

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(1-ethyl-3-methylimidazolium) hexabromidoeuropate(III)

Michael Pellens,^a Ben Thijs,^a Kristof Van Hecke,^b Luc Van Meervelt,^b Koen Binnemans^a and Peter Nockemann^a*

^aLaboratory of Coordination Chemistry, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F bus 2404, B-3001 Leuven, Belgium, and ^bLaboratory of Biomolecular Architecture, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F bus 2404, B-3001 Leuven, Belgium Correspondence e-mail: peter.nockemann@chem.kuleuven.be

Received 30 April 2008; accepted 17 June 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.010 Å; R factor = 0.030; wR factor = 0.099; data-to-parameter ratio = 24.2.

The crystal structure of the title compound, $(C_6H_{11}N_2)_3$ -[EuBr₆], consists of 1-ethyl-3-methylimidazolium cations and centrosymmetric octahedral hexabromidoeuropate anions. The [EuBr₆]³⁻ anions are located at the corners and facecentres of the monoclinic unit cell. Characteristic hydrogenbonding interactions can be observed between the bromide anions and the acidic H atoms of the imidazolium cations.

Related literature

For related literature, see: Arenz *et al.* (2005); Binnemans (2007); Chaumont & Wipff (2003); Driesen *et al.* (2004); Matsumoto *et al.* (2002); Nockemann *et al.* (2005, 2006, 2008); Reichert *et al.* (2006); Taubert (2004); Tsuda *et al.* (2001); Zhao *et al.* (2004).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C_6H_{11}N_2})_3[{\rm EuBr_6}]\\ M_r = 964.87\\ {\rm Monoclinic}, \ P2_1/c\\ a = 15.765 \ (1) \ {\rm \AA}\\ b = 12.729 \ (1) \ {\rm \AA}\\ c = 14.920 \ (1) \ {\rm \AA}\\ \beta = 90.36 \ (1)^\circ \end{array}$

 $V = 2994.0 \text{ (4) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 10.12 \text{ mm}^{-1}$ T = 100 (2) K $0.18 \times 0.17 \times 0.16 \text{ mm}$

Data collection

Oxford Diffraction Gemini A Ultra diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2008) $T_{\rm min} = 0.148, T_{\rm max} = 0.200$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ 290 p

 $wR(F^2) = 0.099$ H-att

 S = 1.07 $\Delta \rho_{min}$

 7019 reflections
 $\Delta \rho_{min}$

17678 measured reflections 7019 independent reflections 5043 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$

290 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=1.75\ e\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-1.44\ e\ \text{\AA}^{-3} \end{split}$$

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2008); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2008); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2007); software used to prepare material for publication: *PLATON* (Spek, 2003).

The authors acknowledge the FWO-Flanders for financial support (project No. G.0508.07). Financial support by the Katholieke Universiteit Leuven is also acknowledged (project Nos. GOA08/05 and IDO/05/005). Dr Oliver Presly from Oxford Diffraction Ltd is greatly acknowledged for the collection and processing of the diffraction data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2399).

References

Arenz, S., Babai, A., Binnemans, K., Driesen, K., Giernoth, R., Mudring, A. V. & Nockemann, P. (2005). Chem. Phys. Lett. 402, 75–79.

- Binnemans, K. (2007). Chem. Rev. 107, 2592-2614.
- Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Chaumont, A. & Wipff, G. (2003). Phys. Chem. Chem. Phys. 5, 3481–3488.
- Driesen, K., Nockemann, P. & Binnemans, K. (2004). Chem. Phys. Lett. 395, 306–310.
- Matsumoto, K., Tsuda, T., Nohira, T., Hagiwara, R., Ito, Y. & Tamada, O. (2002). Acta Cryst. C58, m186–m187.
- Nockemann, P., Beurer, E., Driesen, K., Van Deun, R., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2005). *Chem. Commun.* pp. 4354–4355.
- Nockemann, P., Thijs, B., Postelmans, N., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2006). J. Am. Chem. Soc. **128**, 13658–13659.
- Nockemann, P., Thijs, B., Van Hecke, K., Van Meervelt, L. & Binnemans, K. (2008). Cryst. Growth Des. 8, 1353–1363.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Reichert, W. M., Holbrey, J. D., Vigour, K. B., Morgan, T. D., Broker, G. A. & Rogers, R. D. (2006). *Chem. Commun.* pp. 4767–4779.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Taubert, A. (2004). Angew. Chem. Int. Ed. 43, 5380-5382.
- Tsuda, T., Nohira, T. & Ito, Y. (2001). Electrochim. Acta, 46, 1891–1897.
- Zhao, D. B., Fei, Z. F., Scopelliti, R. & Dyson, P. J. (2004). *Inorg. Chem.* 43, 2197–2205.

