

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Cytenamide–butyric acid (1/1)

Andrea Johnston,^a Alastair J. Florence,^a* Francesca J. A. Fabbiani,^b Kenneth Shankland^c and Colin T. Bedford^d

^aSolid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, The John Arbuthnott Building, University of Strathclyde, Glasgow G4 0NR, Scotland, ^bGZG, Department of Crystallography, University of Göttingen, D-37077 Göttingen, Germany, ^cISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England, and ^dDepartment of Chemistry, University College London, London WC1H 0AL England

Correspondence e-mail: alastair.florence@strath.ac.uk

Received 14 May 2008; accepted 13 June 2008

Key indicators: single-crystal X-ray study; T = 160 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.089; data-to-parameter ratio = 18.0.

Cytenamide forms a 1:1 solvate with butyric acid [systematic name: 5H-dibenzo[a,d]cycloheptatriene-5-carboxamide-butanoic acid (1/1)], C16H13NO·C4H8O2. The title compound crystallizes with one molecule of cytenamide and one of butyric acid in the asymmetric unit; these molecules are linked by $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds to form an $R_2^2(8)$ heterodimer motif. Pairs of adjacent motifs are further connected via N-H···O interactions to form a discrete centrosymmetric assembly.

Related literature

For details on experimental methods used to obtain the title solvate, see: Davis et al. (1964); Florence et al. (2003); Florence, Johnston, Fernandes et al. (2006). For literature on cytenamide and related molecules, see: Florence, Bedford et al. (2008); Cyr et al. (1987); Fleischman et al. (2003); Florence, Johnston, Price et al. (2006); Florence, Leech et al. (2006); Bandoli et al. (1992); Harrison et al. (2006); Leech et al. (2007); Florence, Shankland et al. (2008). For other related literature, see: Etter (1990) ; Desiraju & Steiner (1999).

Experimental . .

Crystal data	
$C_{16}H_{13}NO \cdot C_4H_8O_2$	a = 5.9351 (2) Å
$M_r = 323.39$	b = 16.3595 (5) Å
Monoclinic, $P2_1/n$	c = 17.6738 (4) Å

Data collection

Oxford Diffraction Gemini	18979 measured reflections
diffractometer	4069 independent reflections
Absorption correction: multi-scan	2928 reflections with $I > 2\sigma(I)$
(CrysAlis RED; Oxford	$R_{\rm int} = 0.031$
Diffraction, 2007)	
$T_{\min} = 0.91, \ T_{\max} = 0.99$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.088$	H atoms treated by a mixture of independent and constrained
S = 0.95	refinement
4069 reflections	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
226 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$
3 restraints	,

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	2 11	$\Pi \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H11\cdotsO2$ $N1-H12\cdotsO2^{i}$ $O3-H311\cdotsO1^{i}$	0.860 (14)	2.348 (14)	2.8761 (15)	120.0 (10)
	0.898 (13)	2.146 (13)	3.0167 (15)	163.2 (13)
	0.879 (17)	1.698 (17)	2.5658 (13)	168.8 (16)

Symmetry code: (i) -x + 2, -y + 1, -z + 1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED and SORTAV (Blessing, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2008).

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (http:// www.cposs.org.uk).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2147).

References

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

- Bandoli, G., Nicolini, M., Ongaro, A., Volpe, G. & Rubello, A. (1992). J. Chem. Crystallogr. 22, 177-183.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.

- Cyr, T. D., Matsui, F., Sears, R. W., Curran, N. M. & Lovering, E. G. (1987). J. Assoc. Off. Anal. Chem. 70, 836-840.
- Davis, M. A., Winthrop, S. O., Thomas, R. A., Herr, F., Charest, M.-P. & Gaudry, R. (1964). J. Med. Chem. 7, 88-94.

Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Walsh, R. D. B., Rodriguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909-919.

