

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Tetrakis( $\mu$ -4-ethylbenzoato- $\kappa^2 O:O'$ )bis[(4-ethylbenzoic acid- $\kappa O$ )copper(II)]

### Abraham C. Sunil, Barend C. B. Bezuidenhoudt\* and J. Marthinus Janse van Rensburg

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa

Correspondence e-mail: bezuidbc.sci@ufs.ac.za

Received 20 May 2008; accepted 27 May 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.104; data-to-parameter ratio = 18.3.

The molecule of the title compound,  $[Cu_2(C_9H_9O_2)_4(C_9H_{10}O_2)_2]$ , lies on a center of inversion. It consists of four bridging ethylbenzoate ligands, forming a cage around two Cu atoms in a *syn–syn* configuration, and two monodentate ethylbenzoic acid ligands bonded apically to the square-planar Cu atoms. The Cu···Cu distance is 2.6047 (5) Å.

### **Related literature**

For the synthesis of aromatic carboxylic acids, see: Kaeding (1967). For tetrakis( $\mu_2$ -2-methylbenzoato)bis(2-methylbenzoic acid)dicopper(II), see: Sunil *et al.* (2008). For tetrakis( $\mu_2$ -2-fluorobenzoato)bis(2-fluorobenzoic acid)dicopper(II), see: Valach *et al.* (2000). For tetrakis( $\mu_2$ benzoato) bis(2-fluorobenzoic acid)dicopper(II), see: Kawata *et al.* (1992). For tetrakis-[ $\mu$ -(2-phenoxybenzoato-O,O')]bis[(2-phenoxybenzoic acid)copper(II)], see: Mak & Yip (1990).



 $\gamma = 79.468 \ (2)^{\circ}$ 

Z = 1

V = 1199.47 (12) Å<sup>3</sup>

 $0.54 \times 0.4 \times 0.39 \text{ mm}$ 

15971 measured reflections

5683 independent reflections

4721 reflections with  $I > 2\sigma(I)$ 

Mo  $K\alpha$  radiation

 $\mu = 0.95 \text{ mm}^{-1}$ 

T = 100 (2) K

 $R_{\rm int} = 0.040$ 

### **Experimental**

#### Crystal data

 $\begin{bmatrix} Cu_2(C_3H_9O_2)_4(C_9H_{10}O_2)_2 \end{bmatrix}$   $M_r = 1024.07$ Triclinic,  $P\overline{1}$  a = 10.6167 (5) Å b = 10.7394 (7) Å c = 10.8096 (7) Å  $\alpha = 81.848$  (3)°  $\beta = 88.594$  (3)°

#### Data collection

Bruker Kappa APEXII diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004)  $T_{min} = 0.628, T_{max} = 0.708$ 

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.040$ | 311 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.103$               | H-atom parameters constrained                              |
| S = 1.03                        | $\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 5683 reflections                | $\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$ |

### Table 1

Selected bond lengths (Å).

| Cu1-O3 | 1.9498 (15) | Cu1-O1               | 2.0040 (16) |
|--------|-------------|----------------------|-------------|
| Cu1-O4 | 1.9501 (16) | Cu1-O5               | 2.1761 (15) |
| Cu1-O2 | 1.9593 (16) | Cu1-Cu1 <sup>i</sup> | 2.6047 (5)  |

Symmetry code: (i) -x + 1, -y + 1, -z + 2.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Financial assistance from the University of the Free State and SASOL to ACS is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of SASOL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2063).

### References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Kaeding, W. W. (1967). J. Org. Chem. 26, 3144-3148.
- Kawata, T., Uekusa, H., Ohba, S., Furukawa, T., Tokii, T., Muto, Y. & Kato, M. (1992). Acta Cryst. B48, 253–261.

Mak, T. C. W. & Yip, W. H. (1990). Polyhedron, 9, 1667–1670.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Sunil, A. C., Bezuidenhoudt, B. C. B. & Janse van Rensburg, J. M. (2008). Acta Cryst. E64, m553–m554.
- Valach, F., Tokarcik, M., Maris, T., Watkin, D. J. & Prout, C. K. (2000). Z. Kristallogr. 215, 56–60.