supporting information

Acta Cryst. (2008). E64, m945 [doi:10.1107/S1600536808018382]

Tris(1-ethyl-3-methylimidazolium) hexabromidoeuropate(III)

Michael Pellens, Ben Thijs, Kristof Van Hecke, Luc Van Meervelt, Koen Binnemans and Peter Nockemann

S1. Comment

Ionic liquids are increasingly attracting the attention of inorganic and materials chemists (Taubert, 2004; Reichert et al., 2006; Nockemann et al., 2008). Lanthanide compounds dissolved in ionic liquids have been of interest especially due to their photoluminescence behavior (Driesen et al., 2004; Binnemans, 2007; Nockemann et al., 2005). Experimental and theoretical studies on lanthanide ions in halide containing imidazolium ionic liquids have been investigated regarding electrochemical and spectroscopic properties (Arenz et al., 2005; Chaumont & Wipff, 2003; Tsuda et al., 2001). Imidazolium cations have been reported to yield low-melting lanthanide-containing ionic liquids like $[BMIM]_{5}[Eu(SCN)_{8}]$ (Nockemann *et al.*, 2006). An analogue structure to the title compound, $[EMIM]_{3}[LaCl_{6}]$, has been reported previously (Matsumoto et al., 2002). The title compound crystallized unexpectedly after dissolving europium bis(trifluoromethylsulfonyl)imide hexahydrate, Eu(Tf₂N)₃.6H₂O in a mixture of [EMIM]Br and a nitrile functionalized imidazolium ionic liquid, 1-butyronitrile-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C₃CNMIM][Tf₂N]. The crystal structure of [EMIM]₃[EuBr₆] (Fig. 1) consists of 1-ethyl-3-methylimidazolium cations and octahedral $[EuBr_6]^3$ - anions. The Eu—Br distances are in the range of 2.7793 (6) Å to 2.8187 (6) Å. The octahedral geometry of the two crystallographically independent [EuBr₆]³⁻ anions is slightly distorted with the surrounding of Eu1 more distorted than Eu2 with Br—Eu—Br angles ranging from 86.90 (2)° to 93.10 (2)° for Eu1, compared to angles ranging from 89.11 (2)° to 90.89 (2)° for Eu2. All bromine anions exhibit short contacts to neighboring H-atoms of imidazolium rings ranging from 2.76 Å to 2.90 Å. All three H-atoms of each of the three crystallographically independent imidazolium cations form hydrogen bonds with bromide atoms, which is exemplarily shown in Fig. 2 for one cation. In the packing of [EMIM]₃[EuBr₆], the [EuBr₆]³⁻ anions are located on the corners and face-centers of the monoclinic unit cell (Fig. 3).

S2. Experimental

[EMIM]₃[EuBr₆] crystallized unintentionally after dissolving europium(III) bis(trifluoromethylsulfonyl)imide hexahydrate, Eu(Tf₂N)₃.6H₂O (0.5 g, 0.454 mmol) in a mixture of 5 ml of [EMIM]Br and 5 ml of a nitrile functionalized imidazolium ionic liquid, 1-butyronitrile-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C₃CNMIM][Tf₂N]. [EMIM]Br was purchased from IoLiTec. The nitrile functionalized imidazolium ionic liquid has been synthesized following a procedure that has been reported in the literature (Zhao *et al.* 2004). The title compound crystallized as small slightly yellow blocks.

S3. Refinement

Hydrogen atoms were refined in the riding mode with isotropic temperature factors fixed at 1.2 times U_{eq} of the parent atoms (1.5 times for methyl groups).

