

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Chloro-*N*-(2,6-dimethylphenyl)benzamide

B. Thimme Gowda,^a* Miroslav Tokarčík,^b Jozef Kožíšek,^b B. P. Sowmya^a and Hartmut Fuess^c

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, ^bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and ^cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany

Correspondence e-mail: gowdabt@yahoo.com

Received 8 June 2008; accepted 24 June 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; disorder in main residue; *R* factor = 0.046; *wR* factor = 0.137; data-to-parameter ratio = 14.9.

The conformations of the N–H and C=O bonds in the structure of the title compound (N26DMP4CBA), $C_{15}H_{14}CINO$, are *anti* to each other, similar to that observed in *N*-phenylbenzamide, *N*-(3,4-dimethylphenyl)benzamide, *N*-(2,6-dichlorophenyl)benzamide and other benzanilides. There are three molecules in the asymmetric unit of N26DMP4CBA. The central amide group is tilted with respect to the benzoyl ring by 45.2 (1)° in molecule 1, 21.2 (2)° in molecule 2 and 14.9 (2)° in molecule 3. The dihedral angles between the benzoyl and aniline rings are 39.9 (1), 51.0 (1) and 86.3 (3)° in molecules 1, 2 and 3, respectively. Intermolecular N–H···O hydrogen bonds link the molecules into infinite chains running along the [101] direction. One xylyl group is disordered over two positions; the site occupancy factors are *ca* 0.6 and 0.4.

Related literature

For related literature, see: Gowda et al. (2003, 2008a,b).

Experimental

Crystal data $C_{15}H_{14}CINO$ $M_r = 259.72$

Triclinic, $P\overline{1}$ a = 12.2696 (3) Å

b = 13.6249 (4) Å	
c = 13.7981 (4) Å	
$\alpha = 91.880 \ (2)^{\circ}$	
$\beta = 113.623 \ (2)^{\circ}$	
$\gamma = 90.3676 \ (18)^{\circ}$	
$V = 2111.74 (10) \text{ Å}^3$	

Data collection

Oxford Diffraction Xcalibur	Clark & Reid (1995)]
diffractometer	$T_{\min} = 0.896, T_{\max} = 0.973$
Absorption correction: analytical	63529 measured reflections
[CrysAlis RED (Oxford	8072 independent reflections
Diffraction (2007); based on	3945 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.042$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.046 & 21 \text{ restraints} \\ wR(F^2) &= 0.137 & H\text{-atom parameters constrained} \\ S &= 0.89 & \Delta\rho_{max} = 0.21 \text{ e } \text{ Å}^{-3} \\ 8072 \text{ reflections} & \Delta\rho_{min} = -0.20 \text{ e } \text{ Å}^{-3} \\ 543 \text{ parameters} \end{split}$$

Table 1	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdotsO2$ $N2-H2\cdotsO3$ $N3-H3A\cdotsO1^{i}$	0.86	2.02	2.8585 (19)	165
	0.86	1.96	2.778 (2)	158
	0.86	1.99	2.814 (2)	161

Symmetry code: (i) x - 1, y, z - 1.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2007); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2007); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2002); software used to prepare material for publication: *SHELXL97*, *PLATON* (Spek, 2003) and *WinGX* (Farrugia, 1999).

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2356).

References

Brandenburg, K. (2002). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Clark, R. C. & Reid, J. S. (1995). *Acta Cryst*. A**51**, 887–897.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
- Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, 0340.
- Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, 0540.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

organic compounds

Z = 6

Mo $K\alpha$ radiation

 $\mu = 0.26 \text{ mm}^{-1}$

T = 295 (2) K0.49 × 0.22 × 0.13 mm

supporting information

Acta Cryst. (2008). E64, o1365 [doi:10.1107/S1600536808019120]

4-Chloro-N-(2,6-dimethylphenyl)benzamide

B. Thimme Gowda, Miroslav Tokarčík, Jozef Kožíšek, B. P. Sowmya and Hartmut Fuess

S1. Comment

In the present work, the structure of *N*-(2,6-dimethylphenyl)- 4-chlorobenzamide (N26DMP4CBA) has been determined to study the effect of substituents on the solid state geometries of benzanilides (Gowda *et al.*, 2003, 2008a,b).

The conformations of the N—H and C=O bonds in N26DMP4CBA (Fig.1) are anti to each other, similar to that observed in *N*-(phenyl)-benzamide(NPBA)(Gowda *et al.*, 2003), *N*-(3,4-dimethylphenyl)-benzamide (Gowda *et al.*, 2008a), *N*-(2,6-dichlorophenyl)-benzamide and other benzanilides (Gowda *et al.*, 2008b), with similar bond parameters. The amide group –NHCO– forms the dihedral angle of 45.2 (1)° in molecule 1, 21.2 (1)° in molecule 2, and 14.9 (2)° in molecule 3, with the benzoyl benzene ring. The dihedral angles between the benzoyl and aniline benzene rings are $39.9 (1)^\circ$, $51.0 (1)^\circ$ and $86.3 (3)^\circ$ in the molecule 1, 2 and 3, respectively.

