

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[(1*S*,2*S*,3*R*,4*R*)-3-Hydroxy-4,7,7-trimethylbicyclo[2.2.1]heptan-2-yl]methyl-[(*E*)-3-(trimethylsilyl)prop-2-enyl]selenonium bromide

Hai-Yang Wang,^a Qiang Zhang,^a Yi-Zhi Li,^b Yuan Gui^a and Zhi-Zhen Huang^a*

^aSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China, and ^bState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China Correspondence e-mail: Ilyyjz@nju.edu.cn

Received 23 May 2008; accepted 3 June 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.009 Å; R factor = 0.053; wR factor = 0.103; data-to-parameter ratio = 23.2.

The title compound, a selenonium bromide, $C_{17}H_{33}OSeSi^+$.-Br⁻, was obtained from the reaction of enantiomerically pure 4,7,7-trimethyl-2-methylselanylbicyclo[2.2.1]heptan-3-ol and (3-bromopropenyl)trimethylsilane in acetone. Due to the chiral bicyclic substituent, the crystal structure is not centrosymmetric and has no symmetry plane, with four chiral C atoms in the cation. The asymmetric unit contains one selenonium cation and one bromide anion. C-H...Br and O-H...Br hydrogen bonds link the ions, forming a onedimensional *R*-helical chain-like supramolecular structure.

Related literature

For related literature, see: Li *et al.* (2005); Goodridge *et al.* (1988); Reich *et al.* (1975); Ye *et al.* (2002).

Experimental

Crystal data $C_{17}H_{33}OSeSi^+ \cdot Br^ M_r = 440.39$

Monoclinic, $P2_1$ a = 7.555 (2) Å b = 10.023 (2) Åc = 14.423 (3) Å $\beta = 101.29 (3)^{\circ}$ $V = 1071.0 (4) \text{ Å}^{3}$ Z = 2

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\rm min} = 0.35, T_{\rm max} = 0.41$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.102$ S = 1.073374 reflections 170 parameters 1 restraint

organic compounds

Mo K α radiation $\mu = 3.67 \text{ mm}^{-1}$ T = 291 (2) K $0.30 \times 0.26 \times 0.24 \text{ mm}$

4460 measured reflections 3374 independent reflections 1732 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.64~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.74~e~{\rm \AA}^{-3}\\ &{\rm Absolute~structure:~Flack~(1983),}\\ &1140~{\rm Friedel~pairs}\\ &{\rm Flack~parameter:~0.01~(2)} \end{split}$$

Table 1			
Hydrogen-bond geometry	(Å,	°).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1D\cdots Br1$ $C5-H5\cdots Br1^{i}$	0.87 (8) 0.98	2.28 (8) 2.88	3.143 (5) 3.827 (5)	175 (7) 164
$C11 - H11C \cdots Br1^{ii}$ $C12 - H12B \cdots Br1^{i}$	0.96 0.97	2.94 2.97	3.874 (7) 3.855 (5)	165 152

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z; (ii) x, y - 1, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the National Natural Science Foundation of China for its financial support of projects 20332050 and 20572042

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2070).

References

- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Goodridge, R. J., Hambley, T. W., Hayes, R. K. & Ridley, D. D. (1988). J. Org. Chem. 53, 2881–2889.
- Li, X. L., Wang, Y. & Huang, Z. Z. (2005). Aust. J. Chem. 58, 749-752.
- Reich, H. J., Renga, J. M. & Reich, I. J. (1975). J. Am. Chem. Soc. 97, 5434– 5447.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ye, S., Huang, Z. Z., Xia, C. A., Tang, Y. & Dai, L. X. (2002). J. Am. Chem. Soc. **124**, 2432–2433.

supporting information

Acta Cryst. (2008). E64, o1245 [doi:10.1107/S1600536808016863]

[(1*S*,2*S*,3*R*,4*R*)-3-Hydroxy-4,7,7-trimethylbicyclo[2.2.1]heptan-2-yl]methyl-[(*E*)-3-(trimethylsilyl)prop-2-enyl]selenonium bromide

Hai-Yang Wang, Qiang Zhang, Yi-Zhi Li, Yuan Gui and Zhi-Zhen Huang

S1. Comment

Recently, an efficient asymmetric synthesis of cyclopropanes *via* camphor-derived sulfonium ylides was reported (Ye *et al.*, 2002). Thus, we expected that camphor-derived selenonium ylides could be used in the highly enantioselective synthesis of cyclopropanes, epoxides and aziridines. First, the camphor-derived selenide (1) was prepared from commercially available *D*-camphor according to a literature method (Reich *et al.*, 1975; Goodridge *et al.*, 1988, and Li *et al.*, 2005). Then compound (1) was reacted with (3-bromo-propenyl)-trimethylsilane (3) to give the selenonium salt (2). We performed the X-ray crystallographic analysis of (2) in order to elucidate the conformation and configuration.