# supporting information

Acta Cryst. (2008). E64, m939 [doi:10.1107/S1600536808015924]

# Tetrakis( $\mu$ -4-ethylbenzoato- $\kappa^2 O: O'$ )bis[(4-ethylbenzoic acid- $\kappa O$ )copper(II)]

## Abraham C. Sunil, Barend C. B. Bezuidenhoudt and J. Marthinus Janse van Rensburg

### S1. Comment

The title compound forms part of the copper(II) complexes of the type  $[Cu_2(RCO_2)_4L_2]$  (*R*=aryl, *L*=monodentate ligand). This type of complex forms tetra-(carboxylato-O,O') bridges and four of the carboxylate groups hold together two Cu atoms (Fig. 1). The Cu···Cu distance in the title compound is 2.6047 (5) Å, probably displaying weak orbital interaction considering that the van der Waals radius of copper is 2.32 Å. The axial sites of each copper atom are bonded to a monodentate *p*-ethylbenzoic acid ligand. In turn the acid protons are hydrogen bonded to the cage carboxylate O atoms, O—H···O = 166.79° and O···O = 2.645 Å.

Neighbouring molecules stack with overlap between the axially bonded phenyl rings displaying a centroid to centroid distance of 4.2918 (3) Å and an interplanar distance of 3.6277 Å (Fig. 2 A). This inter-molecular interaction influence the dihedral angle displayed between the phenyl rings from the axially bonded monodentate ligands and the carboxylic oxygen plane, O1, O2, O1<sup>i</sup> and O2<sup>i</sup> (i = 1 - x, 1 - y, 2 - z). Molecular packing in the (0 0 h) plane is in a puckered pseudo-hexagonal close packing fashion. This close packing is stabilized by soft inter-molecular C···H contacts ranging from 2.720–2.813 Å (Fig. 2B).

### **S2. Experimental**

The complex  $[Cu_2(C_9H_{10}O_2)_4(C_9H_{11}O_2)_2]$  was prepared by heating 4-ethylbenzoic acid (1.77 g, 11.81 mmol), copper carbonate (0.74 g, 3.34 mmol) and magnesium oxide (0.20 g, 4.98 mmol) under reflux, in toluene (15 ml) for 60 h. The product was extacted and crystallized from diethyl ether to yield a blue crystalline solid. (Yield: 80%)

### **S3. Refinement**

The H atoms were positioned geometrically and refined using a riding model with fixed C—H distances of 0.93 Å (CH)  $[U_{iso}(H) = 1.2U_{eq}]$  and 0.96 Å (CH<sub>3</sub>)  $[U_{iso}(H) = 1.5U_{eq}]$  respectively. Initial positions of methyl H-atoms were obtained from Fourier difference maps and refined as a fixed rotor.

The highest density peak is 0.50 located 0.65 Å from C14 and the deepest hole is -0.37 located at 0.68 Å from Cu1.



### Figure 1

A view of (I) showing the atom-numbering scheme with displacement ellipsoids at the 30% probability level, non labelled atoms are symmetric equivalents. For the phenyl C-atoms, the first digit indicates ring number and the second digit the position of the atom in the ring. Symmetry code: 1 - x, 1 - y, 2 - z.



# Figure 2

(A) Hacked lines indicate overlap between ethylbenzoic groups of neighbouring molecules. (B) Indication of pseudohexagonal close packing along the c axis.