The intermolecular N—H…O hydrogen bonds link the molecules into infinite chains running along the [101] direction (Table 1).

S2. Experimental

The title compound was prepared according to the literature method (Gowda *et al.*, 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

S3. Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and N—H = 0.86 Å with $U_{iso}(H) = 1.2U_{eq}(Caromatic \text{ or } N)$ and with $U_{iso}(H) = 1.5U_{eq}(Cmethyl)$.

The xylyl ring of the molecule 3 revealed excessively elongated displacement ellipsoids and therefore this ring (C48 to C55) as well as the C atoms attached to it were treated as disordered with two components marked A and B. The constraint of regular hexagon was applied and the two components A and B were treated using the tools (SAME and PART) available in SHELXL97 (Sheldrick, 2008). In the first stage of refinement, the site-occupation factors were refined to be 0.561 (4) for component A (atoms C48A to C55A) and 0.439 (4) for component B (atoms C48B to C55B) then they were fixed.

Figure 1

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. In molecule 3 only the A-component of the disordered xylyl ring is shown (atoms C48A to C55A). Hydrogen bonds are represented as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.

4-Chloro-N-(2,6-dimethylphenyl)benzamide

Z = 6 F(000) = 816 $D_x = 1.225 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 16102 reflections $\theta = 3.2-29.3^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 295 K Block, colourless $0.49 \times 0.22 \times 0.13 \text{ mm}$ Data collection

Oxford Diffraction Xcalibur diffractometer Graphite monochromator ω scans with κ offsets Absorption correction: analytical [<i>CrysAlis RED</i> (Oxford Diffraction (2007); based on Clark & Reid (1995)] $T_{\min} = 0.896, T_{\max} = 0.973$ 63529 measured reflections <i>Refinement</i>	8072 independent reflections 3945 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 25.9^{\circ}, \ \theta_{min} = 5.6^{\circ}$ $h = -15 \rightarrow 15$ $k = -16 \rightarrow 16$ $l = -16 \rightarrow 16$ 3 standard reflections every 120 min intensity decay: none
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.137$	neighbouring sites
S = 0.89	H-atom parameters constrained
8072 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0808P)^2]$
543 parameters	where $P = (F_o^2 + 2F_c^2)/3$
21 restraints	$(\Delta/\sigma)_{max} = 0.027$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.21$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.20$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	1.09618 (16)	0.27402 (14)	0.88857 (16)	0.0737 (5)	
C2	1.11617 (15)	0.37750 (13)	0.86787 (15)	0.0690 (5)	
C3	1.11340 (19)	0.45167 (17)	0.93676 (18)	0.0923 (6)	
Н3	1.0976	0.4366	0.9952	0.111*	
C4	1.1337 (2)	0.54812 (18)	0.9205 (2)	0.1047 (7)	
H4	1.1301	0.5980	0.9667	0.126*	
C5	1.15906 (19)	0.56963 (16)	0.8358 (2)	0.0945 (7)	
C6	1.16544 (19)	0.49792 (17)	0.7682 (2)	0.0946 (6)	
H6	1.1849	0.5132	0.7118	0.114*	
C7	1.14264 (17)	0.40178 (15)	0.78394 (18)	0.0824 (6)	
H7	1.1453	0.3525	0.7367	0.099*	
Cl1	1.18407 (8)	0.69118 (5)	0.81480 (8)	0.1603 (4)	
O1	1.14255 (14)	0.24299 (11)	0.97876 (11)	0.1085 (5)	
N1	1.02664 (13)	0.21731 (10)	0.80724 (12)	0.0711 (4)	
H1	0.9923	0.2423	0.7462	0.085*	
C8	1.00731 (18)	0.11569 (14)	0.81848 (14)	0.0736 (5)	

