 (9)	-0.0089 (7)	0.0048 (7)	0.0002 (7)

Geometric parameters (Å, °)

01A—C7A	1.2272 (17)	O1B—C7B	1.2257 (17)
O2A—C3A	1.3623 (17)	O2B—C3B	1.3550 (17)
O2A—C14A	1.4394 (18)	O2B—C14B	1.4336 (18)
O3A-C11A	1.3576 (17)	O3B—C11B	1.3599 (17)
O3A—C15A	1.4377 (17)	O3B—C15B	1.4343 (19)
C1A—C2A	1.374 (2)	C1B—C2B	1.382 (2)
C1A—C6A	1.399 (2)	C1B—C6B	1.402 (2)
C1A—H1A	0.93	C1B—H1B	0.93
C2A—C3A	1.393 (2)	C2B—C3B	1.396 (2)
C2A—H2A	0.93	C2B—H2B	0.93
C3A—C4A	1.399 (2)	C3B—C4B	1.398 (2)
C4A—C5A	1.383 (2)	C4B—C5B	1.389 (2)
C4A—H4A	0.93	C4B—H4B	0.93
C5A—C6A	1.398 (2)	C5B—C6B	1.396 (2)
С5А—Н5А	0.93	C5B—H5B	0.93
C6A—C7A	1.4893 (19)	C6B—C7B	1.487 (2)
C7A—C8A	1.490 (2)	C7B—C8B	1.491 (2)
С8А—С9А	1.3930 (19)	C8B—C9B	1.392 (2)
C8A—C13A	1.405 (2)	C8B—C13B	1.4035 (19)
C9A-C10A	1.385 (2)	C9B—C10B	1.391 (2)
С9А—Н9А	0.93	C9B—H9B	0.93
C10A—C11A	1.395 (2)	C10B—C11B	1.396 (2)
C10A—H10A	0.93	C10B—H10B	0.93

C11A—C12A	1.4012 (19)	C11B—C12B	1.397 (2)
C12A—C13A	1.377 (2)	C12B—C13B	1.378 (2)
C12A—H12A	0.93	C12B—H12B	0.93
C13A—H13A	0.93	C13B—H13B	0.93
C14A—H14A	0.96	C14B—H14D	0.96
C14A—H14B	0.96	C14B—H14E	0.96
C14A - H14C	0.96	C14B—H14F	0.96
C15A - H15A	0.96	C15B—H15D	0.96
C15A—H15B	0.96	C15B—H15F	0.96
C15A - H15C	0.96	C15B_H15E	0.96
	0.90	CI3D-III3I	0.90
$C_{3} = O_{2} = C_{14}$	117.70(12)	C3B = O2B = C14B	117 78 (12)
$C_{11A} O_{2A} C_{15A}$	117.70(12) 117.33(11)	$\begin{array}{cccc} C11B & O3B & C15B \\ \end{array}$	117.70(12) 117.90(12)
C_{1}^{2}	117.33(11) 121.10(14)	$C^{2}B$ $C^{1}B$ $C^{6}B$	117.90(12) 120.88(14)
$C_{2A} = C_{1A} = C_{0A}$	121.10 (14)	C_{2B} C_{1B} H_{1B}	120.00 (14)
$C_{2A} = C_{1A} = H_{1A}$	119.5	$C_{2}D - C_{1}D - H_{1}D$	119.0
COA = CIA = HIA	119.5	$C_{0}D = C_{1}D = C_{2}D$	119.0
CIA = C2A = C3A	120.14 (14)	CIB - C2B - C3B	120.21 (14)
