

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Redetermination of 2,4,6-tricyclohexyl-1,3,5-trioxane

Rodolfo Moreno-Fuquen,^a* Eunice Rios,^b Rodrigo Paredes,^a Luz Marina Jaramillo^c and Julio Zukerman-Schpector^d

^aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, ^bDepartamento de Química, Facultad de Ciencias, Universidad del Quindio, Armenia, Colombia, ^cDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and ^dDepartmento de Química, Universidade Federal de São Carlos, São Carlos, SP, Brazil

Correspondence e-mail: rodimo26@yahoo.es

Received 27 May 2008; accepted 13 June 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.097; data-to-parameter ratio = 10.2.

The title compound, C₂₁H₃₆O₃, was obtained by treatment of cyclohexanecarbaldehyde with catalytic toluene-4-sulfonic acid monohydrate. This redetermination results in a crystal structure with significantly higher precision than the original determination [Diana & Ganis (1963). Atti Accad. Naz. Lincei, 35, 80-88]. The asymmetric unit contains one sixth of the molecule, the formula unit being generated by crystallographic 3m symmetry. In the molecule, the trioxane and cyclohexane rings are in chair conformations. In the crystal structure, molecules are linked by weak $C-H \cdots O$ hydrogen bonds along the [001] direction.

Related literature

For related literature, see: Augé & Gil (2002); Etter (1990); Ho & Lee (2001); Iulek & Zukerman-Schpector (1997); Johnson et al. (1996); Nardelli (1995); Diana & Ganis (1963).

Experimental

Crystal data

C21H36O3 $M_r = 336.50$ Hexagonal, P6₂cm a = 11.8542 (3) Å c = 7.9908 (3) Å V = 972.44 (5) Å³

Z = 2Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 298 K0.21 \times 0.18 \times 0.08 mm 382 reflections with $I > 2\sigma(I)$

frequency: 150 min intensity decay: 0.1%

 $R_{\rm int} = 0.026$ 2 standard reflections

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: none
1372 measured reflections
439 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	1 restraint
$wR(F^2) = 0.096$	H-atom parameters constrained
S = 1.18	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
439 reflections	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
43 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1\cdots O1^i$	0.98	2.56	3.534 (3)	176

Symmetry code: (i) $y, -x + y + 1, z + \frac{1}{2}$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 SDP (Frenz, 1978); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).

RMF is grateful to the Instituto de Química Física Rocasolano, CSIC, Spain, for the use of a licence for the Cambridge Structural Database (Allen, 2002). RMF and LMJ acknowledge the Universidad del Valle, Colombia, and ER acknowledges the Universidad del Ouindío. Colombia, for partial financial support. RMF acknowledges Dr A. Kennedy for collecting the diffraction data of the title compound.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2635).

References

- Allen, F. H. (2002). Acta Crvst. B58, 380-388.
- Augé, J. & Gil, J. (2002). Tetrahedron Lett. 43, 7919-7920.
- Diana, G. & Ganis, P. (1963). Atti Accad. Naz. Lincei, 35, 80-88.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64-71. Delft University Press.
- Ho, Y. S. & Lee, C. F. (2001). Tetrahedron, 57, 6181-6187.
- Iulek, J. & Zukerman-Schpector, J. (1997). Química Nova, 20, 433-434.
- Johnson, A. P., Luke, R. W. A., Singh, G. & Boa, A. N. (1996). J. Chem. Soc. Perkin Trans. 1, pp. 907-913.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o1301 [doi:10.1107/S1600536808018084]

Redetermination of 2,4,6-tricyclohexyl-1,3,5-trioxane

Rodolfo Moreno-Fuquen, Eunice Rios, Rodrigo Paredes, Luz Marina Jaramillo and Julio Zukerman-Schpector