The structural analysis shows that the selenonium ion of the title compound, (2) (Fig. 1), is not centrosymmetric and has no symmetry plane, showing the four chiral C atoms, C4, C5, C6, and C7, with the *R*, *R*, S, and S configuration preserved from the enatiomerically pure starting compound (1). The asymmetric unit contains one selenonium salt cation, and one bromide ion. In the crystal packing, the Br atom plays an important role, acting as a bridge linking neighboring molecules *via* C–H···Br and O–H···Br hydrogen bonds (O1–H1D···Br1, C5–H5···Br1ⁱⁱ, C11–H11*c*···Br1ⁱ, and C12–H12B···Br1ⁱⁱ; symmetry code i: *x*,-1 + *y*,*z*; ii: 1 - *x*,-1/2 + *y*, -*z*), forming a one dimensional *R*-helical chains-like structure along [010] axis (Fig. 2).

S2. Experimental

A solution of 4,7,7-trimethyl-2-methylselanyl-bicyclo[2.2.1]heptan-3-ol (1) (2.4 g, 9.7 mmol) and (3-bromo-propenyl)trimethylsilane (3) (1.9 g, 9.7 mmol) in acetone (5 mL) was stirred at 273 K. The solid was collected and washed with ethyl ether to afford the selenonium salt (2) in 91% yield. Single crystals of (2) were obtained by slow evaporation from 10 mL of a methanolic solution containing 50 mg (2).

S3. Refinement

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.87 (10), and with $U_{iso}(H) = 1.2U_{eq}(O)$. Other H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.96–0.98 Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl groups})$ times $U_{eq}(C)$.

Figure 1

View of the title compound, showing the labelling of the non-H atoms and 30% probability ellipsoids. H atoms have been omitted for clarity, except for H1D which is involved in hydrogen bonding.

Figure 2

A view of the onedimensional *R*-helical chains along the [010] axis. H atoms have been omitted for clarity, except for H1D, H5, H11*c*, and H12B which are involved in hydrogen bonding.

Figure 3

Reaction scheme.

[(1 <i>S</i> ,2 <i>S</i> ,3 <i>R</i> ,4 <i>R</i>)-3-Hydroxy-4,7,7- trimethylbicyclo[2.2.1]hept-2-yl]methyl[(E)-3-(trimethylsilyl)prop-2-
enyl]selenonium bromide

Crystal data

C₁₇H₃₃OSeSi⁺·Br⁻ $M_r = 440.39$ Monoclinic, P2₁ Hall symbol: P 2yb a = 7.555 (2) Å b = 10.023 (2) Å c = 14.423 (3) Å $\beta = 101.29$ (3)° V = 1071.0 (4) Å³ Z = 2

Data collection

Bruker SMART Apex CCD diffractometer Radiation source: sealed tube Graphite monochromator phi and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.35$, $T_{\max} = 0.41$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.102$ S = 1.073374 reflections 170 parameters 1 restraint Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 452 $D_x = 1.366 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 895 reflections $\theta = 2.1-24.5^{\circ}$ $\mu = 3.67 \text{ mm}^{-1}$ T = 291 KBloc, colourless $0.30 \times 0.26 \times 0.24 \text{ mm}$

4460 measured reflections 3374 independent reflections 1732 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 26.0^\circ, \ \theta_{min} = 1.4^\circ$ $h = -9 \rightarrow 9$ $k = 0 \rightarrow 12$ $l = 0 \rightarrow 17$