 $\mu = 0.09 \text{ mm}^{-1}$

 $0.35 \times 0.15 \times 0.12 \text{ mm}$

T = 160 K

- Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930– 1938.
- Florence, A. J., Bedford, C. T., Fabbiani, F. P. A., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A. & Fernandes, P. (2008). *CrystEngComm.* doi:10.1039/b719717a.
- Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst. 39, 922–924.
- Florence, A. J., Johnston, A., Price, S. L., Nowell, H., Kennedy, A. R. & Shankland, N. (2006). J. Pharm. Sci. 95, 1918–1930.
- Florence, A. J., Leech, C. K., Shankland, N., Shankland, K. & Johnston, A. (2006). CrystEngComm, 8, 746–747.
- Florence, A. J., Shankland, K., Gelbrich, T., Hursthouse, M. B., Shankland, N., Johnston, A., Fernandes, P. & Leech, C. K. (2008). *CrystEngComm*, **10**, 26– 28.
- Harrison, W. T. A., Yathirajan, H. S. & Anilkumar, H. G. (2006). Acta Cryst. C62, 0240-0242.
- Leech, C. K., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2007). Acta Cryst. E63, 0675–0677.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, o1295-o1296 [doi:10.1107/S1600536808018059]

Cytenamide-butyric acid (1/1)

Andrea Johnston, Alastair J. Florence, Francesca J. A. Fabbiani, Kenneth Shankland and Colin T. Bedford

S1. Comment

Cytenamide (CYT) is an analogue of carbamazepine (CBZ), a dibenzazepine drug used to control seizures (Cyr *et al.*, 1987). CYT-butyric acid solvate was produced during an automated parallel crystallization study (Florence, Johnston, Fernandes *et al.*, 2006) of CYT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity in CBZ (Florence, Johnston, Price *et al.*, 2006; Florence, Leech *et al.*, 2006) and its closely related analogues, CYT (Florence, Bedford *et al.*, 2008), 10,11-dihydrocarbamazepine (Bandoli *et al.*, 1992; Harrison *et al.*, 2006; Leech *et al.*, 2007) and cyheptamide (Florence, Shankland *et al.*, 2008). The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence *et al.*, 2003). Subsequent manual recrystallization from a saturated butyric acid solution by slow evaporation at 278 K yielded a sample suitable for single-crystal X-ray diffraction (Fig. 1).

The compound crystallizes in the monoclinic space group $P2_1/n$ with one CYT and one solvent molecule in the asymmetric unit. The molecules adopt a hydrogen-bonded arrangement similar to that observed in CBZ-butyric acid solvate (1/1) (Fleischman *et al.*, 2003) whereby the CYT and butyric acid molecules are connected *via* N—H···O and O—H···O hydrogen bonds to form an $R_2^2(8)$ dimer motif (Etter, 1990). Adjacent dimers are linked *via* a third contact (N1—H1···O2; Fig 2) to form an $R_4^2(8)$ centrosymmetric double motif arrangement. The O1···O3 distance of 2.566 (1) Å lies within the expected range for strong hydrogen bonds (2.5 - 3.2 Å; Desiraju and Steiner, 1999).

CYT-butyric acid solvate structure reported here is essentially isostructural with both CBZ-formic acid and CBZ-acetic acid solvates (Fleischman *et al.*, 2003).

S2. Experimental

A sample of cytenamide was synthesized according to a modification of the published method (Davis *et al.*, 1964). A single-crystal sample of cytenamide-butyric acid was grown form a saturated butyric acid solution by isothermal solvent evaporation at 278 K.

S3. Refinement

H-atoms were found on a difference Fourier map and were initially refined with soft restraints on the bond lengths and angles to regularize their geometry and $U_{iso}(H)$ (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints. The positions of H-atoms involved in H-bonding were refined subject to distance restraints.

Figure 1

The molecular structure of CYT–butyric acid (1/1), showing 50% probablility displacement ellipsoids.

Figure 2

The hydrogen bonded $R_2^2(8)$ motifs of CYT-butyric acid joined in a centrosymmetric arrangement *via* an $R_4^2(8)$ motif. Hydrogen bonds are shown as dashed lines.