## Tetrakis( $\mu$ -4-ethylbenzoato- $\kappa^2$ O:O')bis[(4-ethylbenzoic acid- $\kappa$ O)copper(II)]

| Crystal data                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $[Cu_{2}(C_{9}H_{9}O_{2})_{4}(C_{9}H_{10}O_{2})_{2}]$ $M_{r} = 1024.07$ Triclinic, $P\overline{1}$ Hall symbol: -P 1<br>a = 10.6167 (5)  Å<br>b = 10.7394 (7)  Å<br>c = 10.8096 (7)  Å<br>$a = 81.848 (3)^{\circ}$<br>$\beta = 88.594 (3)^{\circ}$<br>$\gamma = 79.468 (2)^{\circ}$<br>$W = 1100.47 (12) \text{ Å}^{3}$ | Z = 1<br>F(000) = 534<br>$D_x = 1.418 \text{ Mg m}^{-3}$<br>Mo K\alpha radiation, $\lambda = 0.71069 \text{ Å}$<br>Cell parameters from 4441 reflections<br>$\theta = 2.5-28.2^{\circ}$<br>$\mu = 0.95 \text{ mm}^{-1}$<br>T = 100  K<br>Cuboid, blue<br>$0.54 \times 0.4 \times 0.39 \text{ mm}$ |
| Data collection                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                   |
| Bruker Kappa APEXII<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\omega$ and $\varphi$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2004)<br>$T_{\min} = 0.628, T_{\max} = 0.708$                                                             | 15971 measured reflections<br>5683 independent reflections<br>4721 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.040$<br>$\theta_{max} = 28^\circ, \ \theta_{min} = 2.5^\circ$<br>$h = -7 \rightarrow 14$<br>$k = -14 \rightarrow 14$<br>$l = -14 \rightarrow 14$                             |

Refinement

| Refinement on $F^2$             | 0 restraints                                               |
|---------------------------------|------------------------------------------------------------|
| Least-squares matrix: full      | H-atom parameters constrained                              |
| $R[F^2 > 2\sigma(F^2)] = 0.040$ | $w = 1/[\sigma^2(F_o^2) + (0.0447P)^2 + 0.9309P]$          |
| $wR(F^2) = 0.103$               | where $P = (F_o^2 + 2F_c^2)/3$                             |
| S = 1.04                        | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 5683 reflections                | $\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 311 parameters                  | $\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$ |
| Special details                 |                                                            |

**Experimental**. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 2 s/frame. A total of 1507 frames were collected with a frame width of  $0.5^{\circ}$  covering up to  $\theta = 28.0^{\circ}$  with 98.3% completeness accomplished.

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| Cu1 | 0.45033 (3)  | 0.46672 (2)  | 0.90347 (2)  | 0.01213 (9)                 |  |
| O6  | 0.58444 (17) | 0.40202 (18) | 0.62540 (16) | 0.0239 (4)                  |  |
| H6  | 0.599        | 0.4445       | 0.679        | 0.036*                      |  |
| 01  | 0.60816 (15) | 0.51776 (15) | 0.82165 (14) | 0.0152 (3)                  |  |
| O3  | 0.36215 (15) | 0.64398 (14) | 0.86973 (14) | 0.0166 (3)                  |  |
| O4  | 0.54987 (16) | 0.29874 (15) | 0.96412 (14) | 0.0181 (3)                  |  |
| O2  | 0.30749 (15) | 0.42705 (15) | 1.01089 (14) | 0.0167 (3)                  |  |
| 05  | 0.40263 (15) | 0.39621 (15) | 0.73471 (14) | 0.0168 (3)                  |  |
| C51 | 0.4404 (2)   | 0.2808 (2)   | 0.5616 (2)   | 0.0144 (4)                  |  |
| C11 | 0.8123 (2)   | 0.58002 (19) | 0.80261 (19) | 0.0124 (4)                  |  |
| C30 | 0.3784 (2)   | 0.7244 (2)   | 0.94028 (19) | 0.0140 (4)                  |  |
| C53 | 0.3163 (2)   | 0.1251 (2)   | 0.5207 (2)   | 0.0192 (5)                  |  |
| H53 | 0.2542       | 0.0759       | 0.546        | 0.023*                      |  |
| C55 | 0.4715 (2)   | 0.1870 (2)   | 0.3717 (2)   | 0.0172 (5)                  |  |
| H55 | 0.5134       | 0.1806       | 0.2957       | 0.021*                      |  |
| C52 | 0.3464 (2)   | 0.2079 (2)   | 0.5971 (2)   | 0.0172 (5)                  |  |
| H52 | 0.3038       | 0.215        | 0.6727       | 0.021*                      |  |
| C54 | 0.3778 (2)   | 0.1138 (2)   | 0.4054 (2)   | 0.0169 (5)                  |  |
| C36 | 0.2111 (2)   | 0.8866 (2)   | 0.8178 (2)   | 0.0171 (5)                  |  |
| H36 | 0.1956       | 0.823        | 0.773        | 0.02*                       |  |
| C16 | 0.9223 (2)   | 0.5936 (2)   | 0.8637 (2)   | 0.0145 (4)                  |  |
| H16 | 0.9212       | 0.5918       | 0.95         | 0.017*                      |  |
| C10 | 0.6968 (2)   | 0.55566 (19) | 0.87604 (19) | 0.0133 (4)                  |  |
| C31 | 0.3059 (2)   | 0.8585 (2)   | 0.9087 (2)   | 0.0143 (4)                  |  |
| C34 | 0.1628 (2)   | 1.1064 (2)   | 0.8569 (2)   | 0.0184 (5)                  |  |
| C32 | 0.3321 (2)   | 0.9558 (2)   | 0.9709 (2)   | 0.0191 (5)                  |  |
| H32 | 0.3968       | 0.9384       | 1.0306       | 0.023*                      |  |
| C56 | 0.5043 (2)   | 0.2694 (2)   | 0.4481 (2)   | 0.0162 (5)                  |  |
| H56 | 0.5682       | 0.3166       | 0.424        | 0.019*                      |  |