Figure 1

Structure of the $[EuBr_6]^{3-}$ anion and interactions to two exemplary $[EMIM]^+$ cations around Eu1 in the crystal structure of $[EMIM]_3[EuBr_6]$. The dashed lines indicate the hydrogen bonding interactions. Displacement ellipsoids are shown at the 50% probability level and H-atoms are drawn as small circles of arbitrary radii.

Figure 2

Surrounding of an [EMIM]⁺ cation in the crystal structure of [EMIM]₃[EuBr₆]. The dashed lines indicate the hydrogen bonding interactions. Displacement ellipsoids are shown at the 50% probability level and H-atoms are drawn as small circles of arbitrary radii.

Figure 3

Packing of the structure of $[EMIM]_3[EuBr_6]$ viewed along the *b* axis. The $[EuBr_6]^{3-}$ anions are located on the corners and face-centers of the monoclinic unit cell.

Tris(1-ethyl-3-methylimidazolium) hexabromidoeuropate(III)

Crystal data	
$(C_6H_{11}N_2)_3[EuBr_6]$ $M_r = 964.87$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 15.765 (1) Å b = 12.729 (1) Å c = 14.920 (1) Å $\beta = 90.36 (1)^\circ$ $V = 2994.0 (4) Å^3$ Z = 4	F(000) = 1824 $D_x = 2.141 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9203 reflections $\theta = 3.0-29.1^{\circ}$ $\mu = 10.12 \text{ mm}^{-1}$ T = 100 K Block, yellow $0.18 \times 0.17 \times 0.16 \text{ mm}$
Data collection	
Oxford Diffraction Gemini A Ultra diffractometer	ω and φ scans Absorption correction: multi-scan
Radiation source: Enhance (Mo) X-ray Source	(CrysAlis RED; Oxford Diffraction, 2008)
Graphite monochromator	$T_{\min} = 0.148, \ T_{\max} = 0.200$
Detector resolution: 10.3310 pixels mm ⁻¹	17678 measured reflections

