organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Chloro-N-(4-fluorophenyl)acetamide

Si-shun Kang, Hai-su Zeng, Hai-lin Li and Hai-bo Wang*

College of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China Correspondence e-mail: wanghaibo@njut.edu.cn

Received 27 May 2008; accepted 28 May 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.047; wR factor = 0.126; data-to-parameter ratio = 8.4.

In the title compound, C_8H_7CIFNO , an intramolecular C-H···O hydrogen bond forms a six-membered ring. In the crystal structure, molecules are linked by intermolecular N-H···O hydrogen bonds, forming infinite chains along the *c* axis.

Related literature

For related compounds, see: Wen *et al.* (2006); Zhang *et al.* (2006). For reference structural data, see: Allen *et al.* (1987).

Experimental

Crystal data C₈H₇CIFNO

$$\begin{split} M_r &= 187.60 \\ \text{Monoclinic, } Cc \\ a &= 4.7410 \ (9) \text{ Å} \\ b &= 20.062 \ (4) \text{ Å} \\ c &= 8.9860 \ (18) \text{ Å} \\ \beta &= 99.60 \ (3)^\circ \end{split}$$

V = 842.7 (3) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.42 \text{ mm}^{-1}$
T = 293 (2) K
$0.30 \times 0.20 \times 0.05$ mm

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\rm min} = 0.885, T_{\rm max} = 0.980$
974 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $\Delta \rho_n$ $wR(F^2) = 0.126$ $\Delta \rho_n$ S = 1.00Abs861 reflections92103 parametersFlacH-atom parameters constrained

861 independent reflections 610 reflections with $I > 2\sigma(I)$ $R_{int} = 0.015$ 3 standard reflections every 200 reflections intensity decay: none

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.16 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{\rm min} = -0.20 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 92 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } 0.18 \mbox{ (17)} \end{array}$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

2.36 2.925 (8) 119
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2738).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wen, Y. H., Zhang, S. S., Yu, B. H., Li, X. M. & Liu, Q. (2006). Asian J. Chem. 18, 1032–1038.
- Zhang, S.-S., Wen, H.-L., Li, X.-M., Xu, L.-L. & Wen, Y.-H. (2006). Acta Cryst. E62, 03412–03413.

supporting information

Acta Cryst. (2008). E64, o1194 [doi:10.1107/S1600536808016152]

2-Chloro-N-(4-fluorophenyl)acetamide

Si-shun Kang, Hai-su Zeng, Hai-lin Li and Hai-bo Wang

S1. Comment

N-(substituted phenyl)-2-chloroacetamides are important intermediates in organic synthesis. They can be used in the synthesis of many derivatives such as (quinolin-8-yloxy) acetamide (Zhang *et al.*, 2006) and 2,5-piperazinedione (Wen *et al.*, 2006). In our studies in this area, the title compound,(I), was synthesized and structurally characterised.

The bond lengths and angles in (I) are within normal ranges (Allen *et al.*, 1987). An intramolecular C—H···O interaction occurs (Fig. 1) and an intermolecular N—H···O hydrogen bond helps to establish the packing (Table 1).

S2. Experimental

Chloroacetyl chloride (0.05 mol) was added to a solution of 4-nitrophenylamine (0.05 mol) and triethylamine (0.05 mol) in toluene (50 ml) over a period of 30 min, with cooling in an ice bath, and then the mixture was stirred at room remperature for 4 h. After separation of the triethylamine hydrochloride by filtration, the organic phase was washed three times with water. The toluene layer was removed and evaporated. Pink blocks of (I) were obtained by slow evaporation of a chloroform solution over a period of 7 d.

S3. Refinement

The H atoms were positioned geometrically (N—H = 0.86 Å, C—H = 0.93-0.97Å) and refined as riding with $U_{iso}(H) = xU_{eq}(\text{carrier})$.

Figure 1

The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line.

2-Chloro-N-(4-fluorophenyl)acetamide

Crystal data

C₈H₇ClFNO $M_r = 187.60$ Monoclinic, Cc Hall symbol: C -2yc a = 4.7410 (9) Å b = 20.062 (4) Å c = 8.9860 (18) Å $\beta = 99.60$ (3)° V = 842.7 (3) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$\omega/2\theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.885, \ T_{\max} = 0.980$
974 measured reflections

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.046$ H-atom parameters constrained $wR(F^2) = 0.126$ $w = 1/[\sigma^2(F_o^2) + (0.P)^2 + 0.5P]$ S = 1.00where $P = (F_0^2 + 2F_c^2)/3$ 861 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-3}$ 103 parameters $\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$ 0 restraints Primary atom site location: structure-invariant Absolute structure: Flack (1983), 92 Friedel direct methods pairs Secondary atom site location: difference Fourier Absolute structure parameter: 0.18 (17) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

$=$ \cdot	Fractional atomic coordinates and	l isotropic o	r equivalent	isotropic	displacement	parameters	(A^2))
---	-----------------------------------	---------------	--------------	-----------	--------------	------------	---------	---

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl	-0.4033 (4)	0.15199 (10)	0.5685 (2)	0.1096 (7)
Ν	0.1497 (11)	0.2970 (2)	0.6731 (5)	0.0738 (14)

F(000) = 384 $D_x = 1.479 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 25 reflections $\theta = 8-12^{\circ}$ $\mu = 0.42 \text{ mm}^{-1}$ T = 293 KBlock, pink $0.30 \times 0.20 \times 0.05 \text{ mm}$

861 independent reflections 610 reflections with $I > 2\sigma(I)$ $R_{int} = 0.016$ $\theta_{max} = 25.2^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = 0 \rightarrow 5$ $k = 0 \rightarrow 24$ $l = -10 \rightarrow 10$ 3 standard reflections every 200 reflections intensity decay: none