5H-dibenzo[a,d]cycloheptatriene-5-carboxamide-butanoic acid (1/1)

Crystal data

C₁₆H₁₃NO·C₄H₈O₂ $M_r = 323.39$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 5.9351 (2) Å b = 16.3595 (5) Å c = 17.6738 (4) Å $\beta = 98.046$ (2)° V = 1699.15 (9) Å³ Z = 4

Data collection

Oxford Diffraction Gemini diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 15.9745 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2007) $T_{\min} = 0.91, T_{\max} = 0.99$

Refinement

Refinement on F^2 Hydrogen site location: geom+difmap H atoms treated by a mixture of independent Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ and constrained refinement $wR(F^2) = 0.088$ Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) +$ S = 0.95 $(0.03P)^2 + 0.5P$], 4069 reflections where $P = [\max(F_o^2, 0) + 2F_c^2]/3$ 226 parameters $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$ 3 restraints Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$ direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.3604 (2)	0.32253 (7)	0.41898 (7)	0.0261	
C2	0.1718 (2)	0.36489 (8)	0.38294 (7)	0.0323	
C3	0.1256 (2)	0.36854 (9)	0.30423 (8)	0.0391	
C4	0.2687 (2)	0.33058 (9)	0.25996 (7)	0.0392	
C5	0.4591 (2)	0.28990 (8)	0.29445 (7)	0.0344	
C6	0.5061 (2)	0.28359 (7)	0.37441 (7)	0.0279	
C7	0.6996 (2)	0.23388 (8)	0.40716 (7)	0.0304	
C8	0.7115 (2)	0.18488 (8)	0.46816 (7)	0.0301	
C9	0.5383 (2)	0.17092 (8)	0.51782 (6)	0.0269	
C10	0.5251 (2)	0.09343 (8)	0.55037 (7)	0.0341	
C11	0.3603 (2)	0.07491 (9)	0.59538 (8)	0.0398	
C12	0.2069 (2)	0.13407 (9)	0.61005 (8)	0.0389	
C13	0.2205 (2)	0.21186 (8)	0.58012 (7)	0.0321	

F(000) = 688

 $\theta = 3-29^{\circ}$

T = 160 K

 $R_{\rm int} = 0.031$

 $h = -7 \rightarrow 7$

 $k = 0 \rightarrow 21$

 $l = 0 \rightarrow 23$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colourless

 $0.35 \times 0.15 \times 0.12 \text{ mm}$

 $\theta_{\rm max} = 28.7^{\circ}, \ \theta_{\rm min} = 2.6^{\circ}$

18979 measured reflections

4069 independent reflections

2928 reflections with $I > 2\sigma(I)$

 $D_{\rm x} = 1.264 {\rm Mg} {\rm m}^{-3}$

Melting point: 216.2 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 6486 reflections