CIA - C2A - H2A	119.9	C1B - C2B - H2B	119.9
C_{3A} — C_{2A} — H_{2A}	119.9	C3B—C2B—H2B	119.9
O2A - C3A - C2A	115.76 (13)	02B—C3B—C2B	115.56 (13)
02A—C3A—C4A	124.33 (13)	O2B—C3B—C4B	124.67 (13)
C2A—C3A—C4A	119.90 (13)	C2B—C3B—C4B	119.76 (14)
C5A—C4A—C3A	119.20 (14)	C5B—C4B—C3B	119.40 (14)
C5A—C4A—H4A	120.4	C5B—C4B—H4B	120.3
C3A—C4A—H4A	120.4	C3B—C4B—H4B	120.3
C4A—C5A—C6A	121.50 (14)	C4B—C5B—C6B	121.46 (14)
С4А—С5А—Н5А	119.2	C4B—C5B—H5B	119.3
С6А—С5А—Н5А	119.2	C6B—C5B—H5B	119.3
C5A—C6A—C1A	118.13 (13)	C5B—C6B—C1B	118.27 (14)
C5A—C6A—C7A	118.48 (13)	C5B—C6B—C7B	119.27 (13)
C1A—C6A—C7A	123.22 (13)	C1B—C6B—C7B	122.33 (13)
01A—C7A—C6A	120.49 (13)	O1B—C7B—C6B	120.47 (13)
O1A—C7A—C8A	119.53 (13)	O1B—C7B—C8B	120.05 (13)
C6A—C7A—C8A	119.96 (12)	C6B—C7B—C8B	119.47 (12)
C9A—C8A—C13A	117.96 (14)	C9B-C8B-C13B	118.68 (13)
C9A - C8A - C7A	118.92 (12)	C9B-C8B-C7B	118.98 (13)
$C_{13A} - C_{8A} - C_{7A}$	123.05(12)	$C_{13B} = C_{8B} = C_{7B}$	122 22 (14)
C10A - C9A - C8A	121.65 (13)	C10B-C9B-C8B	122.22(14) 121.10(13)
$C_{10A} = C_{0A} = C_{0A}$	110.2	C10P $C0P$ $H0P$	110.5
	119.2	$C_{10} = C_{20} = H_{12} = H_{12}$	119.5
$C_{0A} = C_{0A} = C_{1A}$	119.2	COP C10P C11P	119.5
C_{A} C_{I0A} U_{I0A}	119.02 (15)	C9B - C10B - C11B	119.43 (14)
$C_{11A} = C_{10A} = H_{10A}$	120.2	$C_{1}D = C_{1}D = H_{1}D = H_{1}D$	120.3
C11A - C10A - HI0A	120.2	$\begin{array}{c} CIID \\ \hline \\ CID \\ \hline \\ \hline \\ \hline \\ \hline \\ CID \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ CID \\ \hline \\ $	120.3
$O_{A} = C_{11A} = C_{10A}$	124.78 (13)		124.69 (14)
USA—CIIA—CI2A	115.67 (12)	U3B-CIIB-CI2B	115.42 (12)
CIUA—CIIA—CI2A	119.55 (14)	CIUB—CIIB—CI2B	119.88 (13)
CI3A—CI2A—CIIA	120.05 (13)	C13B—C12B—C11B	120.14 (13)
C13A—C12A—H12A	120.0	C13B—C12B—H12B	119.9