H1	0.2033	0.2848	0.7653	0.089*	
0	-0.1268 (10)	0.2652 (2)	0.4535 (5)	0.084	
F	0.6949 (14)	0.5279 (2)	0.5602 (6)	0.147 (2)	
C1	0.5590 (19)	0.4687 (3)	0.5826 (8)	0.095 (2)	
C2	0.3302 (19)	0.4493 (4)	0.4775 (8)	0.097 (2)	
H2A	0.2684	0.4749	0.3920	0.116*	
C3	0.1935 (15)	0.3901 (3)	0.5030 (6)	0.0817 (18)	
H3A	0.0450	0.3743	0.4308	0.098*	
C4	0.2759 (13)	0.3546 (3)	0.6344 (6)	0.0707 (15)	
C5	0.5091 (15)	0.3787 (3)	0.7356 (7)	0.0798 (17)	
H5A	0.5715	0.3539	0.8224	0.096*	
C6	0.6503 (19)	0.4357 (4)	0.7157 (8)	0.099 (2)	
H6A	0.7995	0.4516	0.7874	0.119*	
C7	-0.0366 (13)	0.2576 (3)	0.5950 (5)	0.0710 (16)	
C8	-0.1284 (15)	0.1998 (3)	0.6748 (6)	0.089 (2)	
H8A	-0.1937	0.2153	0.7654	0.107*	
H8B	0.0358	0.1712	0.7058	0.107*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl	0.1293 (15)	0.1275 (15)	0.0742 (9)	-0.0277 (13)	0.0237 (9)	-0.0087 (10)
Ν	0.089 (3)	0.082 (3)	0.051 (2)	0.010 (3)	0.013 (2)	0.004 (2)
0	0.084	0.084	0.084	0.000	0.014	0.000
F	0.213 (7)	0.120 (3)	0.121 (3)	-0.062 (4)	0.067 (4)	0.001 (3)
C1	0.117 (6)	0.091 (5)	0.086 (5)	-0.031 (5)	0.043 (5)	0.001 (4)
C2	0.121 (6)	0.103 (5)	0.074 (4)	0.000 (5)	0.039 (4)	0.017 (4)
C3	0.090 (4)	0.096 (5)	0.063 (3)	-0.006 (4)	0.025 (3)	0.002 (3)
C4	0.078 (4)	0.080 (4)	0.058 (3)	0.008 (3)	0.020 (3)	0.008 (3)
C5	0.095 (4)	0.083 (4)	0.067 (3)	-0.016 (4)	0.029 (3)	0.000 (3)
C6	0.115 (6)	0.116 (5)	0.074 (4)	-0.007 (5)	0.038 (4)	0.010 (4)
C7	0.072 (3)	0.102 (4)	0.039 (2)	-0.003 (3)	0.009 (2)	-0.011 (3)
C8	0.111 (5)	0.110 (5)	0.044 (3)	-0.017 (4)	0.005 (3)	0.013 (3)

Geometric parameters (Å, °)

Cl—C8	1.765 (7)	C3—C4	1.379 (8)
N—C7	1.300 (7)	С3—НЗА	0.9300
N—C4	1.373 (8)	C4—C5	1.396 (9)
N—H1	0.8600	C5—C6	1.353 (10)
0—C7	1.281 (6)	С5—Н5А	0.9300
F—C1	1.381 (7)	С6—Н6А	0.9300
C1—C2	1.371 (10)	С7—С8	1.467 (8)
C1—C6	1.372 (10)	C8—H8A	0.9700
C2—C3	1.390 (9)	C8—H8B	0.9700
C2—H2A	0.9300		
C7—N—C4	131.3 (5)	C6—C5—C4	124.2 (6)

C7—N—H1	114.3	C6—C5—H5A	117.9
C4—N—H1	114.3	C4—C5—H5A	117.9
C2-C1-C6	124.2 (7)	C5—C6—C1	115.6 (7)
C2—C1—F	118.6 (7)	С5—С6—Н6А	122.2
C6—C1—F	117.0 (7)	С1—С6—Н6А	122.2
C1—C2—C3	117.7 (6)	O—C7—N	123.2 (6)
C1—C2—H2A	121.1	O—C7—C8	120.1 (5)
C3—C2—H2A	121.1	N—C7—C8	116.5 (4)
C4—C3—C2	120.7 (6)	C7—C8—Cl	114.7 (4)
С4—С3—Н3А	119.7	С7—С8—Н8А	108.6
С2—С3—НЗА	119.7	Cl—C8—H8A	108.6
N	125.4 (6)	С7—С8—Н8В	108.6
N	117.3 (5)	Cl—C8—H8B	108.6
C3—C4—C5	117.3 (6)	H8A—C8—H8B	107.6
C6—C1—C2—C3	-4.3 (12)	C3—C4—C5—C6	2.8 (10)
FC1C3	-179.1 (7)	C4—C5—C6—C1	-3.0(11)
C1—C2—C3—C4	3.9 (11)	C2-C1-C6-C5	3.8 (12)
C7—N—C4—C3	11.2 (11)	F—C1—C6—C5	178.7 (7)
C7—N—C4—C5	-168.0 (7)	C4—N—C7—O	4.7 (11)
C2—C3—C4—N	177.7 (6)	C4—N—C7—C8	-179.3 (6)
C2—C3—C4—C5	-3.1 (10)	OC7C8Cl	-9.0 (9)
N—C4—C5—C6	-177.9 (7)	NC7C8Cl	174.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H··· A
С3—Н3А…О	0.93	2.36	2.925 (8)	119
N—H1····O ⁱ	0.86	2.02	2.853 (6)	164

Symmetry code: (i) x+1/2, -y+1/2, z+1/2.