organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-1-(3-Bromophenyl)-3-(4-ethoxyphenyl)prop-2-en-1-one

Hoong-Kun Fun,^a* Suchada Chantrapromma,^b‡ P. S. Patil^c and S. M. Dharmaprakash^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India

Correspondence e-mail: hkfun@usm mv

Received 19 June 2008; accepted 22 June 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.035; wR factor = 0.094; data-to-parameter ratio = 32.9.

The title compound, $C_{17}H_{15}BrO_2$, adopts an *E* configuration. The dihedral angle between the two benzene rings is 10.09 (11)°. The enone plane makes dihedral angles of 12.05 (11) and 9.87 (11) $^{\circ}$, respectively, with the bromophenyl and ethoxyphenyl rings. The ethoxy group is nearly coplanar with the attached benzene ring. In the crystal structure, the molecules are linked by $C-H \cdots O$ hydrogen bonds, forming a zigzag ribbon-like structure along the *b*-axis direction.

Related literature

For bond-length data, see: Allen et al. (1987). For related structures, see: Patil, Fun et al. (2007); Patil, Ng et al. (2007); Sathiya Moorthi et al. (2005a,b). For background to chalcones, see: Chopra et al. (2007); DiCesare et al. (2000); Gu et al. (2008a,b); Jiang et al. (1994); Lokaj et al. (2001); Low et al. (2002); Nel et al. (1998); Patil & Dharmaprakash (2007); Patil et al. (2006); Schmalle et al. (1990); Wang et al. (2004).

Experimental

Crystal data

$C_{17}H_{15}BrO_2$	c = 17.9120 (4) Å
$M_r = 331.19$	$\beta = 92.396 \ (1)^{\circ}$
Monoclinic, P2 ₁	V = 699.72 (3) Å ³
a = 4.0516 (1) Å	Z = 2
b = 9.6501 (2) Å	Mo $K\alpha$ radiation

‡ Additional correspondence author, e-mail: suchada.c@psu.ac.th.

 $0.53 \times 0.31 \times 0.17 \text{ mm}$

 $\mu = 2.94 \text{ mm}^{-1}$ T = 100.0 (1) K

Data collection

Bruker SMART APEXII CCD	14837 measured reflections
area-detector diffractometer	5989 independent reflections
Absorption correction: multi-scan	4682 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.033$
$T_{\min} = 0.305, T_{\max} = 0.641$	
(expected range = 0.289 - 0.607)	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.093$	$\Delta \rho_{\rm max} = 0.69 \text{ e} \text{ Å}^{-3}$
S = 1.04	$\Delta \rho_{\rm min} = -0.65 \ {\rm e} \ {\rm \AA}^{-3}$
5989 reflections	Absolute structure: Flack (1983),
182 parameters	2764 Friedel pairs
1 restraint	Flack parameter: 0.021 (8)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C9−H9A···O1	0.93	2.36	2.746 (3)	105
$C16-H16B\cdotsO1^{i}$	0.97	2.49	3.400 (3)	157
6		1.0		

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, -z + 2.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/ S2/LOP-17/2006. SC thanks Prince of Songkla University for generous support. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2619).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin USA
- Chopra, D., Mohan, T. P., Vishalakshi, B. & Guru Row, T. N. (2007). Acta Cryst. C63, 0704-0710.
- DiCesare, N. & Lakowicz, J. R. (2000). Tetrahedron Lett. 43, 2615-2618.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gu, B., Ji, W., Patil, P. S. & Dharmaprakash, S. M. (2008a). J. Appl. Phys. 103, 103511-1-103511-6.
- Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008b). Appl. Phys. Lett. 92, 091118-1-091118-3.
- Jiang, Y. B., Wang, X. J. & Lin, L. (1994). J. Phys. Chem. 98, 12367-12372.
- Lokaj, J., Kettmann, V., Marchalin, S. & Sikoraiova, J. (2001). Acta Cryst. C57, 735-736.
- Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, 042-045.
- Nel, R. J. J., Van Heerden, P. S., Van Rensburg, H. & Ferreira, D. (1998). Tetrahedron Lett. 39, 5623-5626.
- Patil, P. S. & Dharmaprakash, S. M. (2007). J. Cryst. Growth, 3053, 218-221.

- Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). *Acta Cryst.* E63, 02497–02498.
- Patil, P. S., Ng, S.-L., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2007). *Acta Cryst.* E63, 059–060.
- Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, 0896–0898.
- Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Radhika, R., Fun, H.-K. & Yu, X.-L. (2005a). Acta Cryst. E61, 0480–0482.
- Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005b). Acta Cryst. E61, 0743–0745.
- Schmalle, H. W., Adiwidjaja, G., Jarchow, O. H., Hausen, B. M. & Wollenweber, E. (1990). Acta Cryst. C46, 1712–1715.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wang, L., Zhang, Y., Lu, C.-R. & Zhang, D.-C. (2004). Acta Cryst. C60, 0696–0698.

supporting information

Acta Cryst. (2008). E64, o1356-o1357 [doi:10.1107/S1600536808018850]

(E)-1-(3-Bromophenyl)-3-(4-ethoxyphenyl)prop-2-en-1-one

Hoong-Kun Fun, Suchada Chantrapromma, P. S. Patil and S. M. Dharmaprakash

S1. Comment

Extensive research in recent years suggests organic materials to be the ideal candidates for tailoring the material properties. As an interesting type of organic materials, chalcone and its derivatives have received much attention from physicists, chemists and material scientists who have been extensively investigating their optical, physical and chemical properties for fundamental understanding and technological applications (Chopra *et al.*, 2007; Lokaj *et al.*, 2001; Low *et al.*, 2002; Sathiya Moorthi *et al.*, 2005a,b; Schmalle *et al.*, 1990; Wang *et al.*, 2004). Earlier studies have indicated that chalcone and its derivatives are potential candidates for optical limiting applications (Gu *et al.*, 2008a,b). Owing to their electronic structures, chalcones also find unique applications in fluorescent probes for the sensing of metal ions (DiCesare *et al.*, 2000; Jiang *et al.*, 1994), and in biological use (Nel *et al.*, 1998). The chalcone derivatives with typical D- π -A mode have been reported to crystallize in a noncentrosymmetric crystal structure and possess second harmonic generation properties (Patil *et al.*, 2006; Patil & Dharmaprakash, 2007; Patil *et al.*, 2007b). In our previous investigation, the crystal structure of 1-(4-chlorophenyl)-3-(4-ethoxyphenyl)prop-2-en-1-one has been reported (Patil *et al.*, 2007*a*). To further understand the structure-property relationship, the title chalcone derivative was synthesized with ethoxy as an electron-donor group. The title compound crystallized in the non-centrosymmetric monoclinic *P*₂₁ space group and therefore it should exhibit second-order nonlinear optical properties.

The title molecule (Fig.1) is nearly planar and exists in an *E* configuration with respect to the C8=C9 double bond [1.341 (3) Å]; the C7–C8–C9–C10 torsion angle is -177.6 (2)°. The dihedral angle between rings *A* and *B* is 10.09 (11)°. The enone unit (C7–C9/O1) is essentially planar, with a maximum deviation of 0.040 (2) Å for atom C8. The mean plane through the enone unit makes dihedral angles of 12.05 (11)° and 9.87 (11)° with the planes of rings *A* and *B*, respectively. The planar ethoxy group [C13–O2–C16–C17 = 176.3 (2)°] is almost coplanar with the ring *B* [C16–O2–C13–C12 of -2.1 (3)°]. The deviations of atoms O2, C16 and C17 from ring *B* are 0.007 (2), 0.052 (3) and -0.056 (3) Å, respectively. A weak C9–H9A…O1 interaction generates an S(5) ring motif. The bond distances and angles have normal values (Allen *et al.*, 1987) and are comparable with those observed in related structures (Patil *et al.*, 2007a,b).

In the crystal structure, the molecules are linked by C—H \cdots O hydrogen bonds (Table 1) to form a zigzag ribbon-like structure along the *b* direction (Fig.2 and Fig.3).

S2. Experimental

The title compound was synthesized by the condensation of 4-ethoxybenzaldehyde (0.01mol, 1.39 ml) with 3-bromoacetophenone (0.01 mol, 1.99 g)) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 20%). After stirring for 3 h, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 4 h. The resulting crude solid was filtered and dried. Single crystals were obtained by recrystallization from acetone.

S3. Refinement

All H atoms were placed in calculated positions, with C-H = 0.93 Å, $U_{iso} = 1.2U_{eq}(C)$ for aromatic and CH, C-H = 0.97 Å, $U_{iso} = 1.2U_{eq}(C)$ for CH₂ and C-H = 0.96 Å, $U_{iso} = 1.5U_{eq}(C)$ for CH₃ atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.81 Å from Br1 and the deepest hole is located at 0.76 Å from Br1.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line represent a C—H···O interaction.

Figure 2

The crystal packing of the title compound, viewed along the *a* axis. Hydrogen bonds are shown as dashed lines.