| C12  | 0.8152 (2)  | 0.5865 (2) | 0.6725 (2) | 0.0146 (4) |
|------|-------------|------------|------------|------------|
| H12  | 0.743       | 0.5777     | 0.63       | 0.018*     |
| C541 | 0.3421 (3)  | 0.0255 (2) | 0.3213 (2) | 0.0235 (5) |
| H54A | 0.3627      | -0.0618    | 0.3633     | 0.028*     |
| H54B | 0.3936      | 0.0313     | 0.2461     | 0.028*     |
| C141 | 1.1539 (2)  | 0.6401 (2) | 0.5944 (2) | 0.0208 (5) |
| H14A | 1.1803      | 0.571      | 0.5452     | 0.025*     |
| H14B | 1.2228      | 0.6391     | 0.6521     | 0.025*     |
| C50  | 0.4725 (2)  | 0.3652 (2) | 0.6484 (2) | 0.0155 (5) |
| C13  | 0.9247 (2)  | 0.6059 (2) | 0.6070 (2) | 0.0158 (5) |
| H13  | 0.9246      | 0.6114     | 0.5203     | 0.019*     |
| C15  | 1.0327 (2)  | 0.6096 (2) | 0.7979 (2) | 0.0164 (5) |
| H15  | 1.1059      | 0.6153     | 0.8408     | 0.02*      |
| C14  | 1.0360 (2)  | 0.6173 (2) | 0.6679 (2) | 0.0152 (4) |
| C642 | -0.0475 (3) | 1.2359 (3) | 0.9030 (3) | 0.0385 (7) |
| H64A | -0.0923     | 1.1768     | 0.8717     | 0.058*     |
| H64B | -0.0989     | 1.32       | 0.8901     | 0.058*     |
| H64C | -0.0311     | 1.21       | 0.9907     | 0.058*     |
| C641 | 0.0790 (3)  | 1.2371 (2) | 0.8338 (2) | 0.0254 (6) |
| H64D | 0.0628      | 1.2612     | 0.7449     | 0.03*      |
| H64E | 0.1226      | 1.2997     | 0.8623     | 0.03*      |
| C33  | 0.2619 (3)  | 1.0788 (2) | 0.9443 (2) | 0.0229 (5) |
| H33  | 0.2812      | 1.1435     | 0.9852     | 0.028*     |
| C35  | 0.1394 (2)  | 1.0083 (2) | 0.7935 (2) | 0.0186 (5) |
| H35  | 0.0746      | 1.0253     | 0.7339     | 0.022*     |
| C142 | 1.1323 (3)  | 0.7677 (3) | 0.5072 (3) | 0.0323 (6) |
| H14C | 1.0651      | 0.7688     | 0.449      | 0.048*     |
| H14D | 1.2099      | 0.7775     | 0.4623     | 0.048*     |
| H14E | 1.1085      | 0.8367     | 0.5556     | 0.048*     |
| C542 | 0.2016 (3)  | 0.0542 (2) | 0.2846 (2) | 0.0277 (6) |
| H54C | 0.1498      | 0.0463     | 0.3583     | 0.042*     |
| H54D | 0.1855      | -0.0053    | 0.231      | 0.042*     |
| H54E | 0.1807      | 0.1397     | 0.2412     | 0.042*     |
|      |             |            |            |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|---------------|--------------|--------------|
| Cu1 | 0.01076 (16) | 0.01499 (14) | 0.01135 (13) | -0.00383 (10) | 0.00010 (10) | -0.00231 (9) |
| O6  | 0.0189 (10)  | 0.0369 (10)  | 0.0225 (9)   | -0.0156 (8)   | 0.0057 (7)   | -0.0139 (7)  |
| 01  | 0.0110 (8)   | 0.0221 (8)   | 0.0148 (7)   | -0.0076 (7)   | 0.0005 (6)   | -0.0041 (6)  |
| O3  | 0.0161 (9)   | 0.0154 (7)   | 0.0184 (8)   | -0.0022 (6)   | -0.0021 (7)  | -0.0032 (6)  |
| O4  | 0.0212 (9)   | 0.0164 (8)   | 0.0168 (8)   | -0.0025 (7)   | -0.0044 (7)  | -0.0032 (6)  |
| O2  | 0.0130 (8)   | 0.0256 (8)   | 0.0138 (7)   | -0.0087 (7)   | 0.0014 (6)   | -0.0036 (6)  |
| 05  | 0.0144 (9)   | 0.0232 (8)   | 0.0142 (7)   | -0.0042 (7)   | 0.0001 (6)   | -0.0059 (6)  |
| C51 | 0.0119 (12)  | 0.0176 (10)  | 0.0129 (10)  | -0.0019 (9)   | -0.0023 (8)  | 0.0001 (8)   |
| C11 | 0.0097 (11)  | 0.0118 (9)   | 0.0152 (10)  | -0.0021 (8)   | -0.0009 (8)  | -0.0005 (8)  |
| C30 | 0.0114 (11)  | 0.0179 (10)  | 0.0130 (10)  | -0.0047 (9)   | 0.0049 (8)   | -0.0008 (8)  |
| C53 | 0.0187 (13)  | 0.0212 (11)  | 0.0195 (11)  | -0.0096 (10)  | 0.0022 (10)  | -0.0010 (9)  |