7019 independent reflections	$h = -21 \rightarrow 13$
5043 reflections with $I > 2\sigma(I)$	$k = -14 \rightarrow 17$
$R_{\rm int} = 0.029$	$l = -19 \rightarrow 19$
$\theta_{\rm max} = 29.1^{\circ}, \theta_{\rm min} = 3.0^{\circ}$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.029$	Hydrogen site location: inferred from
$wR(F^2) = 0.099$	neighbouring sites
S = 1.07	H-atom parameters constrained
7019 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0541P)^2]$
290 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.75 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.44 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. CrysAlis RED (CrysAlis RED, 2008). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.9054 (4)	0.1566 (5)	0.4127 (4)	0.0200 (14)	
H1	0.9361	0.2068	0.4471	0.024*	
C2	0.8011 (5)	0.0618 (5)	0.3547 (4)	0.0257 (15)	
H2	0.7459	0.0348	0.3428	0.031*	
C3	0.8726 (4)	0.0310 (5)	0.3170 (4)	0.0228 (14)	
H3	0.8781	-0.0218	0.2725	0.027*	
C4	1.0300 (4)	0.0820 (5)	0.3349 (4)	0.0171 (13)	
H4A	1.0576	0.1500	0.3491	0.021*	
H4B	1.0379	0.0680	0.2702	0.021*	
C5	1.0725 (4)	-0.0044 (5)	0.3889 (4)	0.0212 (14)	
H5A	1.0614	0.0064	0.4528	0.032*	
H5B	1.1338	-0.0029	0.3785	0.032*	
H5C	1.0497	-0.0727	0.3703	0.032*	
C6	0.7598 (4)	0.2016 (5)	0.4680 (4)	0.0270 (16)	
H6A	0.7428	0.1604	0.5204	0.041*	
H6B	0.7098	0.2169	0.4309	0.041*	
H6C	0.7858	0.2676	0.4880	0.041*	
C7	0.6503 (4)	0.3160 (6)	0.2301 (4)	0.0235 (15)	
H7	0.5922	0.3054	0.2159	0.028*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C8	0.7896 (4)	0.2961 (5)	0.2383 (4)	0.0243 (15)
H8	0.8454	0.2696	0.2309	0.029*
С9	0.7664 (4)	0.3830 (5)	0.2844 (4)	0.0217 (14)
H9	0.8039	0.4287	0.3156	0.026*
C10	0.6311 (5)	0.4800 (6)	0.3179 (4)	0.0306 (17)
H10A	0.5807	0.4923	0.2794	0.037*
H10B	0.6650	0.5455	0.3189	0.037*
C11	0.6025 (5)	0.4553 (6)	0.4115 (5)	0.0358 (18)
H11A	0.5715	0.3886	0.4114	0.054*
H11B	0.5653	0.5115	0.4329	0.054*
H11C	0.6521	0.4497	0.4512	0.054*
C12	0.7057 (5)	0.1584 (5)	0.1507 (4)	0.0291 (16)
H12A	0.6658	0.1111	0.1805	0.044*
H12B	0.7607	0.1233	0.1444	0.044*
H12C	0.6836	0.1769	0.0912	0.044*
C13	0.7070 (4)	0.8020 (5)	0.3480 (4)	0.0272 (15)
H13	0.6671	0.8381	0.3841	0.033*
C14	0.8247 (5)	0.7279 (7)	0.3036 (5)	0.042 (2)
H14	0.8813	0.7024	0.3025	0.051*
C15	0.7644 (4)	0.7205 (7)	0.2371 (5)	0.037(2)
H15	0.7720	0.6888	0.1800	0.045*
C16	0.6146 (5)	0.7797 (6)	0.2138 (5)	0.0376 (18)
H16A	0.5698	0.8121	0.2508	0.045*
H16B	0.5942	0.7100	0.1937	0.045*
C17	0.6318 (5)	0.8486 (6)	0.1327 (5)	0.045 (2)
H17A	0.6572	0.9150	0.1524	0.068*
H17B	0.5783	0.8629	0.1011	0.068*
H17C	0.6709	0.8123	0.0923	0.068*
C18	0.8275 (5)	0.8070 (6)	0.4594 (4)	0.0316 (17)
H18A	0.7897	0.8504	0.4959	0.047*
H18B	0.8800	0.8458	0.4476	0.047*
H18C	0.8410	0.7421	0.4917	0.047*
NI	0.9384(3)	0.0896 (4)	0.3541 (3)	0.0166 (11)
N2	0.8220 (3)	0.1409 (4)	0.4148 (3)	0.0141 (10)
N3	0.6826 (4)	0.3942 (4)	0.2789 (3)	0.0281(13)
N4	0.7163 (3)	0.2543(4)	0.2045(3)	0.0194(11)
N5	0.6912 (4)	0.7670 (4)	0.2673 (4)	0.0294(13)
N6	0.7846(4)	0 7809 (4)	0.3727(4)	0.0273(13)
Br1	0 99929 (4)	0 37839 (5)	0.34343(4)	0.01889(14)
Br2	0.82537(4)	0.52642 (5)	0.48677 (4)	0.02342(15)
Br3	1.03396 (4)	0.68086 (5)	0.39729 (4)	0.01711 (14)
Br4	0.33611 (4)	0.02950 (5)	0.43034 (4)	0.01855 (14)
Br5	0.50481 (4)	0.21190 (5)	0.54969 (4)	0.02105 (14)
Br6	0.56634 (4)	0.05083 (5)	0.33129 (4)	0.02125 (15)
Eu1	1.0000	0.5000	0.5000	0.00923 (9)
Eu2	0.5000	0.0000	0.5000	0.01018 (10)