C14	0.3844 (2)	0.23123 (7)	0.53434 (6)	0.0258
C15	0.4034 (2)	0.31760 (7)	0.50530 (6)	0.0257
C16	0.6242 (2)	0.35710 (7)	0.54306 (7)	0.0276
C17	0.3158 (3)	0.57421 (11)	0.16558 (9)	0.0568
C18	0.5184 (3)	0.60108 (10)	0.22080 (8)	0.0455
C19	0.5957 (2)	0.53835 (9)	0.28103 (8)	0.0371
C20	0.8040 (2)	0.56040 (8)	0.33497 (7)	0.0295
01	0.70946 (16)	0.33413 (6)	0.60746 (5)	0.0369
O2	0.84351 (15)	0.53413 (6)	0.39986 (5)	0.0346
N1	0.7091 (2)	0.41860 (7)	0.50777 (6)	0.0335
O3	0.94149 (17)	0.61035 (6)	0.30567 (5)	0.0435
H151	0.2828	0.3488	0.5249	0.0293*
H21	0.0713	0.3916	0.4145	0.0377*
H81	0.8456	0.1498	0.4786	0.0333*
H71	0.8293	0.2332	0.3790	0.0372*
H191	0.4766	0.5266	0.3115	0.0486*
H192	0.6295	0.4889	0.2564	0.0473*
H131	0.1155	0.2536	0.5914	0.0383*
H101	0.6291	0.0526	0.5389	0.0392*
H41	0.2338	0.3317	0.2057	0.0465*
H121	0.0935	0.1222	0.6419	0.0464*
H51	0.5637	0.2636	0.2641	0.0395*
H111	0.3507	0.0214	0.6150	0.0470*
H182	0.4770	0.6515	0.2459	0.0609*
H181	0.6503	0.6120	0.1946	0.0611*
H31	-0.0099	0.3971	0.2794	0.0463*
H172	0.2712	0.6162	0.1279	0.0868*
H173	0.1858	0.5625	0.1933	0.0867*
H171	0.3504	0.5240	0.1402	0.0875*
H12	0.834 (2)	0.4432 (9)	0.5320 (8)	0.0446*
H11	0.652 (2)	0.4352 (9)	0.4630 (8)	0.0433*
H311	1.058 (3)	0.6243 (11)	0.3395 (9)	0.0689*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0283 (6)	0.0234 (6)	0.0265 (6)	-0.0013 (5)	0.0032 (5)	-0.0008 (5)
0.0315 (7)	0.0305 (7)	0.0348 (7)	0.0030 (5)	0.0040 (5)	0.0027 (5)
0.0366 (8)	0.0396 (8)	0.0383 (7)	0.0032 (6)	-0.0041 (6)	0.0075 (6)
0.0476 (8)	0.0422 (8)	0.0259 (6)	-0.0032 (7)	-0.0010 (6)	0.0030 (6)
0.0414 (8)	0.0345 (8)	0.0279 (6)	-0.0020 (6)	0.0075 (6)	-0.0025 (5)
0.0297 (6)	0.0258 (7)	0.0279 (6)	-0.0019 (5)	0.0031 (5)	-0.0021 (5)
0.0287 (6)	0.0318 (7)	0.0315 (6)	0.0018 (5)	0.0065 (5)	-0.0068 (5)
0.0270 (6)	0.0295 (7)	0.0321 (6)	0.0056 (5)	-0.0016 (5)	-0.0067 (5)
0.0273 (6)	0.0284 (7)	0.0227 (6)	-0.0004 (5)	-0.0051 (5)	-0.0026 (5)
0.0388 (7)	0.0291 (7)	0.0313 (6)	0.0021 (6)	-0.0057 (6)	-0.0015 (5)
0.0507 (9)	0.0310 (8)	0.0347 (7)	-0.0078 (6)	-0.0051 (6)	0.0073 (6)
0.0384 (8)	0.0448 (9)	0.0327 (7)	-0.0111 (7)	0.0021 (6)	0.0063 (6)
	U^{11} 0.0283 (6) 0.0315 (7) 0.0366 (8) 0.0476 (8) 0.0476 (8) 0.0297 (6) 0.0287 (6) 0.0270 (6) 0.0273 (6) 0.0388 (7) 0.0507 (9) 0.0384 (8)	U^{11} U^{22} 0.0283 (6) 0.0234 (6) 0.0315 (7) 0.0305 (7) 0.0366 (8) 0.0396 (8) 0.0476 (8) 0.0422 (8) 0.0414 (8) 0.0345 (8) 0.0297 (6) 0.0258 (7) 0.0287 (6) 0.0295 (7) 0.0270 (6) 0.0295 (7) 0.0273 (6) 0.0284 (7) 0.0388 (7) 0.0291 (7) 0.0507 (9) 0.0310 (8) 0.0384 (8) 0.0448 (9)	U^{11} U^{22} U^{33} 0.0283 (6) 0.0234 (6) 0.0265 (6) 0.0315 (7) 0.0305 (7) 0.0348 (7) 0.0366 (8) 0.0396 (8) 0.0383 (7) 0.0476 (8) 0.0422 (8) 0.0259 (6) 0.0414 (8) 0.0345 (8) 0.0279 (6) 0.0297 (6) 0.0258 (7) 0.0279 (6) 0.0297 (6) 0.0295 (7) 0.0315 (6) 0.0270 (6) 0.0295 (7) 0.0321 (6) 0.0273 (6) 0.0291 (7) 0.0313 (6) 0.0507 (9) 0.0310 (8) 0.0347 (7) 0.0384 (8) 0.0448 (9) 0.0327 (7)	U^{11} U^{22} U^{33} U^{12} 0.0283 (6)0.0234 (6)0.0265 (6) $-0.0013 (5)$ 0.0315 (7)0.0305 (7)0.0348 (7)0.0030 (5)0.0366 (8)0.0396 (8)0.0383 (7)0.0032 (6)0.0476 (8)0.0422 (8)0.0259 (6) $-0.0032 (7)$ 0.0414 (8)0.0345 (8)0.0279 (6) $-0.0020 (6)$ 0.0297 (6)0.0258 (7)0.0279 (6) $-0.0019 (5)$ 0.0287 (6)0.0318 (7)0.0315 (6)0.0018 (5)0.0270 (6)0.0295 (7)0.0321 (6) $-0.0004 (5)$ 0.0273 (6)0.0291 (7)0.0313 (6) $0.0021 (6)$ 0.0507 (9)0.0310 (8) $0.0347 (7)$ $-0.00111 (7)$	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0283 (6)$ $0.0234 (6)$ $0.0265 (6)$ $-0.0013 (5)$ $0.0032 (5)$ $0.0315 (7)$ $0.0305 (7)$ $0.0348 (7)$ $0.0030 (5)$ $0.0040 (5)$ $0.0366 (8)$ $0.0396 (8)$ $0.0383 (7)$ $0.0032 (6)$ $-0.0041 (6)$ $0.0476 (8)$ $0.0422 (8)$ $0.0259 (6)$ $-0.0032 (7)$ $-0.0010 (6)$ $0.0414 (8)$ $0.0345 (8)$ $0.0279 (6)$ $-0.0020 (6)$ $0.0075 (6)$ $0.0297 (6)$ $0.0258 (7)$ $0.0279 (6)$ $-0.0019 (5)$ $0.0031 (5)$ $0.0287 (6)$ $0.0295 (7)$ $0.0315 (6)$ $0.0056 (5)$ $-0.0016 (5)$ $0.0270 (6)$ $0.0284 (7)$ $0.0227 (6)$ $-0.0004 (5)$ $-0.0051 (5)$ $0.0273 (6)$ $0.0291 (7)$ $0.0313 (6)$ $0.0021 (6)$ $-0.0057 (6)$ $0.0384 (8)$ $0.0448 (9)$ $0.0327 (7)$ $-0.0111 (7)$ $0.0021 (6)$