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.046P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.64$ e Å⁻³ $\Delta\rho_{min} = -0.74$ e Å⁻³ Absolute structure: Flack (1983), 1140 Friedel pairs Absolute structure parameter: 0.01 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Ζ $U_{\rm iso} * / U_{\rm eq}$ х v Br1 0.32321(7)1.05851 (10) 0.09364(5)0.0584(2)C1 0.6248(8)0.4347 (6) 0.3285(4)0.0404(14)H1A 0.6335 0.3442 0.3079 0.061* H1B 0.4400 0.3679 0.061* 0.5363 H1C 0.7399 0.061* 0.4630 0.3637 C2 0.7389(6) 0.5504 (10) 0.2095 (4) 0.0425 (13) H2A 0.8154 0.6083 0.2529 0.064* H₂B 0.7085 0.5928 0.1488 0.064* H₂C 0.2036 0.064* 0.8013 0.4683 C3 0.5706 (8) 0.5219(6) 0.2454(5)0.0498(18)C4 0.4232(11)0.4559 (8) 0.1682(5)0.0445(19)H4 0.4615 0.3724 0.1428 0.053* C5 0.3867 (6) 0.5695 (8) 0.0960(4)0.0361 (12) H5 0.4822 0.5710 0.0588 0.043* C6 0.3996(9)0.6917 (8) 0.1552(5)0.0398 (16) H6 0.4963 0.7496 0.1422 0.048* C7 0.4459 (9) 0.6398(7)0.2553 (4) 0.0473 (15) C8 0.2804 (6) 0.5707 (9) 0.2761 (4) 0.0406 (14) H8A 0.1744 0.6264 0.2578 0.049* H8B 0.2955 0.5499 0.3428 0.049* C9 0.2627(8)0.4411 (7) 0.2161 (5) 0.0460(15)H9A 0.2728 0.3619 0.2555 0.055* H9B 0.1499 0.4384 0.1704 0.055* C10 0.5215 (9) 0.7500(7)0.3273(5)0.047 0.3196 H10A 0.6407 0.7741 0.071* 0.3903 H10B 0.5262 0.7175 0.071* H10C 0.4444 0.8269 0.3166 0.071* C11 0.2014(9)0.3828(7)-0.0510(5)0.043 H11A 0.3020 0.3955 -0.08160.064* -0.0970H11B 0.0971 0.3576 0.064* H11C 0.2294 -0.00430.064* 0.3137 C12 0.2030 (8) 0.6908 (7) -0.0809(4)0.0415 (15) H12A 0.1683 0.7780 -0.06140.050* H12B 0.3310 0.6926 -0.08200.050* C13 0.0925 (8) 0.6561 (7) -0.1810(4)0.0430 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H13	-0.0322	0.6663	-0.1918	0.052*
C14	0.1643 (8)	0.6141 (6)	-0.2502 (4)	0.0385 (13)
H14	0.2893	0.6068	-0.2395	0.046*
C15	-0.0572 (9)	0.3993 (7)	-0.3683 (5)	0.047
H15A	-0.1696	0.4027	-0.3468	0.071*
H15B	0.0262	0.3436	-0.3267	0.071*
H15C	-0.0771	0.3631	-0.4311	0.071*
C16	-0.1393 (8)	0.6949 (7)	-0.4057 (5)	0.041
H16A	-0.2022	0.6764	-0.4689	0.061*
H16B	-0.0837	0.7813	-0.4039	0.061*
H16C	-0.2231	0.6937	-0.3636	0.061*
C17	0.1943 (7)	0.5796 (7)	-0.4543 (4)	0.049
H17A	0.2631	0.4987	-0.4522	0.073*
H17B	0.2746	0.6536	-0.4372	0.073*
H17C	0.1259	0.5926	-0.5171	0.073*
O1	0.2297 (6)	0.7626 (5)	0.1376 (3)	0.0473 (11)
H1D	0.248 (10)	0.845 (8)	0.125 (5)	0.057*
Se1	0.15165 (6)	0.54982 (7)	0.01059 (4)	0.04094 (15)
Sil	0.03564 (18)	0.5673 (2)	-0.36882 (11)	0.0395 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0503 (3)	0.0494 (4)	0.0775 (5)	-0.0034 (4)	0.0172 (3)	-0.0074 (5)
C1	0.043 (3)	0.043 (4)	0.040 (3)	0.000 (3)	0.020 (3)	0.000 (3)
C2	0.031 (2)	0.049 (3)	0.043 (3)	-0.012 (4)	-0.0060 (19)	-0.021 (5)
C3	0.038 (3)	0.046 (4)	0.053 (4)	-0.019 (3)	-0.020 (3)	0.003 (3)
C4	0.059 (4)	0.038 (4)	0.034 (4)	-0.005 (3)	0.004 (3)	0.008 (3)
C5	0.035 (2)	0.037 (3)	0.035 (3)	0.019 (3)	0.0062 (18)	0.005 (3)
C6	0.034 (3)	0.048 (4)	0.040 (4)	-0.005 (3)	0.013 (3)	0.003 (3)
C7	0.052 (3)	0.047 (3)	0.037 (4)	0.001 (3)	-0.003 (3)	0.006 (3)
C8	0.042 (2)	0.049 (4)	0.035 (3)	0.016 (3)	0.017 (2)	-0.009 (3)
С9	0.034 (3)	0.046 (4)	0.055 (4)	-0.004(3)	0.004 (3)	0.005 (3)
C10	0.049	0.049	0.049	0.000	0.021	0.000
C11	0.044	0.044	0.044	0.000	0.018	0.000
C12	0.039 (3)	0.051 (4)	0.036 (3)	0.020 (3)	0.012 (3)	0.009 (3)
C13	0.045 (3)	0.048 (4)	0.033 (3)	0.005 (3)	0.002 (3)	0.014 (3)
C14	0.044 (3)	0.044 (3)	0.029 (3)	-0.004 (2)	0.012 (2)	-0.002 (3)
C15	0.049	0.049	0.049	0.000	0.021	0.000
C16	0.043	0.043	0.043	0.000	0.020	0.000
C17	0.050	0.050	0.050	0.000	0.020	0.000
O1	0.046 (2)	0.049 (3)	0.038 (2)	-0.010 (2)	-0.0126 (19)	0.003 (2)
Se1	0.0358 (2)	0.0516 (3)	0.0339 (3)	0.0028 (4)	0.00292 (19)	0.0086 (4)
Si1	0.0420 (7)	0.0402 (9)	0.0380 (8)	0.0077 (9)	0.0119 (6)	-0.0030 (10)