Figure 3

The crystal packing of the title compound, showing zigzag ribbon-like structure running along the b axis. Hydrogen bonds are shown as dashed lines.

1-(3-Bromophenyl)-3-(4-ethoxyphenyl)prop-2-en-1-one

Crystal data

C₁₇H₁₅BrO₂ $M_r = 331.19$ Monoclinic, P2₁ Hall symbol: P 2yb a = 4.0516 (1) Å b = 9.6501 (2) Å c = 17.9120 (4) Å $\beta = 92.396$ (1)° V = 699.72 (3) Å³ Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.33 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.305, T_{max} = 0.642$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.093$ S = 1.04 F(000) = 336 $D_x = 1.572 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5989 reflections $\theta = 1.1-35.0^{\circ}$ $\mu = 2.94 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.53 \times 0.31 \times 0.17 \text{ mm}$

14837 measured reflections 5989 independent reflections 4682 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 35.0^{\circ}, \theta_{min} = 1.1^{\circ}$ $h = -6 \rightarrow 6$ $k = -15 \rightarrow 15$ $l = -28 \rightarrow 23$

5989 reflections182 parameters1 restraintPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$(\Delta/\sigma)_{\rm max} = 0.002$
map	$\Delta \rho_{\rm max} = 0.69 \text{ e } \text{\AA}^{-3}$
Hydrogen site location: inferred from	$\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$
neighbouring sites	Absolute structure: Flack (1983), 2764 Friedel
H-atom parameters constrained	pairs
$w = 1/[\sigma^2(F_o^2) + (0.0372P)^2]$	Absolute structure parameter: 0.021 (8)
where $P = (F_o^2 + 2F_c^2)/3$	

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.44099 (5)	0.22151 (3)	0.509606 (11)	0.02359 (7)
01	0.6257 (5)	0.16393 (19)	0.80200 (10)	0.0229 (4)
O2	0.0554 (4)	0.29630 (17)	1.23694 (9)	0.0191 (3)
C1	0.4078 (6)	0.2599 (2)	0.66571 (13)	0.0179 (4)
H1A	0.5320	0.1789	0.6686	0.021*
C2	0.3124 (6)	0.3148 (2)	0.59698 (13)	0.0174 (4)
C3	0.1291 (6)	0.4369 (2)	0.59085 (14)	0.0194 (4)
H3A	0.0668	0.4731	0.5443	0.023*
C4	0.0418 (6)	0.5031 (2)	0.65597 (14)	0.0194 (4)
H4A	-0.0799	0.5848	0.6528	0.023*
C5	0.1332 (6)	0.4494 (2)	0.72574 (14)	0.0173 (4)
H5A	0.0725	0.4948	0.7689	0.021*
C6	0.3170 (6)	0.3266 (2)	0.73090 (13)	0.0155 (4)
C7	0.4277 (6)	0.2592 (2)	0.80334 (13)	0.0163 (4)
C8	0.2936 (6)	0.3067 (2)	0.87445 (13)	0.0170 (4)
H8A	0.1488	0.3814	0.8756	0.020*
C9	0.3862 (5)	0.2391 (3)	0.93731 (12)	0.0162 (4)