supporting information

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
C1	0.031 (4)	0.013 (3)	0.015 (3)	-0.001 (3)	0.008 (3)	0.003 (2)
C2	0.036 (4)	0.017 (3)	0.024 (3)	-0.003 (3)	0.003 (3)	-0.004 (3)
C3	0.025 (3)	0.018 (3)	0.026 (3)	0.000 (3)	0.004 (3)	-0.007 (3)
C4	0.017 (3)	0.021 (3)	0.014 (3)	-0.001 (3)	0.000 (2)	0.000 (3)
C5	0.014 (3)	0.021 (3)	0.029 (3)	0.001 (3)	-0.003 (3)	0.002 (3)
C6	0.036 (4)	0.018 (3)	0.028 (3)	0.005 (3)	0.015 (3)	-0.005 (3)
C7	0.016 (3)	0.039 (4)	0.015 (3)	0.000 (3)	-0.006 (2)	0.004 (3)
C8	0.028 (4)	0.026 (4)	0.019 (3)	-0.004 (3)	-0.001 (3)	0.005 (3)
C9	0.023 (3)	0.026 (4)	0.017 (3)	-0.005 (3)	-0.008 (3)	0.002 (3)
C10	0.036 (4)	0.028 (4)	0.028 (4)	0.013 (3)	-0.003 (3)	0.002 (3)
C11	0.026 (4)	0.047 (5)	0.035 (4)	-0.003 (3)	0.006 (3)	-0.009 (4)
C12	0.043 (4)	0.023 (4)	0.021 (3)	-0.005 (3)	0.009 (3)	-0.004 (3)
C13	0.029 (4)	0.027 (4)	0.026 (3)	-0.001 (3)	0.000 (3)	-0.007 (3)
C14	0.050 (5)	0.054 (6)	0.023 (4)	0.023 (4)	0.000 (3)	-0.014 (4)
C15	0.014 (3)	0.063 (6)	0.035 (4)	0.015 (3)	-0.005 (3)	-0.014 (4)
C16	0.029 (4)	0.037 (5)	0.047 (5)	0.004 (3)	-0.009 (3)	-0.017 (4)
C17	0.054 (5)	0.044 (5)	0.037 (4)	0.000 (4)	-0.026 (4)	-0.005 (4)
C18	0.036 (4)	0.034 (4)	0.025 (3)	0.012 (3)	-0.007 (3)	-0.008 (3)
N1	0.017 (3)	0.016 (3)	0.017 (2)	-0.002 (2)	0.001 (2)	-0.002 (2)
N2	0.009 (2)	0.017 (3)	0.016 (2)	-0.001 (2)	0.0001 (19)	-0.004 (2)
N3	0.044 (4)	0.021 (3)	0.019 (3)	0.003 (3)	0.006 (3)	0.000 (2)
N4	0.019 (3)	0.026 (3)	0.014 (2)	-0.004 (2)	0.002 (2)	0.001 (2)
N5	0.030 (3)	0.023 (3)	0.036 (3)	-0.004 (3)	0.005 (3)	-0.007 (3)
N6	0.034 (3)	0.021 (3)	0.027 (3)	0.010 (3)	0.008 (3)	0.000 (2)
Br1	0.0281 (3)	0.0149 (3)	0.0137 (3)	-0.0037 (3)	0.0016 (2)	-0.0014 (2)
Br2	0.0153 (3)	0.0261 (4)	0.0288 (3)	0.0010 (3)	-0.0015 (3)	-0.0004 (3)
Br3	0.0229 (3)	0.0138 (3)	0.0146 (3)	-0.0018 (2)	-0.0001 (2)	0.0010 (2)
Br4	0.0137 (3)	0.0225 (3)	0.0195 (3)	0.0012 (2)	-0.0022 (2)	0.0004 (3)
Br5	0.0235 (3)	0.0168 (3)	0.0228 (3)	-0.0011 (3)	-0.0039 (2)	0.0003 (3)
Br6	0.0185 (3)	0.0301 (4)	0.0152 (3)	-0.0005 (3)	0.0030 (2)	0.0040 (3)
Eu1	0.01068 (18)	0.00812 (19)	0.00889 (18)	-0.00080 (16)	-0.00038 (14)	0.00018 (15)
Eu2	0.00931 (18)	0.0124 (2)	0.00889 (18)	0.00017 (16)	0.00048 (14)	0.00114 (16)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—N1	1.329 (7)	C12—H12A	0.9800
C1—N2	1.331 (8)	C12—H12B	0.9800
C1—H1	0.9500	C12—H12C	0.9800
C2—C3	1.322 (9)	C13—N6	1.304 (9)
C2—N2	1.388 (8)	C13—N5	1.306 (8)
С2—Н2	0.9500	C13—H13	0.9500
C3—N1	1.390 (8)	C14—C15	1.373 (10)
С3—Н3	0.9500	C14—N6	1.387 (8)
C4—N1	1.478 (7)	C14—H14	0.9500
C4—C5	1.517 (8)	C15—N5	1.375 (8)