| C55  | 0.0149 (12) | 0.0217 (11) | 0.0139 (10) | 0.0000 (9)   | 0.0025 (9)   | -0.0030 (9)  |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| C52  | 0.0159 (12) | 0.0235 (11) | 0.0126 (10) | -0.0057 (10) | 0.0022 (9)   | -0.0015 (9)  |
| C54  | 0.0152 (12) | 0.0178 (11) | 0.0169 (11) | 0.0007 (9)   | -0.0032 (9)  | -0.0041 (9)  |
| C36  | 0.0165 (12) | 0.0166 (10) | 0.0184 (11) | -0.0035 (9)  | 0.0004 (9)   | -0.0026 (8)  |
| C16  | 0.0140 (12) | 0.0171 (10) | 0.0128 (10) | -0.0039 (9)  | -0.0025 (9)  | -0.0019 (8)  |
| C10  | 0.0147 (12) | 0.0124 (10) | 0.0122 (9)  | -0.0027 (9)  | -0.0021 (8)  | 0.0009 (8)   |
| C31  | 0.0111 (11) | 0.0164 (10) | 0.0155 (10) | -0.0038 (9)  | 0.0037 (9)   | -0.0014 (8)  |
| C34  | 0.0192 (13) | 0.0159 (11) | 0.0191 (11) | -0.0037 (9)  | 0.0064 (9)   | 0.0001 (9)   |
| C32  | 0.0186 (13) | 0.0215 (11) | 0.0174 (11) | -0.0029 (10) | -0.0034 (9)  | -0.0040 (9)  |
| C56  | 0.0107 (12) | 0.0200 (11) | 0.0180 (11) | -0.0046 (9)  | 0.0013 (9)   | -0.0015 (9)  |
| C12  | 0.0112 (12) | 0.0175 (10) | 0.0161 (10) | -0.0041 (9)  | -0.0022 (9)  | -0.0029 (8)  |
| C541 | 0.0256 (14) | 0.0240 (12) | 0.0239 (12) | -0.0073 (11) | 0.0018 (11)  | -0.0101 (10) |
| C141 | 0.0140 (12) | 0.0277 (12) | 0.0229 (12) | -0.0086 (10) | 0.0037 (10)  | -0.0059 (10) |
| C50  | 0.0142 (12) | 0.0175 (10) | 0.0145 (10) | -0.0032 (9)  | -0.0027 (9)  | -0.0008 (8)  |
| C13  | 0.0145 (12) | 0.0196 (11) | 0.0133 (10) | -0.0033 (9)  | 0.0008 (9)   | -0.0025 (8)  |
| C15  | 0.0118 (12) | 0.0185 (11) | 0.0199 (11) | -0.0054 (9)  | -0.0041 (9)  | -0.0016 (9)  |
| C14  | 0.0114 (12) | 0.0131 (10) | 0.0210 (11) | -0.0030 (9)  | 0.0021 (9)   | -0.0019 (8)  |
| C642 | 0.0278 (17) | 0.0213 (13) | 0.065 (2)   | -0.0006 (12) | 0.0111 (15)  | -0.0078 (13) |
| C641 | 0.0290 (15) | 0.0182 (11) | 0.0273 (13) | -0.0024 (11) | 0.0028 (11)  | -0.0008 (10) |
| C33  | 0.0306 (15) | 0.0184 (11) | 0.0211 (12) | -0.0052 (11) | 0.0008 (11)  | -0.0067 (9)  |
| C35  | 0.0147 (13) | 0.0198 (11) | 0.0202 (11) | -0.0022 (9)  | -0.0024 (9)  | -0.0003 (9)  |
| C142 | 0.0232 (15) | 0.0422 (16) | 0.0296 (14) | -0.0106 (13) | -0.0002 (12) | 0.0071 (12)  |
| C542 | 0.0304 (16) | 0.0261 (13) | 0.0292 (13) | -0.0071 (11) | -0.0066 (11) | -0.0086 (10) |
|      |             |             |             |              |              |              |