C13	0.0298 (7)	0.0379 (8)	0.0275 (6)	-0.0022 (6)	0.0010 (5)	-0.0008 (5)	
C14	0.0264 (6)	0.0277 (7)	0.0215 (5)	-0.0016 (5)	-0.0027 (5)	-0.0024 (5)	
C15	0.0270 (6)	0.0256 (7)	0.0252 (6)	0.0034 (5)	0.0055 (5)	-0.0028 (5)	
C16	0.0334 (7)	0.0245 (6)	0.0252 (6)	0.0009 (5)	0.0059 (5)	-0.0041 (5)	
C17	0.0518 (10)	0.0666 (12)	0.0470 (9)	0.0033 (8)	-0.0109 (7)	-0.0040 (8)	
C18	0.0467 (9)	0.0430 (9)	0.0435 (8)	-0.0033 (7)	-0.0052 (7)	0.0042 (7)	
C19	0.0398 (8)	0.0347 (8)	0.0361 (7)	-0.0062 (6)	0.0026 (6)	-0.0017 (6)	
C20	0.0366 (7)	0.0246 (7)	0.0279 (6)	-0.0004 (5)	0.0066 (5)	-0.0014 (5)	
O2	0.0421 (5)	0.0326 (5)	0.0290 (5)	-0.0029 (4)	0.0045 (4)	0.0035 (4)	
N1	0.0402 (7)	0.0304 (6)	0.0291 (5)	-0.0056 (5)	0.0024 (5)	0.0018 (5)	
O3	0.0457 (6)	0.0529 (7)	0.0297 (5)	-0.0205 (5)	-0.0027 (4)	0.0077 (4)	
01	0.0441 (5)	0.0373 (5)	0.0271 (4)	-0.0124 (4)	-0.0027 (4)	0.0021 (4)	