C4—H4A	0.9900	C15—H15	0.9500
C4—H4B	0.9900	C16—N5	1.452 (9)
C5—H5A	0.9800	C16—C17	1.520 (11)
С5—Н5В	0.9800	C16—H16A	0.9900
С5—Н5С	0.9800	C16—H16B	0.9900
C6—N2	1 482 (7)	C17—H17A	0.9800
C6—H6A	0.9800	C17—H17B	0.9800
C6—H6B	0.9800	C17 - H17C	0.9800
C6 H6C	0.9800	C_{18} N6	1 495 (9)
C7 N3	1 332 (8)		0.0800
C7 N4	1.352(0) 1.260(9)		0.9800
C7 H7	1.300 (8)		0.9800
$C = \Pi$	0.9300		0.9800
	1.355 (9)	Bri—Eul	2.8024 (6)
C8—N4	1.365 (8)	Br2—Eul	2.7793 (6)
C8—H8	0.9500	Br3—Eul	2.8188 (6)
C9—N3	1.330 (8)	Br4—Eu2	2.8041 (6)
С9—Н9	0.9500	Br5—Eu2	2.7982 (6)
C10—N3	1.483 (8)	Br6—Eu2	2.8074 (5)
C10—C11	1.503 (9)	Eu1—Br2 ⁱ	2.7794 (6)
C10—H10A	0.9900	Eu1—Br1 ⁱ	2.8023 (6)
C10—H10B	0.9900	Eu1—Br3 ⁱ	2.8187 (6)
C11—H11A	0.9800	Eu2—Br5 ⁱⁱ	2.7982 (6)
C11—H11B	0.9800	Eu2—Br4 ⁱⁱ	2.8041 (6)
C11—H11C	0.9800	Eu2—Br6 ⁱⁱ	2.8073 (5)
C12—N4	1.470 (8)		
N1-C1-N2	108.1 (5)	C17—C16—H16A	109.6
N1-C1-H1	125.9	N5-C16-H16B	109.6
N2-C1-H1	125.9	C17 - C16 - H16B	109.6
$C_3 C_2 N_2$	106.8 (6)	H_{16A} C_{16} H_{16B}	109.0
$C_3 = C_2 = H_2$	126.6	$C_{16} C_{17} H_{17A}$	100.1
N2 C2 H2	126.6	$C_{10} = C_{17} = H_{17} R$	109.5
$N_2 = C_2 = H_2$	120.0		109.5
$C_2 = C_3 = N_1$	108.0 (0)	$\Pi / A = C I / = \Pi / B$	109.5
C2—C3—H3	126.0		109.5
NI—C3—H3	126.0	H1/A—C1/—H1/C	109.5
NI-C4-C5	111.9 (5)	H17B—C17—H17C	109.5
N1—C4—H4A	109.2	N6—C18—H18A	109.5
C5—C4—H4A	109.2	N6—C18—H18B	109.5
N1—C4—H4B	109.2	H18A—C18—H18B	109.5
C5—C4—H4B	109.2	N6—C18—H18C	109.5
H4A—C4—H4B	107.9	H18A—C18—H18C	109.5
C4—C5—H5A	109.5	H18B—C18—H18C	109.5
C4—C5—H5B	109.5	C1—N1—C3	108.2 (5)
H5A—C5—H5B	109.5	C1—N1—C4	123.8 (5)
C4—C5—H5C	109.5	C3—N1—C4	128.0 (5)
H5A—C5—H5C	109.5	C1—N2—C2	108.9 (5)
H5B—C5—H5C	109.5	C1—N2—C6	126.3 (5)
N2—C6—H6A	109.5	C2—N2—C6	124.7 (5)
			\- /