## Geometric parameters (Å, °)

| Cu1—O3               | 1.9498 (15) | C31—C32   | 1.392 (3) |
|----------------------|-------------|-----------|-----------|
| Cu1—O4               | 1.9501 (16) | C34—C33   | 1.394 (3) |
| Cu1—O2               | 1.9593 (16) | C34—C35   | 1.397 (3) |
| Cu1—O1               | 2.0040 (16) | C34—C641  | 1.509 (3) |
| Cu1—O5               | 2.1761 (15) | C32—C33   | 1.387 (3) |
| Cu1—Cu1 <sup>i</sup> | 2.6047 (5)  | С32—Н32   | 0.93      |
| O6—C50               | 1.326 (3)   | С56—Н56   | 0.93      |
| O6—H6                | 0.82        | C12—C13   | 1.380 (3) |
| O1—C10               | 1.277 (3)   | C12—H12   | 0.93      |
| O3—C30               | 1.267 (3)   | C541—C542 | 1.517 (4) |
| O4-C30 <sup>i</sup>  | 1.267 (3)   | C541—H54A | 0.97      |
| O2-C10 <sup>i</sup>  | 1.261 (2)   | C541—H54B | 0.97      |
| O5—C50               | 1.223 (3)   | C141—C14  | 1.505 (3) |
| C51—C52              | 1.392 (3)   | C141—C142 | 1.532 (3) |
| C51—C56              | 1.397 (3)   | C141—H14A | 0.97      |
| C51—C50              | 1.479 (3)   | C141—H14B | 0.97      |
| C11—C16              | 1.396 (3)   | C13—C14   | 1.400 (3) |
| C11—C12              | 1.398 (3)   | C13—H13   | 0.93      |
| C11—C10              | 1.488 (3)   | C15—C14   | 1.396 (3) |
| C30O4 <sup>i</sup>   | 1.267 (3)   | C15—H15   | 0.93      |
| C30—C31              | 1.501 (3)   | C642—C641 | 1.523 (4) |
| C53—C52              | 1.378 (3)   | C642—H64A | 0.96      |
|                      |             |           |           |