Geometric parameters (Å, °)

Br1—O1	3.143 (5)	С10—Н10В	0.9600
C1—C3	1.475 (9)	C10—H10C	0.9600
C1—H1A	0.9600	C11—Se1	1.965 (7)
C1—H1B	0.9600	C11—H11A	0.9600
C1—H1C	0.9600	C11—H11B	0.9600
C2—C3	1.492 (8)	C11—H11C	0.9600
C2—H2A	0.9600	C12—C13	1.560 (9)
C2—H2B	0.9600	C12—Se1	2.022 (6)
C2—H2C	0.9600	C12—H12A	0.9700
C3—C7	1.535 (9)	C12—H12B	0.9700
C3—C4	1.559 (9)	C13—C14	1.295 (8)
C4—C9	1.515 (10)	С13—Н13	0.9300
C4—C5	1.531 (10)	C14—Si1	1.855 (6)
C4—H4	0.9800	C14—H14	0.9300
C5—C6	1.484 (10)	C15—Si1	1.825 (7)
C5—Sel	1.963 (5)	C15—H15A	0.9600
С5—Н5	0.9800	C15—H15B	0.9600
C6—O1	1.446 (8)	C15—H15C	0.9600
C6—C7	1.510 (9)	C16—Si1	1.842 (7)
С6—Н6	0.9800	C16—H16A	0.9600
C7—C8	1.510 (9)	C16—H16B	0.9600
C7—C10	1.546 (9)	C16—H16C	0.9600
C8—C9	1.552 (10)	C17—Sil	1.884 (5)
C8—H8A	0.9700	C17—H17A	0.9600
C8—H8B	0.9700	C17—H17B	0.9600
С9—Н9А	0.9700	C17—H17C	0.9600
С9—Н9В	0.9700	O1—H1D	0.87 (8)
C10—H10A	0.9600		
C3—C1—H1A	109.5	C7—C10—H10A	109.5
C3—C1—H1B	109.5	C7—C10—H10B	109.5
H1A—C1—H1B	109.5	H10A—C10—H10B	109.5
C3—C1—H1C	109.5	C7—C10—H10C	109.5
H1A—C1—H1C	109.5	H10A—C10—H10C	109.5
H1B—C1—H1C	109.5	H10B—C10—H10C	109.5
C3—C2—H2A	109.5	Se1—C11—H11A	109.5
C3—C2—H2B	109.5	Se1—C11—H11B	109.5
H2A—C2—H2B	109.5	H11A-C11-H11B	109.5
C3—C2—H2C	109.5	Se1—C11—H11C	109.5
H2A—C2—H2C	109.5	H11A-C11-H11C	109.5
H2B—C2—H2C	109.5	H11B—C11—H11C	109.5
C1—C3—C2	106.0 (5)	C13-C12-Se1	108.2 (4)
C1—C3—C7	117.3 (6)	C13—C12—H12A	110.1
C2—C3—C7	117.8 (6)	Se1—C12—H12A	110.1
C1—C3—C4	112.0 (5)	C13—C12—H12B	110.1
C2—C3—C4	111.8 (6)	Se1—C12—H12B	110.1