N2—C6—H6B	109.5	C9—N3—C7	109.3 (5)
H6A—C6—H6B	109.5	C9—N3—C10	126.9 (6)
N2—C6—H6C	109.5	C7—N3—C10	123.8 (6)
H6A—C6—H6C	109.5	C7—N4—C8	108.5 (5)
H6B—C6—H6C	109.5	C7—N4—C12	123.2 (6)
N3—C7—N4	107.1 (5)	C8—N4—C12	128.2 (6)
N3—C7—H7	126.4	C13—N5—C15	107.1 (6)
N4—C7—H7	126.4	C13—N5—C16	128.4 (6)
C9—C8—N4	106.0 (6)	C15—N5—C16	124.3 (6)
С9—С8—Н8	127.0	C13—N6—C14	108.8 (6)
N4—C8—H8	127.0	C13—N6—C18	128.1 (5)
N3—C9—C8	109.1 (6)	C14—N6—C18	123.1 (6)
N3—C9—H9	125.5	Br2—Eu1—Br2 ⁱ	180.0
С8—С9—Н9	125.5	Br2—Eu1—Br1 ⁱ	89.496 (19)
N3—C10—C11	112.2 (6)	Br2 ⁱ —Eu1—Br1 ⁱ	90.505 (18)
N3—C10—H10A	109.2	Br2—Eu1—Br1	90.505 (19)
C11—C10—H10A	109.2	Br2 ⁱ —Eu1—Br1	89.494 (18)
N3—C10—H10B	109.2	Br1 ⁱ —Eu1—Br1	180.0
C11—C10—H10B	109.2	Br2—Eu1—Br3 ⁱ	86.905 (18)
H10A—C10—H10B	107.9	Br2 ⁱ —Eu1—Br3 ⁱ	93.095 (18)
C10-C11-H11A	109.5	Br1 ⁱ —Eu1—Br3 ⁱ	89.872 (16)
C10-C11-H11B	109.5	Br1—Eu1—Br3 ⁱ	90.129 (16)
H11A—C11—H11B	109.5	Br2—Eu1—Br3	93.096 (18)
C10-C11-H11C	109.5	Br2 ⁱ —Eu1—Br3	86.904 (18)
H11A—C11—H11C	109.5	Br1 ⁱ —Eu1—Br3	90.128 (16)
H11B—C11—H11C	109.5	Br1—Eu1—Br3	89.871 (16)
N4—C12—H12A	109.5	Br3 ⁱ —Eu1—Br3	180.0
N4—C12—H12B	109.5	Br5—Eu2—Br5 ⁱⁱ	180.0
H12A—C12—H12B	109.5	Br5—Eu2—Br4 ⁱⁱ	90.431 (18)
N4—C12—H12C	109.5	Br5 ⁱⁱ —Eu2—Br4 ⁱⁱ	89.569 (18)
H12A—C12—H12C	109.5	Br5—Eu2—Br4	89.568 (18)
H12B—C12—H12C	109.5	Br5 ⁱⁱ —Eu2—Br4	90.432 (18)
N6—C13—N5	111.3 (6)	Br4 ⁱⁱ —Eu2—Br4	180.0
N6—C13—H13	124.4	Br5—Eu2—Br6 ⁱⁱ	89.668 (18)
N5—C13—H13	124.4	Br5 ⁱⁱ —Eu2—Br6 ⁱⁱ	90.332 (18)
C15—C14—N6	104.7 (7)	Br4 ⁱⁱ —Eu2—Br6 ⁱⁱ	89.105 (17)
C15—C14—H14	127.6	Br4—Eu2—Br6 ⁱⁱ	90.895 (17)
N6—C14—H14	127.6	Br5—Eu2—Br6	90.331 (18)
C14—C15—N5	108.2 (6)	Br5 ⁱⁱ —Eu2—Br6	89.668 (18)
C14—C15—H15	125.9	Br4 ⁱⁱ —Eu2—Br6	90.896 (17)
N5-C15-H15	125.9	Br4—Eu2—Br6	89.104 (17)
N5-C16-C17	110.5 (6)	Br6 ⁱⁱ —Eu2—Br6	180.0
N5—C16—H16A	109.6		

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*, -*z*+1.