C9	0.9194 (2)	0.08774 (18)	0.8511 (2)	0.0993 (7)
C10	0.9064 (3)	-0.0110 (3)	0.8638 (3)	0.1357 (10)
H10	0.8475	-0.0320	0.8852	0.163*
C11	0.9784 (4)	-0.0784(2)	0.8456 (3)	0.1356 (11)
H11	0.9694	-0.1445	0.8562	0.163*
C12	1.0624 (3)	-0.04965 (18)	0.8124 (2)	0.1176 (8)
H12	1.1098	-0.0966	0.7990	0.141*
C13	1.0797 (2)	0.04760 (16)	0.79793 (17)	0.0884 (6)
C14	1,1743 (3)	0.0792 (2)	0.7626 (3)	0.1316 (9)
H14A	1.2201	0.0235	0.7589	0.197*
H14B	1.2254	0.1278	0.8122	0.197*
H14C	1 1380	0 1066	0.6940	0.197*
C15	0.8417(3)	0.1628 (2)	0.8728 (3)	0.1510(12)
H15A	0.7999	0.1982	0.8099	0.227*
H15B	0.8902	0.2079	0.9286	0.227*
H15C	0.7853	0.1302	0.8937	0.227*
C21	0.7055 0.80003 (17)	0.1302 0.33775(13)	0.54313(15)	0.0699 (5)
C22	0.77906 (16)	0.33773(13) 0.43964(13)	0.54515(15) 0.50443(14)	0.0673(5)
C23	0.87450(18)	0.43904(15) 0 50444(15)	0.53812(17)	0.0075(5)
H23	0.9490	0.4827	0.5824	0.101*
C24	0.9490 0.8632 (2)	0.4027 0.50084 (15)	0.50858 (19)	0.0894 (6)
H24	0.0052 (2)	0.6421	0.5315	0.107*
C25	0.7275 0.7536 (2)	0.0421 0.63100 (14)	0.3313	0.0838 (6)
C25	0.7550(2)	0.03133(14) 0.57051(16)	0.44497 (18) 0.41144 (10)	0.0858(0)
C20 H26	0.0371 (2)	0.57051 (10)	0.3603	0.118*
C27	0.5624	0.3930 0.47304(14)	0.3093 0.43985(17)	0.0870 (6)
U27	0.6038	0.47394 (14)	0.45985 (17)	0.104*
C12	0.0038 0.73850 (7)	0.4310 0.75206 (4)	0.4131 0.40748 (7)	0.104°
02	0.73039(7) 0.88001(13)	0.73290(4) 0.32078(10)	0.40748(7) 0.62217(11)	0.1292(3)
02 N2	0.88901(13) 0.72007(12)	0.32078(10) 0.26782(10)	0.02217(11) 0.48010(12)	0.1040(3)
	0.72097(12)	0.20782 (10)	0.48919 (12)	0.0700 (4)
П2 С28	0.0019 0.72999 (16)	0.2834 0.16967 (12)	0.4320 0.52006 (14)	0.064°
C28	0.72888 (10)	0.10807(15) 0.10850(16)	0.52000(14)	0.0087(3)
C29	0.811/9(19)	0.10850(16)	0.50619(17)	0.0857(6)
C30	0.8150 (2)	0.01220 (19)	0.5342 (2)	0.1094 (8)
H30	0.8703	-0.0293	0.5251	0.131*
C31	0.7402 (3)	-0.0228(2)	0.5742 (2)	0.1215 (9)
H31	0.7445	-0.08/9	0.5933	0.146*
C32	0.6578(3)	0.0365 (2)	0.58/1 (2)	0.1237 (9)
H32	0.6058	0.0113	0.6145	0.148*
C33	0.6504 (2)	0.13410 (16)	0.56004 (18)	0.0921 (6)
C34	0.5566 (3)	0.2008 (2)	0.5709 (3)	0.1433 (11)
H34A	0.5941	0.2601	0.6097	0.215*
H34B	0.5164	0.16/8	0.6079	0.215*
H34C	0.5000	0.2166	0.5018	0.215*
C35	0.8955 (2)	0.1461 (2)	0.4599 (3)	0.1335 (10)
H35A	0.9490	0.1945	0.5079	0.200*
H35B	0.8506	0.1753	0.3935	0.200*
H35C	0.9402	0.0926	0.4487	0.200*