H9A	0.5380	0.1681	0.9313	0.019*
C10	0.2857 (6)	0.2599 (2)	1.01363 (13)	0.0161 (4)
C11	0.0989 (6)	0.3739 (2)	1.03642 (13)	0.0165 (4)
H11A	0.0263	0.4389	1.0011	0.020*
C12	0.0207 (6)	0.3914 (2)	1.11050 (13)	0.0171 (4)
H12A	-0.0990	0.4684	1.1249	0.020*
C13	0.1238 (6)	0.2920 (2)	1.16333 (13)	0.0156 (4)
C14	0.3094 (6)	0.1789 (2)	1.14161 (13)	0.0169 (4)
H14A	0.3792	0.1131	1.1768	0.020*
C15	0.3906 (6)	0.1639 (2)	1.06790 (13)	0.0166 (4)
H15A	0.5173	0.0884	1.0542	0.020*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C16	-0.1265 (6)	0.4130 (3)	1.26362 (14)	0.0194 (5)
H16A	-0.3355	0.4225	1.2356	0.023*
H16B	-0.0010	0.4978	1.2584	0.023*
C17	-0.1832 (9)	0.3845 (3)	1.34460 (16)	0.0323 (7)
H17C	-0.3014	0.4605	1.3654	0.048*
H17A	0.0256	0.3736	1.3713	0.048*
H17B	-0.3101	0.3010	1.3488	0.048*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02512 (11)	0.03165 (12)	0.01422 (9)	-0.00028 (13)	0.00341 (7)	-0.00396 (12)
01	0.0289 (10)	0.0226 (8)	0.0170 (8)	0.0094 (7)	0.0001 (7)	0.0002 (7)
O2	0.0236 (9)	0.0196 (8)	0.0144 (8)	0.0049 (7)	0.0052 (6)	0.0037 (6)
C1	0.0184 (10)	0.0188 (10)	0.0165 (10)	-0.0003 (7)	0.0022 (8)	0.0009 (7)
C2	0.0153 (10)	0.0197 (10)	0.0173 (11)	-0.0035 (8)	0.0026 (8)	-0.0029 (8)
C3	0.0210 (11)	0.0199 (10)	0.0175 (11)	-0.0043 (9)	0.0006 (8)	0.0042 (9)
C4	0.0200 (12)	0.0149 (10)	0.0231 (12)	-0.0007 (9)	-0.0016 (9)	0.0017 (9)
C5	0.0201 (11)	0.0150 (10)	0.0166 (11)	-0.0017 (8)	0.0004 (8)	-0.0012 (8)
C6	0.0186 (10)	0.0132 (9)	0.0147 (10)	-0.0024 (8)	0.0011 (8)	-0.0004 (7)
C7	0.0179 (10)	0.0145 (9)	0.0164 (10)	-0.0011 (7)	0.0004 (8)	-0.0020 (7)
C8	0.0190 (11)	0.0168 (10)	0.0151 (10)	0.0003 (8)	0.0006 (8)	-0.0025 (8)
C9	0.0176 (9)	0.0141 (12)	0.0168 (9)	-0.0005 (8)	0.0007 (7)	-0.0023 (8)
C10	0.0172 (10)	0.0142 (9)	0.0170 (10)	-0.0027 (7)	0.0009 (8)	-0.0001 (7)
C11	0.0179 (10)	0.0150 (9)	0.0165 (10)	-0.0013 (8)	-0.0008 (8)	0.0028 (8)
C12	0.0189 (11)	0.0147 (9)	0.0176 (11)	-0.0013 (8)	0.0013 (8)	0.0003 (8)
C13	0.0144 (10)	0.0161 (10)	0.0166 (10)	-0.0015 (8)	0.0036 (8)	0.0004 (8)
C14	0.0184 (11)	0.0136 (8)	0.0186 (11)	0.0009 (7)	0.0005 (8)	0.0043 (7)
C15	0.0161 (10)	0.0150 (9)	0.0188 (11)	0.0007 (8)	0.0011 (8)	0.0004 (8)
C16	0.0232 (12)	0.0161 (10)	0.0194 (11)	-0.0015 (8)	0.0060 (9)	-0.0003 (8)
C17	0.0467 (19)	0.0282 (13)	0.0230 (14)	0.0146 (13)	0.0146 (12)	0.0044 (11)