C11A—C12A—H12A	120.0	C11B—C12B—H12B	119.9
C12A—C13A—C8A	121.14 (13)	C12B—C13B—C8B	120.72 (14)
C12A—C13A—H13A	119.4	C12B—C13B—H13B	119.6
C8A—C13A—H13A	119.4	C8B—C13B—H13B	119.6
O2A—C14A—H14A	109.5	O2B—C14B—H14D	109.5
O2A—C14A—H14B	109.5	O2B—C14B—H14E	109.5
H14A—C14A—H14B	109.5	H14D—C14B—H14E	109.5
O2A—C14A—H14C	109.5	O2B—C14B—H14F	109.5
H14A - C14A - H14C	109.5	H14D—C14B—H14F	109.5
H14B— $C14A$ — $H14C$	109.5	H14E— $C14B$ — $H14F$	109.5
O3A - C15A - H15A	109.5	O3B-C15B-H15D	109.5
O3A - C15A - H15B	109.5	O3B-C15B-H15E	109.5
H15A - C15A - H15B	109.5	H_{15D} C_{15B} H_{15E}	109.5
O3A - C15A - H15C	109.5	O3B-C15B-H15E	109.5
$H_{15A} = C_{15A} = H_{15C}$	109.5	HISD CISB HISE	109.5
H15R C15A H15C	109.5	H15E C15B H15E	109.5
III3D—CI3A—III3C	109.5	III3E—CI3B—III3F	109.5
C6A $C1A$ $C2A$ $C3A$	-0.9(2)	C6B C1B C2B C3B	-0.8(2)
$C_{14A} = O_{2A} = C_{2A} = C_{2A}$	-177.60(14)	C14P O2P C3P C2P	-17880(13)
C14A = O2A = C3A = C2A	-1/7.09(14)	C14B = 02B = C3B = C2B	-178.89(13)
C14A = O2A = C3A = C4A	3.1(2)	C14D = C2D = C3D = C4D	2.0(2)
C1A C2A C2A C4A	-177.55(15)	C1B = C2B = C3B = C4B	-1/8.01(12)
CIA = C2A = C3A = C4A	1.7(2)	C1B - C2B - C3B - C4B	1.1(2)
$O_{2A} = C_{3A} = C_{4A} = C_{5A}$	1/8.51(15)	02B-C3B-C4B-C5B	1/8.98 (15)
C_{2A} C_{3A} C_{4A} C_{5A} C_{6A}	-0.9(2)	$C_{2B} = C_{3B} = C_{4B} = C_{5B}$	-0.1(2)
C3A - C4A - C5A - C6A	-0.7(2)	C_{3B} C_{4B} C_{5B} C_{6B}	-1.4(2)
C4A - C5A - C6A - C1A	1.5 (2)	C4B = C5B = C6B = C1B	1.7 (2)
C4A - C5A - C6A - C/A	1/6.83 (14)	C4B—C5B—C6B—C7B	1/7.53 (13)
C2A— $C1A$ — $C6A$ — $C5A$	-0.6(2)	C2B—C1B—C6B—C5B	-0.6(2)
C2A—CIA—C6A—C/A	-1/5.76(14)	C2B—C1B—C6B—C7B	-176.32(13)
C5A—C6A—C/A—OIA	-19.5 (2)	C5B—C6B—C/B—OIB	-24.1 (2)
CIA—C6A—C/A—OIA	155.62 (15)	CIB—C6B—C/B—OIB	151.59 (15)
C5A—C6A—C/A—C8A	162.10 (14)	C5B—C6B—C7B—C8B	156.77 (14)
C1A—C6A—C7A—C8A	-22.8 (2)	C1B—C6B—C7B—C8B	-27.6 (2)
01A—C7A—C8A—C9A	-32.7 (2)	O1B—C7B—C8B—C9B	-32.4 (2)
C6A—C7A—C8A—C9A	145.72 (15)	C6B—C7B—C8B—C9B	146.71 (15)
O1A—C7A—C8A—C13A	144.16 (16)	O1B—C7B—C8B—C13B	143.46 (16)
C6A—C7A—C8A—C13A	-37.4 (2)	C6B—C7B—C8B—C13B	-37.4 (2)
C13A—C8A—C9A—C10A	1.4 (2)	C13B—C8B—C9B—C10B	0.8 (2)
C7A—C8A—C9A—C10A	178.38 (14)	C7B—C8B—C9B—C10B	176.84 (15)
C8A—C9A—C10A—C11A	-1.7 (2)	C8B—C9B—C10B—C11B	-1.3 (2)
C15A—O3A—C11A—C10A	-1.6 (2)	C15B—O3B—C11B—C10B	0.6 (2)
C15A—O3A—C11A—C12A	177.99 (14)	C15B—O3B—C11B—C12B	-179.56 (14)
C9A—C10A—C11A—O3A	179.83 (14)	C9B—C10B—C11B—O3B	180.00 (15)
C9A—C10A—C11A—C12A	0.2 (2)	C9B-C10B-C11B-C12B	0.1 (2)
O3A—C11A—C12A—C13A	-178.09 (14)	O3B-C11B-C12B-C13B	-178.39 (14)
C10A—C11A—C12A—C13A	1.6 (2)	C10B—C11B—C12B—C13B	1.5 (2)
C11A—C12A—C13A—C8A	-1.9 (2)	C11B—C12B—C13B—C8B	-2.0 (2)
C9A—C8A—C13A—C12A	0.4 (2)	C9B-C8B-C13B-C12B	0.8 (2)

C7A—C8A—C13A—C12A	-176.43 (15)	C7B—C8B—C13B—C12B		-175.07 (15)	
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> —Н	$H \cdots A$	D···· A	D—H···A	
$C14B$ —H14 E ····O1 B^{i}	0.96	2.59	3.446 (2)	149	
С9 <i>В</i> —Н9 <i>В</i> … <i>С</i> д1 ^{іі}	0.93	2.84	3.5252 (17)	132	
C12 <i>B</i> —H12 <i>B</i> ··· <i>Cg</i> 1 ⁱⁱⁱ	0.93	2.78	3.5223 (16)	137	
C4B—H4B····Cg2 ^{iv}	0.93	2.88	3.6301 (18)	138	
С9А—Н9А…СдЗііі	0.93	2.92	3.5723 (16)	128	
C12A—H12A····Cg3 ⁱⁱ	0.93	2.88	3.5651 (16)	132	
$C4A$ — $H4A$ ··· $Cg4^{v}$	0.93	2.90	3.6376 (17)	138	

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) -*x*, -*y*, -*z*+1; (iii) -*x*, -*y*+1, -*z*+1; (iv) *x*+1, *y*, *z*; (v) *x*, *y*, *z*-1.