C41	0.44189 (18)	0.23143 (15)	0.21886 (17)	0.0803 (6)	
C42	0.44517 (16)	0.12663 (14)	0.18302 (16)	0.0729 (5)	
C43	0.52129 (19)	0.06379 (18)	0.25365 (19)	0.0930 (6)	
H43	0.5689	0.0876	0.3217	0.112*	
C44	0.5291 (2)	-0.03250 (19)	0.2268 (2)	0.0990 (7)	
H44	0.5801	-0.0739	0.2764	0.119*	
C45	0.4612(2)	-0.06729(16)	0.1265 (2)	0.0927(7)	
C46	0.3847(2)	-0.00681(19)	0.0540(2)	0.1044(7)	
H46	0.3386	-0.0308	-0.0143	0.125*	
C47	0.37655 (19)	0.08965 (16)	0.08270 (18)	0.0908 (6)	
H47	0.3238	0.1305	0.0336	0.109*	
Cl3	0.47088 (8)	-0.18837(5)	0.09012 (8)	0.1440(3)	
03	0.51840(14)	0.26464(11)	0.30151(14)	0.1222 (6)	
N3	0.35416 (14)	0.28586(12)	0.15755(12)	0.1222(0) 0.0789(5)	
НЗА	0.2954	0.2589	0.1050	0.095*	
C48A	0.3568 (7)	0.2855(3)	0.1030 0.1777(7)	0.099	0.56
C40A	0.3360(7) 0.4260(6)	0.3033(3) 0.4483(3)	0.1777(7)	0.000(2)	0.56
C_{50A}	0.4200(0) 0.4161(5)	0.5494(3)	0.1475(0) 0.1565(5)	0.078(3)	0.56
H50A	0.4624	0.5914	0.1361	0.138*	0.56
C51A	0.3360 (6)	0.5914 0.5877 (3)	0.1962 (5)	0.138	0.56
USIA H51A	0.3303	0.5877 (5)	0.1902(3)	0.124(3) 0.140*	0.50
C52A	0.3303	0.5249 (5)	0.2024	0.130(3)	0.56
U52A	0.2070 (7)	0.5249 (5)	0.2207 (7)	0.159(5)	0.50
C52A	0.2140	0.3300	0.2333	0.107°	0.50
C54A	0.2770(8) 0.1067(18)	0.4238(4) 0.3545(10)	0.2173(0) 0.2438(17)	0.100(3)	0.50
U54A	0.1907 (10)	0.3020	0.2458 (17)	0.102(7) 0.243*	0.50
1154A 1154D	0.1444	0.3920	0.2003	0.243*	0.50
ПЈ4D Ц54С	0.2441	0.3132	0.2997	0.243*	0.50
П34С С55 Л	0.1303 0.5035 (12)	0.3144 0.4070 (8)	0.1622 0.0037 (10)	0.243	0.50
	0.5055 (12)	0.4070 (8)	0.0937 (10)	0.142 (4)	0.50
пээа	0.5495	0.5545	0.1339	0.213*	0.50
H33B	0.5561	0.4578	0.0899	0.213*	0.50
HJJC CAND	0.4540	0.3827	0.0235	0.213^{+}	0.50
C48B	0.3277(9)	0.3801(3)	0.1819(9)	0.077(3)	0.44
C49B	0.3888 (8)	0.4653 (5)	0.1647 (8)	0.105 (4)	0.44
C50B	0.3633 (7)	0.5605 (4)	0.1870(7)	0.104 (3)	0.44
HOUR	0.4042	0.6135	0.1755	0.125^{*}	0.44
CSIB	0.2768 (7)	0.5765 (3)	0.2265 (6)	0.113 (3)	0.44
HSIB	0.2597	0.6402	0.2415	0.135*	0.44
C52B	0.2157 (7)	0.4973 (5)	0.2438 (6)	0.113 (3)	0.44
H52B	0.1578	0.5080	0.2702	0.136*	0.44
C53B	0.2412 (8)	0.4021 (4)	0.2215 (8)	0.088 (3)	0.44
C54B	0.181 (2)	0.3162 (13)	0.244 (2)	0.134 (6)	0.44
H54D	0.2390	0.2753	0.2928	0.202*	0.44
H54E	0.1369	0.2792	0.1793	0.202*	0.44
H54F	0.1269	0.3389	0.2744	0.202*	0.44
C55B	0.4917 (12)	0.4440 (12)	0.1357 (13)	0.150 (8)	0.44
H55D	0.5192	0.5037	0.1172	0.226*	0.44
H55E	0.4669	0.3978	0.0765	0.226*	0.44