Geometric parameters (Å, °)

Br1—C2	1.897 (2)	C9—C10	1.457 (3)
O1—C7	1.221 (3)	С9—Н9А	0.93
O2—C13	1.359 (3)	C10—C15	1.397 (3)
O2—C16	1.439 (3)	C10—C11	1.405 (3)
C1—C2	1.381 (3)	C11—C12	1.387 (3)
C1—C6	1.396 (3)	C11—H11A	0.93
C1—H1A	0.93	C12—C13	1.399 (3)
С2—С3	1.394 (3)	C12—H12A	0.93
C3—C4	1.389 (3)	C13—C14	1.390 (3)
С3—НЗА	0.93	C14—C15	1.381 (3)
C4—C5	1.389 (4)	C14—H14A	0.93
C4—H4A	0.93	C15—H15A	0.93
С5—С6	1.401 (3)	C16—C17	1.504 (4)
С5—Н5А	0.93	C16—H16A	0.97

C6-C7	1 503 (3)	C16—H16B	0.97
C7 $C8$	1.303(3) 1.478(3)	C17 $H17C$	0.97
C^{*}	1.478(3) 1.241(2)	C17 H17A	0.90
	1.341 (3)		0.90
C8—H8A	0.93	С1/—Н1/В	0.96
C13—O2—C16	118 31 (18)	C15—C10—C9	118 2 (2)
$C_{2} - C_{1} - C_{6}$	119.7 (2)	$C_{11} - C_{10} - C_{9}$	123.8(2)
$C_2 - C_1 - H_1 A$	120.2	C_{12} C_{11} C_{10} C_{10}	123.0(2) 121.4(2)
C_{1} C_{1	120.2	C_{12} C_{11} H_{11A}	110.3
$C_1 = C_2 = C_3$	120.2 121 5 (2)	C_{12} C_{11} H_{11A}	119.5
$C_1 = C_2 = C_3$	121.3(2) 119 50 (19)	C_{11} C_{12} C_{13}	119.3 110.2(2)
$C_1 = C_2 = D_{11}$	110.30(10) 110.08(10)	$C_{11} = C_{12} = C_{13}$	119.3(2)
$C_3 = C_2 = B_{11}$	119.98 (18)	C12 - C12 - H12A	120.3
C4 - C3 - C2	118.4 (2)	C13 - C12 - H12A	120.3
C4—C3—H3A	120.8	02 - C13 - C14	115.5 (2)
С2—С3—НЗА	120.8	02	124.6 (2)
C3—C4—C5	121.1 (2)	C14—C13—C12	119.9 (2)
C3—C4—H4A	119.5	C15—C14—C13	120.2 (2)
C5—C4—H4A	119.5	C15—C14—H14A	119.9
C4—C5—C6	119.7 (2)	C13—C14—H14A	119.9
C4—C5—H5A	120.1	C14—C15—C10	121.2 (2)
С6—С5—Н5А	120.1	C14—C15—H15A	119.4
C1—C6—C5	119.5 (2)	C10—C15—H15A	119.4
C1—C6—C7	116.3 (2)	O2—C16—C17	106.1 (2)
C5—C6—C7	124.2 (2)	O2—C16—H16A	110.5
O1—C7—C8	121.0 (2)	C17—C16—H16A	110.5
O1—C7—C6	118.8 (2)	O2—C16—H16B	110.5
C8—C7—C6	120.19 (19)	C17—C16—H16B	110.5
C9—C8—C7	118.2 (2)	H16A—C16—H16B	108.7
С9—С8—Н8А	120.9	C16—C17—H17C	109.5
С7—С8—Н8А	120.9	C16—C17—H17A	109.5
C8-C9-C10	129.9(2)	H17C - C17 - H17A	109.5
C8—C9—H9A	115.0	C16-C17-H17B	109.5
C10-C9-H9A	115.0	H17C_C17_H17B	109.5
C_{15} C_{10} C_{11}	113.0 118.0(2)	H17A $C17$ $H17B$	109.5
	110.0 (2)		107.5
C6—C1—C2—C3	0.7 (4)	C7—C8—C9—C10	-177.6 (2)
C6—C1—C2—Br1	179.90 (17)	C8—C9—C10—C15	172.5 (3)
C1—C2—C3—C4	-0.2 (4)	C8—C9—C10—C11	-9.9 (4)
Br1—C2—C3—C4	-179.42 (18)	C15—C10—C11—C12	0.2 (3)
C2—C3—C4—C5	-0.2 (4)	C9—C10—C11—C12	-177.5(2)
C3—C4—C5—C6	0.1 (4)	C10—C11—C12—C13	-1.4(4)
$C_{2}^{2}-C_{1}^{2}-C_{6}^{2}-C_{5}^{2}$	-0.7(3)	C16 - 02 - C13 - C14	178.0(2)
$C_2 - C_1 - C_6 - C_7$	179.4 (2)	C16-O2-C13-C12	-2.1(3)
C4-C5-C6-C1	0.3(3)	C11 - C12 - C13 - O2	-1784(2)
C_{4} C_{5} C_{6} C_{7}	-179.8(2)	$C_{11} = C_{12} = C_{13} = C_{14}$	1, 0.7 (2) 1.5 (3)
$C_1 = C_2 = C_2 = C_1$	103(2)	02 C13 C14 C15	1.5(3) 170 5 (2)
$C_1 = C_0 = C_7 = O_1$	-160.6(2)	$C_{12} = C_{13} = C_{14} = C_{15}$	-0.4(2)
$C_{1} = C_{1} = C_{1} = C_{1}$	-169.0(2)	$C_{12} = C_{13} = C_{14} = C_{15}$	0.4(3)
	100.7 (2)	U13 - U14 - U13 - U10	-0.0 (4)

supporting information

С5—С6—С7—С8	11.4 (3)	C11—C10—C15—C14	1.0 (3)
O1—C7—C8—C9	-2.3 (3)	C9—C10—C15—C14	178.7 (2)
C6—C7—C8—C9	176.7 (2)	C13—O2—C16—C17	176.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C9—H9A…O1	0.93	2.36	2.746 (3)	105
C16—H16B…O1 ⁱ	0.97	2.49	3.400 (3)	157

Symmetry code: (i) -x+1, y+1/2, -z+2.