C7—C3—C4	91.6 (5)	H12A—C12—H12B	108.4
C9—C4—C5	109.2 (6)	C14—C13—C12	123.8 (5)
C9—C4—C3	103.9 (6)	C14—C13—H13	118.1
C5—C4—C3	100.3 (5)	С12—С13—Н13	118.1
С9—С4—Н4	114.0	C13—C14—Si1	124.7 (5)
С5—С4—Н4	114.0	C13—C14—H14	117.6
C3—C4—H4	114.0	Si1—C14—H14	117.6
C6—C5—C4	103.8 (5)	Si1—C15—H15A	109.5
C6—C5—Se1	113.2 (4)	Si1—C15—H15B	109.5
C4—C5—Se1	111.9 (5)	H15A—C15—H15B	109.5
С6—С5—Н5	109.3	Si1—C15—H15C	109.5
С4—С5—Н5	109.3	H15A—C15—H15C	109.5
Se1—C5—H5	109.3	H15B—C15—H15C	109.5
O1—C6—C5	110.4 (5)	Si1—C16—H16A	109.5
O1—C6—C7	111.6 (5)	Si1—C16—H16B	109.5
C5—C6—C7	104.1 (6)	H16A—C16—H16B	109.5
O1—C6—H6	110.2	Si1—C16—H16C	109.5
С5—С6—Н6	110.2	H16A—C16—H16C	109.5
С7—С6—Н6	110.2	H16B—C16—H16C	109.5
C6—C7—C8	107.5 (5)	Si1—C17—H17A	109.5
C6—C7—C3	102.0 (5)	Si1—C17—H17B	109.5
C8—C7—C3	102.2 (5)	H17A—C17—H17B	109.5
C6—C7—C10	112.5 (6)	Si1—C17—H17C	109.5
C8—C7—C10	114.0 (6)	H17A—C17—H17C	109.5
C3—C7—C10	117.4 (5)	H17B—C17—H17C	109.5
C7—C8—C9	105.0 (5)	C6—O1—Br1	105.8 (4)
С7—С8—Н8А	110.8	C6—O1—H1D	109 (5)
С9—С8—Н8А	110.8	C5—Se1—C11	98.0 (3)
С7—С8—Н8В	110.8	C5—Se1—C12	94.2 (3)
С9—С8—Н8В	110.8	C11—Se1—C12	102.9 (3)
H8A—C8—H8B	108.8	C15—Si1—C16	112.8 (3)
C4—C9—C8	100.5 (5)	C15—Si1—C14	111.2 (3)
С4—С9—Н9А	111.7	C16—Si1—C14	107.9 (3)
С8—С9—Н9А	111.7	C15—Si1—C17	110.9 (3)
С4—С9—Н9В	111.7	C16—Si1—C17	106.1 (3)
С8—С9—Н9В	111.7	C14—Si1—C17	107.6 (3)
Н9А—С9—Н9В	109.4		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
O1—H1D···Br1	0.87 (8)	2.28 (8)	3.143 (5)	175 (7)
C5—H5···Br1 ⁱ	0.98	2.88	3.827 (5)	164
C11—H11C···Br1 ⁱⁱ	0.96	2.94	3.874 (7)	165
C12—H12 B ····Br1 ⁱ	0.97	2.97	3.855 (5)	152

Symmetry codes: (i) –*x*+1, *y*–1/2, –*z*; (ii) *x*, *y*–1, *z*.