					supportin	g information
H55F	0.5549	0.4168		0.1949	0.226*	0.44
Atomic a	lisplacement para	meters (Ų)				
	<i>U</i> ¹¹	U^{22}	U ³³	<i>U</i> ¹²	<i>U</i> ¹³	<i>U</i> ²³
$\overline{C1}$	0.0661.(11)	0.0725(12)	0.0614 (13)	0.0051.(9)	0.0032 (10)	0.0065 (11)
C^2	0.0613(11)	0.0725(12) 0.0665(12)	0.0014(13) 0.0607(12)	0.0031(9) 0.0026(8)	0.0052(10)	-0.0017(10)
C2	0.0013(11) 0.1087(16)	0.0009(12) 0.0799(15)	0.0007(12)	0.0020(3)	0.0034(9)	0.0017(10)
C4	0.1007(10) 0.1182(18)	0.0728 (16)	0.0700(14)	0.0100(12)	0.0249(12) 0.0204(15)	-0.0134(13)
C5	0.0885(15)	0.0728(10) 0.0657(14)	0.0999(19) 0.1108(19)	0.0190(12)	0.0204(13) 0.0209(14)	0.0154(15)
C6	0.0865(15) 0.0960(15)	0.0037(14) 0.0827(16)	0.1100(17) 0.1026(17)	-0.0163(12)	0.0209(14) 0.0379(13)	-0.0019(14)
C7	0.0900(13) 0.0845(13)	0.0627(10)	0.1020(17) 0.0896(16)	-0.0105(12)	0.0375(13)	-0.0121(11)
C11	0.0043(13) 0.1757(7)	0.0603(13)	0.0000(10) 0.2189(10)	-0.0110(10)	0.0290(12) 0.0594(7)	0.0121(11) 0.0131(5)
01	0.1757(7) 0.1175(11)	0.0077(4)	0.2109(10)	-0.0058(8)	-0.0114(8)	0.0151(3)
N1	0.1173(11) 0.0747(9)	0.0922(10)	0.0098(10)	-0.0038(3)	0.0114(0)	0.0130(3) 0.0093(7)
C8	0.0747(5)	0.0005(0)	0.0554(5) 0.0647(12)	-0.0016(10)	0.0051(0)	0.0095(7)
	0.0708(12) 0.0876(15)	0.0004(11) 0.0877(16)	0.0047(12) 0.1184(18)	-0.0010(10)	0.0080(10) 0.0357(14)	0.0100(9)
C10	0.0870(13) 0.127(2)	0.0877(10) 0.107(2)	0.1164(18) 0.176(3)	-0.027(13)	0.0557(14)	0.0213(13)
C10	0.127(2) 0.153(3)	0.107(2)	0.170(3)	-0.0189(19)	0.001(2) 0.037(2)	0.030(2) 0.0289(17)
C12	0.139(3)	0.0682 (16)	0.130(3) 0.125(2)	0.0137(15)	0.037(2)	0.0269(17) 0.0068(14)
C12 C13	0.139(2) 0.1003(15)	0.0694(14)	0.123(2)	0.0077(13) 0.0039(12)	0.0314(18) 0.0230(12)	0.0003(14)
C13	0.1003(13) 0.156(2)	0.0094(14) 0.110(2)	0.0820(13) 0.159(3)	0.0039(12) 0.0103(17)	0.0250(12)	-0.0014(18)
C_{14}	0.1100(2) 0.1123(10)	0.110(2) 0.146(3)	0.137(3)	0.0103(17)	0.090(2)	0.0014(10)
C13	0.1123(19) 0.0672(12)	0.140(3) 0.0682(12)	0.221(4)	-0.0022(10)	0.092(2)	0.027(2)
C_{21}	0.0677(12)	0.0642(12)	0.0014(12)	0.0022(10)	0.0120(10)	0.0001(10)
C22 C23	0.0077(12)	0.0042(11) 0.0728(13)	0.0011(11) 0.0040(15)	-0.0021(9)	0.0103(9)	0.0000(9)
C23	0.0709(12)	0.0723(13)	0.0940(13) 0.1117(17)	-0.0012(10)	0.0177(11) 0.0422(13)	0.0103(11)
C24	0.0808(13) 0.1046(17)	0.0723(13)	0.1117(17) 0.0025(15)	-0.0049(11)	0.0422(13)	0.0101(12) 0.0084(11)
C25	0.1040(17)	0.0392(12)	0.0923(13) 0.1070(17)	0.0109(12)	0.0442(13)	0.0084(11)
C20	0.0804(13)	0.0700(13)	0.1070(17)	0.0188(13)	0.0113(13)	0.0088(12)
C27	0.0743(13)	0.0003(12)	0.0930(13)	0.0021(10)	0.0078(11)	0.0034(11)
02	0.1340(0)	0.0090(4)	0.1770(7)	0.0207(4)	0.0777(3)	0.0318(4) 0.0215(7)
02 N2	0.0933(10)	0.0762(9)	0.0803(10)	-0.0137(7)	-0.0213(8)	0.0213(7)
INZ C28	0.0025(9)	0.0020(9)	0.0047(9)	0.0004(7)	0.0044(7)	0.0023(7)
C28	0.0043(11)	0.0019(11)	0.0043(11) 0.0022(15)	-0.0023(9)	0.0106(9)	-0.0037(9)
C29	0.0812(14) 0.1022(18)	0.0708(14)	0.0922(13)	0.0040(11)	0.0213(12)	0.0002(11)
C30	0.1055(18) 0.158(2)	0.0782(17)	0.120(2)	0.0132(13)	0.0247(10)	-0.0065(15)
C31 C22	0.138(3)	0.0088(10)	0.124(2) 0.122(2)	-0.0003(18)	0.041(2)	0.0091(13)
C32	0.139(3)	0.093(2)	0.135(2)	-0.0378(19)	0.073(2)	-0.0036(10)
C33	0.1031(10) 0.142(2)	0.0748(14) 0.122(2)	0.1024(10) 0.202(2)	-0.0176(12)	0.0400(14) 0.112(2)	-0.009/(12)
C34	0.143(2)	0.123(2)	0.202(3)	-0.0182(19)	0.112(2)	-0.024(2)
C33	0.1108(19)	0.121(2)	0.190(3)	0.0149(10)	0.090(2)	-0.002/(19)
C41	0.0/16(12)	0.0766(14)	0.0727(14)	-0.0032(11)	0.0077(11)	0.0093(11)
C42	0.0620(11)	0.0763(13)	0.0718(13)	-0.0028(9)	0.0174(10)	0.0110(11) 0.0121(12)
C43	0.0079(14)	0.0099(10)	0.0000(10)	0.0074(12)	0.0100(12)	0.0131(13) 0.0270(15)
C44	0.0965(10)	0.06//(1/)	0.112(2) 0.127(2)	0.0109(13)	0.0414(10)	0.0270(15) 0.0122(15)
C43	0.0941(10)	0.0/12(14)	0.127(2)	0.0044(12)	0.0388(10)	0.0125(15)
C40	0.1009(17)	0.0920(18) 0.0917(15)	0.1009(18)	-0.0004(14)	0.0314(13)	-0.0151(15)
U4/	0.0871(14)	0.081/(15)	0.0007 (10)	0.0000 (11)	0.0108(12)	0.0000(12)