| C53—C54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.403 (3)                | C642—H64B                                                        | 0.96                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------|------------------------|
| С53—Н53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93                     | C642—H64C                                                        | 0.96                   |
| C55—C56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.386 (3)                | C641—H64D                                                        | 0.97                   |
| C55—C54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.388 (3)                | C641—H64E                                                        | 0.97                   |
| С55—Н55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93                     | С33—Н33                                                          | 0.93                   |
| С52—Н52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93                     | C35—H35                                                          | 0.93                   |
| C54—C541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.505 (3)                | C142—H14C                                                        | 0.96                   |
| C36—C35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.381 (3)                | C142—H14D                                                        | 0.96                   |
| C36—C31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.387(3)                 | C142—H14E                                                        | 0.96                   |
| C36—H36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93                     | C542—H54C                                                        | 0.96                   |
| C16—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 382 (3)                | C542—H54D                                                        | 0.96                   |
| C16—H16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93                     | C542—H54E                                                        | 0.96                   |
| $C10-O2^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 261 (2)                |                                                                  | 0.90                   |
| 010-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.201 (2)                |                                                                  |                        |
| O3—Cu1—O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 169.67 (6)               | C55—C56—C51                                                      | 119.3 (2)              |
| O3—Cu1—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89.21 (7)                | С55—С56—Н56                                                      | 120.3                  |
| O4—Cu1—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89.79 (7)                | C51—C56—H56                                                      | 120.3                  |
| O3—Cu1—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89.64 (7)                | C13—C12—C11                                                      | 120.3 (2)              |
| O4—Cu1—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89.46 (7)                | C13—C12—H12                                                      | 119.8                  |
| O2—Cu1—O1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 169.42 (6)               | C11—C12—H12                                                      | 119.8                  |
| O3—Cu1—O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100.25 (6)               | C54—C541—C542                                                    | 113.8 (2)              |
| O4—Cu1—O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90.05 (6)                | C54—C541—H54A                                                    | 108.8                  |
| 02-Cu1-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99.99 (6)                | C542—C541—H54A                                                   | 108.8                  |
| 01—Cu1—O5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90.57 (6)                | C54—C541—H54B                                                    | 108.8                  |
| $O3-Cu1-Cu1^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86.32 (5)                | C542—C541—H54B                                                   | 108.8                  |
| $O4$ — $Cu1$ — $Cu1^i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83 36 (5)                | H54A—C541—H54B                                                   | 107.7                  |
| $\Omega^2$ —Cu1—Cu1 <sup>i</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 87.95 (5)                | C14-C141-C142                                                    | 112.7(2)               |
| $01-Cu1-Cu1^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81 48 (4)                | C14— $C141$ — $H14A$                                             | 109.1                  |
| $05-Cu1-Cu1^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 169 69 (5)               | C142 - C141 - H14A                                               | 109.1                  |
| $C_{50}$ $C_{6}$ $H_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5                    | C14— $C141$ — $H14B$                                             | 109.1                  |
| $C_{10} - O_{1} - C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125 79 (14)              | C142 - C141 - H14B                                               | 109.1                  |
| $C_{30} - C_{3} - C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.62(14)               | $H_{14A}$ $C_{141}$ $H_{14B}$                                    | 107.8                  |
| $C_{30^{i}} - O_{4} - C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.02(11)<br>124.01(14) | 05-050-06                                                        | 107.0<br>123.3(2)      |
| $C10^{i} - 02 - Cu1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 129.01(19)<br>120.97(15) | 05 - C50 - C51                                                   | 123.3(2)<br>122.7(2)   |
| $C_{10} = 02 = C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120.97(15)<br>128.90(15) | 05 - 050 - 051                                                   | 122.7(2)<br>113.07(10) |
| $C_{50} = 05 = 01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.90(13)<br>110.6(2)   | $C_{12} = C_{13} = C_{14}$                                       | 113.97(19)<br>121.5(2) |
| $C_{52} = C_{51} = C_{50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.0(2)<br>118.4(2)     | C12 C13 H13                                                      | 110.2                  |
| $C_{52} = C_{51} = C_{50}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.4(2)                 | $C_{12}$ $-C_{13}$ $-H_{13}$ $C_{14}$ $C_{12}$ $H_{12}$ $H_{13}$ | 119.2                  |
| $C_{16} = C_{11} = C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.0(2)<br>118.5(2)     | C14 - C15 - C14                                                  | 119.2<br>120.0(2)      |
| $C_{10} - C_{11} - C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.3(2)<br>120.04(10)   | C16 - C15 - U14                                                  | 120.9 (2)              |
| $C_{10} = C_{11} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.04(19)<br>121.5(2)   | C10-C15-H15                                                      | 119.5                  |
| C12— $C11$ — $C10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 121.3(2)<br>125.7(2)     | C14 - C13 - H13                                                  | 119.5                  |
| $03 - 03 - 04^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 123.7(2)                 | C15 - C14 - C13                                                  | 117.0(2)               |
| $O_{3}$ $O_{3$ | 117.02 (19)              | $C_{13}$ $C_{14}$ $C_{141}$ $C_{12}$ $C_{14}$ $C_{141}$          | 121.3(2)<br>120.7(2)   |
| 04 - 030 - 031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117.05 (19)              | $C_{13} = C_{14} = C_{14}$                                       | 120.7(2)               |
| $C_{52} = C_{53} = C_{54}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.0 (2)                | C(41 - C(42 - H)(4P)                                             | 109.5                  |
| $C_{54} = C_{52} = H_{53}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.5                    | U041 - U042 - H04B                                               | 109.5                  |
| U34-U33-H33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.5                    | H04A—C042—H04B                                                   | 109.5                  |
| US0-USS-US4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121.9 (2)                | C641—C642—H64C                                                   | 109.5                  |