Geometric parameters (Å, °)

C1—C2	1.3924 (17)	C12—H121	0.956
C1—C6	1.4018 (17)	C13—C14	1.3860 (17)
C1-C15	1.5133 (15)	C13—H131	0.965
C2—C3	1.3811 (18)	C14—C15	1.5129 (17)
C2—H21	0.975	C15—C16	1.5282 (17)
C3—C4	1.380 (2)	C15—H151	0.981
C3—H31	0.980	C16—N1	1.3204 (16)
C4—C5	1.378 (2)	C16—O1	1.2376 (14)
C4—H41	0.952	C17—C18	1.504 (2)
C5—C6	1.4054 (17)	C17—H172	0.968
C5—H51	0.976	C17—H173	0.988
С6—С7	1.4591 (17)	C17—H171	0.971
С7—С8	1.3373 (18)	C18—C19	1.5034 (19)
C7—H71	0.974	C18—H182	0.984
С8—С9	1.4601 (18)	C18—H181	0.980
C8—H81	0.977	C19—C20	1.4956 (18)
C9—C10	1.3988 (18)	C19—H191	0.967
C9—C14	1.4026 (17)	C19—H192	0.954
C10-C11	1.3778 (19)	C20—O2	1.2165 (14)
C10—H101	0.950	C20—O3	1.3114 (15)
C11—C12	1.378 (2)	N1—H12	0.899 (14)
C11—H111	0.946	N1—H11	0.860 (14)
C12—C13	1.3848 (19)	O3—H311	0.880 (14)
C2—C1—C6	119.25 (11)	C14—C13—H131	119.0
C2-C1-C15	119.95 (11)	C9—C14—C13	119.42 (12)
C6-C1-C15	120.79 (10)	C9—C14—C15	120.31 (11)
C1—C2—C3	121.06 (12)	C13—C14—C15	120.22 (11)
C1-C2-H21	118.6	C1-C15-C14	112.44 (10)
C3—C2—H21	120.4	C1—C15—C16	115.54 (10)
C2—C3—C4	120.03 (13)	C14—C15—C16	110.29 (10)
С2—С3—Н31	120.5	C1—C15—H151	107.5
C4—C3—H31	119.5	C14—C15—H151	105.8