supporting information

C12	0.1710 (7)	0.0000 (4)	0.1070 (0)	0.0110 (4)	0.0040 (0)	0.0001 (4)
C13	0.1719 (7)	0.0809 (4)	0.1979 (8)	0.0112 (4)	0.0942 (6)	-0.0001 (4)
03	0.1012 (11)	0.0939 (11)	0.1011 (11)	0.0008 (9)	-0.0326 (10)	-0.0029 (9)
N3	0.0770 (10)	0.0681 (10)	0.0653 (10)	-0.0031 (8)	0.0010 (8)	0.0020 (8)
C48A	0.062 (4)	0.095 (6)	0.058 (4)	-0.001 (3)	-0.002 (3)	0.008 (3)
C49A	0.065 (5)	0.064 (4)	0.135 (7)	0.003 (4)	0.010 (4)	0.004 (3)
C50A	0.106 (5)	0.088 (4)	0.126 (5)	0.012 (3)	0.021 (4)	0.011 (3)
C51A	0.161 (7)	0.081 (4)	0.102 (5)	0.030 (5)	0.025 (5)	-0.021 (4)
C52A	0.187 (9)	0.097 (6)	0.113 (5)	0.023 (6)	0.042 (5)	-0.031 (5)
C53A	0.117 (7)	0.087 (5)	0.095 (5)	-0.007 (4)	0.023 (5)	-0.006 (4)
C54A	0.24 (2)	0.134 (14)	0.136 (8)	0.050 (11)	0.096 (12)	-0.001 (10)
C55A	0.149 (7)	0.124 (6)	0.187 (11)	0.013 (5)	0.101 (8)	0.036 (6)
C48B	0.065 (5)	0.051 (5)	0.089 (6)	0.008 (3)	0.004 (4)	-0.006 (4)
C49B	0.080 (6)	0.114 (8)	0.099 (5)	-0.001 (5)	0.011 (4)	0.045 (6)
C50B	0.113 (6)	0.047 (4)	0.118 (7)	-0.011 (4)	0.011 (5)	0.013 (4)
C51B	0.129 (7)	0.080 (6)	0.082 (5)	0.005 (5)	-0.005 (4)	-0.007 (4)
C52B	0.120 (6)	0.096 (6)	0.085 (5)	-0.003 (5)	0.004 (4)	-0.017 (4)
C53B	0.099 (7)	0.063 (5)	0.066 (5)	-0.005 (5)	-0.003 (4)	-0.015 (4)
C54B	0.150 (9)	0.121 (12)	0.168 (10)	-0.033 (10)	0.103 (8)	-0.025 (11)
C55B	0.157 (15)	0.160 (15)	0.139 (10)	-0.072 (13)	0.064 (10)	0.012 (8)

Geometric parameters (Å, °)

C1-01	1.233 (2)	C33—C34	1.522 (3)
C1—N1	1.323 (2)	C34—H34A	0.9600
C1—C2	1.486 (3)	C34—H34B	0.9600
C2—C7	1.372 (3)	C34—H34C	0.9600
C2—C3	1.374 (3)	C35—H35A	0.9600
C3—C4	1.378 (3)	C35—H35B	0.9600
С3—Н3	0.9300	C35—H35C	0.9600
C4—C5	1.364 (3)	C41—O3	1.220 (2)
C4—H4	0.9300	C41—N3	1.321 (2)
C5—C6	1.353 (3)	C41—C42	1.502 (3)
C5—Cl1	1.737 (2)	C42—C43	1.375 (3)
C6—C7	1.380 (3)	C42—C47	1.376 (3)
С6—Н6	0.9300	C43—C44	1.366 (3)
С7—Н7	0.9300	C43—H43	0.9300
N1	1.427 (2)	C44—C45	1.365 (3)
N1—H1	0.8600	C44—H44	0.9300
С8—С9	1.380 (3)	C45—C46	1.368 (3)
C8—C13	1.387 (3)	C45—C13	1.727 (2)
C9—C10	1.379 (4)	C46—C47	1.376 (3)
C9—C15	1.506 (4)	C46—H46	0.9300
C10-C11	1.364 (4)	C47—H47	0.9300
C10—H10	0.9300	N3—C48A	1.375 (4)
C11—C12	1.345 (4)	N3—C48B	1.465 (5)
C11—H11	0.9300	N3—H3A	0.8600
C12—C13	1.374 (3)	C48A—C49A	1.3900
C12—H12	0.9300	C48A—C53A	1.3900