| С56—С55—Н55              | 119.1       | H64A—C642—H64C | 109.5     |
|--------------------------|-------------|----------------|-----------|
| С54—С55—Н55              | 119.1       | H64B—C642—H64C | 109.5     |
| C53—C52—C51              | 120.3 (2)   | C34—C641—C642  | 110.1 (2) |
| С53—С52—Н52              | 119.9       | C34—C641—H64D  | 109.6     |
| С51—С52—Н52              | 119.9       | C642—C641—H64D | 109.6     |
| C55—C54—C53              | 117.9 (2)   | С34—С641—Н64Е  | 109.6     |
| C55—C54—C541             | 121.5 (2)   | С642—С641—Н64Е | 109.6     |
| C53—C54—C541             | 120.6 (2)   | H64D—C641—H64E | 108.2     |
| C35—C36—C31              | 120.3 (2)   | C32—C33—C34    | 120.8 (2) |
| С35—С36—Н36              | 119.8       | С32—С33—Н33    | 119.6     |
| С31—С36—Н36              | 119.8       | С34—С33—Н33    | 119.6     |
| C15—C16—C11              | 120.9 (2)   | C36—C35—C34    | 121.1 (2) |
| C15—C16—H16              | 119.5       | С36—С35—Н35    | 119.5     |
| C11—C16—H16              | 119.5       | С34—С35—Н35    | 119.5     |
| O2 <sup>i</sup> —C10—O1  | 123.7 (2)   | C141—C142—H14C | 109.5     |
| O2 <sup>i</sup> —C10—C11 | 117.84 (19) | C141—C142—H14D | 109.5     |
| O1—C10—C11               | 118.46 (18) | H14C—C142—H14D | 109.5     |
| C36—C31—C32              | 119.2 (2)   | C141—C142—H14E | 109.5     |
| C36—C31—C30              | 120.3 (2)   | H14C—C142—H14E | 109.5     |
| C32—C31—C30              | 120.5 (2)   | H14D—C142—H14E | 109.5     |
| C33—C34—C35              | 118.2 (2)   | C541—C542—H54C | 109.5     |
| C33—C34—C641             | 121.5 (2)   | C541—C542—H54D | 109.5     |
| C35—C34—C641             | 120.2 (2)   | H54C—C542—H54D | 109.5     |
| C33—C32—C31              | 120.3 (2)   | C541—C542—H54E | 109.5     |
| С33—С32—Н32              | 119.9       | H54C—C542—H54E | 109.5     |
| C31—C32—H32              | 119.9       | H54D—C542—H54E | 109.5     |
|                          |             |                |           |

Symmetry code: (i) -x+1, -y+1, -z+2.