C3—C4—C5	119.87 (12)	C16—C15—H151	104.4
C3—C4—H41	119.9	C15—C16—N1	118.47 (11)
C5—C4—H41	120.2	C15—C16—O1	119.24 (11)
C4—C5—C6	121.01 (12)	N1-C16-O1	122.14 (12)
C4—C5—H51	121.0	C18—C17—H172	110.8
C6-C5-H51	118.0	C18 - C17 - H173	110.1
C5-C6-C1	118.72 (11)	H172-C17-H173	108 7
C_{5} C_{6} C_{7}	118.30(11)	C18 - C17 - H171	110.2
C1 - C6 - C7	122 92 (11)	H172-C17-H171	109.7
C6-C7-C8	122.32(11) 127.14(12)	H173 - C17 - H171	107.2
C6-C7-H71	116.0	C17 - C18 - C19	113 39 (13)
C8 - C7 - H71	116.7	C17 - C18 - H182	108.1
$C_{7} - C_{8} - C_{9}$	128.04 (12)	C19 - C18 - H182	108.9
C7 - C8 - H81	117.0	C17 - C18 - H181	100.9
C_{1} C_{2} C_{3} H_{21}	117.0	$C_{10} = C_{10} = H_{101}$	105.9
$C_{2} = C_{3} = C_{10}$	119.77 (11)	H_{19}^{-} C_{18}^{-} H_{191}^{-}	100.0
$C_8 = C_9 = C_{10}$	110.27(11) 122.20(11)	$C_{18} = C_{10} = C_{20}$	109.0
$C_{0} = C_{0} = C_{14}$	123.29(11) 118.45(11)	$C_{10} = C_{10} = C_{20}$	113.40 (11)
$C_{10} = C_{9} = C_{14}$	110.43(11) 121.46(12)	$C_{10} = C_{10} = H_{101}$	107.2
$C_{2} = C_{10} = C_{11}$	121.40 (15)	C18 C10 H102	107.5
$C_{11} = C_{10} = H_{101}$	118.2	C18—C19—H192	108.0
C10—C10—H101	120.2	C20—C19—H192	106.7
	119.67 (13)	H191—C19—H192	107.6
CIO-CII-HIII	120.0	C19 - C20 - O2	123.28 (12)
	120.3	C19 - C20 - O3	113.//(11)
CII = CI2 = CI3	119.87 (13)	02-020-03	122.95 (12)
C11—C12—H121	120.4	C16—N1—H12	117.5 (10)
C13—C12—H121	119.7	C16—N1—H11	123.2 (10)
C12—C13—C14	121.09 (13)	H12—N1—H11	119.3 (14)
С12—С13—Н131	119.9	С20—О3—Н311	111.5 (12)
C6—C1—C2—C3	0.48 (19)	C14—C9—C10—C11	2.43 (18)
C15—C1—C2—C3	-178.34(12)	C8—C9—C14—C13	177.89 (11)
C2-C1-C6-C5	1.17 (17)	C8—C9—C14—C15	-4.73 (17)
C2-C1-C6-C7	-176.25(11)	C10-C9-C14-C13	-1.96(17)
C15—C1—C6—C5	180.00 (12)	C10-C9-C14-C15	175.42 (10)
C15—C1—C6—C7	2.57 (18)	C9-C10-C11-C12	-1.2 (2)
C2-C1-C15-C14	114.81 (12)	C10-C11-C12-C13	-0.6(2)
C2-C1-C15-C16	-117.37(12)	C11—C12—C13—C14	1.0 (2)
C6-C1-C15-C14	-63.99(14)	C12—C13—C14—C9	0.28 (18)
C6—C1—C15—C16	63.83 (14)	C12—C13—C14—C15	-177.10(11)
C1—C2—C3—C4	-0.7(2)	C9-C14-C15-C1	64.61 (14)
$C_{2} - C_{3} - C_{4} - C_{5}$	-0.8(2)	C9-C14-C15-C16	-65.93(13)
C_{3} C_{4} C_{5} C_{6}	2.5 (2)	C_{13} C_{14} C_{15} C_{1}	-118.03(12)
C4—C5—C6—C1	-2.67(18)	C_{13} C_{14} C_{15} C_{16}	111.43 (12)
C4—C5—C6—C7	174.87 (12)	C1-C15-C16-O1	-156.56 (11)
C1—C6—C7—C8	36.0 (2)	C1-C15-C16-N1	27.97 (15)
C5—C6—C7—C8	-141.46 (14)	C14—C15—C16—O1	-27.68 (15)
C6—C7—C8—C9	-1.9 (2)	C14—C15—C16—N1	156.85 (11)

supporting information

C7—C8—C9—C10	147.22 (13)	C17—C18—C19—C20	177.01 (13)
C7—C8—C9—C14	-32.6 (2)	C18—C19—C20—O2	152.97 (13)
C8—C9—C10—C11	-177.43 (12)	C18—C19—C20—O3	-27.50 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
N1—H11…O2	0.86(1)	2.35 (1)	2.8761 (15)	120(1)
N1—H12···O2 ⁱ	0.90(1)	2.15(1)	3.0167 (15)	163 (1)
O3—H311…O1 ⁱ	0.88 (2)	1.70 (2)	2.5658 (13)	169 (2)

Symmetry code: (i) -x+2, -y+1, -z+1.