C13—C14	1.493 (3)	C49A—C50A	1.3900
C14—H14A	0.9600	C49A—C55A	1.520 (10)
C14—H14B	0.9600	C50A—C51A	1.3900
C14—H14C	0.9600	C50A—H50A	0.9300
С15—Н15А	0.9600	C51A—C52A	1.3900
С15—Н15В	0.9600	С51А—Н51А	0.9300
C15—H15C	0.9600	C52A—C53A	1.3900
$C_{21} = 0_{2}$	1.225 (2)	C52A—H52A	0.9300
C_{21} N_{2}	1 329 (2)	C53A—C54A	1 520 (10)
$C_{21} - C_{22}$	1.490 (2)	C54A—H54A	0.9600
C^{22} C^{27}	1 374 (3)	C54A—H54B	0.9600
C^{22} C^{23}	1 375 (3)	C54A - H54C	0.9600
C^{23} C^{24}	1 366 (3)	C55A—H55A	0.9600
C23—H23	0.9300	C55A—H55B	0.9600
C_{24} C_{25} C_{24} C_{25}	1 363 (3)	C55A—H55C	0.9600
C24 025	0.9300	C_{48B} C_{49B}	1 3900
$C_{24} = 1124$ $C_{25} = C_{26}$	1 357 (3)	C_{48B} C_{53B}	1.3900
$C_{25} = C_{20}$	1.337(3) 1.732(2)	$C_{40B} = C_{50B}$	1.3900
$C_{25}^{C_{12}}$	1.752(2) 1.377(3)	C49B C55B	1.3900
$C_{20} = C_{27}$	0.0300	C50B C51B	1.497 (13)
C27 H27	0.9300	$C_{50B} = C_{51B}$	0.0300
N2 C28	0.9300	C51B C52B	1 2000
N2 H2	1.422(2)	C51D U51D	0.0300
$N_2 = \Pi_2$	0.8000	C51D—H51B	0.9300
C_{28} C_{29} C_{29}	1.373(3) 1.278(2)	C52D U52D	1.3900
$C_{28} = C_{29}$	1.378(3)	C52B—H52B	0.9300
$C_{29} = C_{30}$	1.576 (5)	C53B—C54B	1.488 (13)
C29—C35	1.505 (3)	C54B—H54D	0.9600
C30—C31	1.340 (4)	C54B—H54E	0.9600
C30—H30	0.9300	C54B—H54F	0.9600
C31—C32	1.361 (4)	C55B—H55D	0.9600
C31—H31	0.9300	С55В—Н55Е	0.9600
C32—C33	1.386 (3)	C55B—H55F	0.9600
С32—Н32	0.9300		
01 C1 N1	121 (0 (18)	C22 C22 U22	110 (
$O_1 = C_1 = O_1$	121.09(18) 120.68(17)	$C_{33} = C_{32} = C_{32}$	117.0
$V_1 = C_1 = C_2$	120.08(17) 117.62(16)	$C_{28} = C_{33} = C_{32}$	117.9(2)
NI = CI = C2	117.03(10) 118.21(10)	$C_{28} = C_{33} = C_{34}$	120.3(2)
$C_{7} = C_{2} = C_{3}$	110.21(19) 122.02(19)	$C_{32} = C_{33} = C_{34}$	121.0 (2)
$C^2 = C^2 = C^1$	122.03(18) 110.7(2)	С33—С34—П34А	109.5
$C_3 = C_2 = C_1$	119.7(2)	С35—С34—П34В	109.5
$C_2 = C_3 = C_4$	120.9 (2)	H34A - C34 - H34B	109.5
$C_2 = C_3 = H_3$	119.5	U33-U34-H34C	109.5
C4—C3—H3	119.5	H34A-C34-H34C	109.5
C_{5}	119.3 (2)	$H_{34B} - C_{34} - H_{34C}$	109.5
C5—C4—H4	120.4	C29—C35—H35A	109.5
C3—C4—H4	120.4	C29—C35—H35B	109.5
C6-C5-C4	121.1 (2)	H35A—C35—H35B	109.5
C6—C5—C11	119.5 (2)	C29—C35—H35C	109.5

C4—C5—Cl1	119.3 (2)	H35A—C35—H35C	109.5
C5—C6—C7	119.1 (2)	H35B—C35—H35C	109.5
С5—С6—Н6	120.4	O3—C41—N3	121.64 (19)
С7—С6—Н6	120.4	O3—C41—C42	120.69 (18)
C2—C7—C6	121.3 (2)	N3—C41—C42	117.67 (18)
С2—С7—Н7	119.4	C43—C42—C47	117.8 (2)
С6—С7—Н7	119.4	C43—C42—C41	118.59 (19)
C1—N1—C8	121.57 (15)	C47—C42—C41	123.64 (18)
C1—N1—H1	119.2	C44—C43—C42	121.9 (2)
C8—N1—H1	119.2	C44—C43—H43	119.0
C9—C8—C13	121.77 (19)	C42—C43—H43	119.0
C9—C8—N1	119.7 (2)	C45—C44—C43	119.3 (2)
C13—C8—N1	118.55 (19)	C45—C44—H44	120.4
C10—C9—C8	117.6 (3)	C43—C44—H44	120.4
C10—C9—C15	121.4 (3)	C44—C45—C46	120.4 (2)
C8—C9—C15	121.0 (2)	C44—C45—C13	120.2 (2)
C11—C10—C9	121.1 (3)	C46—C45—C13	119.4 (2)
С11—С10—Н10	119.4	C45—C46—C47	119.6 (2)
C9—C10—H10	119.4	C45—C46—H46	120.2
C12—C11—C10	120.3 (3)	C47—C46—H46	120.2
C12—C11—H11	119.8	C46—C47—C42	121.0 (2)
C10—C11—H11	119.8	C46—C47—H47	119.5
C11—C12—C13	121.4 (3)	С42—С47—Н47	119.5
C11—C12—H12	119.3	C41—N3—C48A	120.0 (4)
C13—C12—H12	119.3	C41—N3—C48B	126.6 (5)
C12—C13—C8	117.8 (2)	C48A—N3—C48B	15.1 (5)
C12—C13—C14	121.2 (2)	C41—N3—H3A	120.0
C8—C13—C14	121.0 (2)	C48A—N3—H3A	120.0
C13—C14—H14A	109.5	C48B—N3—H3A	111.7
C13—C14—H14B	109.5	N3—C48A—C49A	121.1 (4)
H14A—C14—H14B	109.5	N3—C48A—C53A	118.5 (4)
C13—C14—H14C	109.5	C49A—C48A—C53A	120.0
H14A—C14—H14C	109.5	C50A—C49A—C48A	120.0
H14B—C14—H14C	109.5	C50A—C49A—C55A	119.6 (5)
C9—C15—H15A	109.5	C48A—C49A—C55A	120.1 (5)
С9—С15—Н15В	109.5	C49A—C50A—C51A	120.0
H15A—C15—H15B	109.5	C49A—C50A—H50A	120.0
С9—С15—Н15С	109.5	C51A—C50A—H50A	120.0
H15A—C15—H15C	109.5	C50A—C51A—C52A	120.0
H15B—C15—H15C	109.5	C50A—C51A—H51A	120.0
O2—C21—N2	122.20 (17)	C52A—C51A—H51A	120.0
O2—C21—C22	119.60 (16)	C53A—C52A—C51A	120.0
N2—C21—C22	118.20 (16)	С53А—С52А—Н52А	120.0
C27—C22—C23	117.79 (17)	С51А—С52А—Н52А	120.0
C27—C22—C21	124.24 (17)	C52A—C53A—C48A	120.0
C23—C22—C21	117.94 (16)	C52A—C53A—C54A	120.4 (7)
C24—C23—C22	122.03 (19)	C48A—C53A—C54A	119.4 (7)
C24—C23—H23	119.0	C49B—C48B—C53B	120.0

С22—С23—Н23	119.0	C49B—C48B—N3	119.8 (5)
C25—C24—C23	118.89 (19)	C53B—C48B—N3	120.2 (5)
C25—C24—H24	120.6	C48B—C49B—C50B	120.0
C23—C24—H24	120.6	C48B—C49B—C55B	117.9 (7)
C26—C25—C24	120.72 (19)	C50B—C49B—C55B	121.6 (7)
C26—C25—Cl2	120.13 (18)	C51B—C50B—C49B	120.0
C24—C25—Cl2	119.15 (17)	C51B—C50B—H50B	120.0
C25—C26—C27	119.9 (2)	C49B—C50B—H50B	120.0
С25—С26—Н26	120.0	C52B—C51B—C50B	120.0
С27—С26—Н26	120.0	C52B—C51B—H51B	120.0
C22—C27—C26	120.60 (19)	C50B—C51B—H51B	120.0
С22—С27—Н27	119.7	C51B—C52B—C53B	120.0
С26—С27—Н27	119.7	C51B—C52B—H52B	120.0
C21—N2—C28	123.50 (15)	C53B—C52B—H52B	120.0
C21—N2—H2	118.2	C52B—C53B—C48B	120.0
C28—N2—H2	118.2	C52B—C53B—C54B	120.7 (9)
C33—C28—C29	121.41 (19)	C48B—C53B—C54B	119.2 (9)
C33—C28—N2	118.86 (18)	C53B—C54B—H54D	109.4
C29—C28—N2	119.69 (18)	C53B—C54B—H54E	109.5
C30—C29—C28	118.3 (2)	H54D—C54B—H54E	109.5
C30—C29—C35	120.6 (2)	C53B—C54B—H54F	109.5
C28—C29—C35	121.2 (2)	H54D—C54B—H54F	109.5
C31—C30—C29	121.4 (3)	H54E—C54B—H54F	109.5
С31—С30—Н30	119.3	C49B—C55B—H55D	109.5
С29—С30—Н30	119.3	C49B—C55B—H55E	109.5
C30—C31—C32	120.3 (3)	H55D—C55B—H55E	109.5
С30—С31—Н31	119.8	C49B—C55B—H55F	109.5
С32—С31—Н31	119.8	H55D—C55B—H55F	109.5
C31—C32—C33	120.8 (3)	H55E—C55B—H55F	109.5
C31—C32—H32	119.6		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…O2	0.86	2.02	2.8585 (19)	165
N2—H2…O3	0.86	1.96	2.778 (2)	158
N3—H3A···O1 ⁱ	0.86	1.99	2.814 (2)	161

Symmetry code: (i) x-1, y, z-1.