S1. Comment

Trioxanes have many applications in different fields such as insecticides, flavouring materials and stabilizers in colour photography (Augé, & Gil, 2002). Several methods have been reported for the synthesis of 1,3,5-trioxanes from aldehydes (Johnson *et al.*, 1996). The synthesis of a wide variety of 1,3,5-trioxanes using acetonyltriphenylphosphonium bromide as catalyst are reported (Ho & Lee, 2001). In a new efficient method, using trimethylsilyl chloride as a catalyst of aldehydes, 1,3,5 trioxanes were formed (Augé & Gil, 2002). As an alternative way of obtaining trioxane compounds, the use in the reaction of toluene-4-sulfonic acid monohydrate (PTSA) as a catalizator, is proposed in the present work. The title compound, $C_{21}H_{36}O_3$, 2,4,6-trialkyl-1,3,5-trioxane, (I) was obtained by treatment of cyclohexanecarbaldehyde with catalytic PTSA (Fig. 3). The molecular structure of (I), showing the atomic numbering scheme, can be seen in Fig. 1. The crystal structure of (I) is stabilized by weak intermolecular C—H···O hydrogen-bonds (Nardelli, 1995) (Table 1). The atom C1 in the molecule at (*x*, *y*, *z*) acts as a hydrogen-bond donor to atom O1 in the molecule at (*y*, *-x* + *y*+1, 1/2 + *z*), so forming C(3) chains (Etter, 1990) along [001] direction (Fig. 2). The conformation of trioxane ring is of the pure chair, as indicated by the Cremer & Pople puckering parameters (Iulek & Zukerman-Schpector, 1997), being q₂ = 0.00 Å, q₃ = -0.565 Å, $\varphi_2 = 0^\circ$, $\tau = 180^\circ$, and a puckering amplitude of Q_T = 0.565 Å and the conformation of the cyclohexane ring is of the chair and its puckering parameters are: q₂ = 0.0359 Å, q₃ = -0.5743 Å, $\varphi_2 = 180^\circ$, $\tau = 176.4^\circ$, and a puckering amplitude of Q_T = 0.575 Å.

S2. Experimental

The title compound was prepared by adding 2.0 g of cyclohexanecarbaldehyde (17.8 mmol) to benzene (20 ml). To this solution 0.200 g of PTSA.H₂O (1.05 mmol) was added. The mixture was refluxed for 6 h and then it was cooled overnight in the refrigerator. The solid formed, a trimeric complex, was separated and dried. 0.20 g of PTSA.H₂O (1.05 mmol) was added to an acetone–water (3:1) solution (20 ml). To this solution 0.500 g of trimeric complex (2.23 mmol) was added. The mixture was stirred for 5 minutes and then the solid was filtered and dried. The product was recrystalized from ethyl ether. This last compound was identified as (I) on the basis of its spectra and X-ray analysis. *cis,cis*-2,4,6-tri-cyclohexyl-1,3,5-trioxane. Colourless crystals; yield 76%; mp 435 (1) K. IR (KBr) 2923, 2851, 1161, 1124, 1068 cm⁻¹; $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 0.99–1.21 (15H, m, equatorial Hs in cyclohexyl groups), 1.56–183 (18H, m, axial Hs in cyclohexyl groups), and 4.47 (3H, d) [lit, 1.01–1.24 (15H, m), 1.58–1.83 (18H, m) and 4.49 (3H, d)]; $\delta_{\rm C}$ (75 MHz; CDCl₃; Me₄Si) 25.655, 26.466, 27.038, 41.865 and 104.292 (lit., 25.6, 26.5, 27.0, 41.9 and 104.3); m/z(EI) 336 (M^+ , 2%), 95 (100).

Crystals for X-ray diffraction were grown from a solution of the title compound in diethyl ether.

S3. Refinement

In the absence of significant anomalous dispersion effects the Friedel pairs were merged before refinement. All H-atoms were located in difference maps and then treated as riding atoms [C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$].

Figure 1

An *ORTEP-3* (Farrugia, 1997) plot of the (I) compound, with the atomic labelling scheme (for the asymmetric unit). The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement and, for the sake of clarity, H atoms are shown as spheres of arbitrary radius.

Figure 2

View normal to (001) of the crystal structure of (I). [Symmetry code: (i) -x+y+1, y, z-1/2]. Weak C—H..O hydrogen bonds are shown as dashed lines.

Figure 3

Reaction scheme

2,4,6-tricyclohexyl-1,3,5-trioxane

Crystal data

C₂₁H₃₆O₃ $M_r = 336.50$ Hexagonal, $P6_3cm$ Hall symbol: P 6c -2 a = 11.8542 (3) Å c = 7.9908 (3) Å V = 972.44 (5) Å³ Z = 2F(000) = 372

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans 1372 measured reflections 439 independent reflections 382 reflections with $I > 2\sigma(I)$ $D_x = 1.149 \text{ Mg m}^{-3}$ Melting point: 435(1) K Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 3.0-25.0^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 298 KPlate, colourless $0.21 \times 0.18 \times 0.08 \text{ mm}$

 $R_{int} = 0.026$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.4^{\circ}$ $h = 1 \rightarrow 15$ $k = -15 \rightarrow 0$ $l = -10 \rightarrow 10$ 2 standard reflections every 150 min intensity decay: 0.1% Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: inferred from
$wP(F^2) = 0.096$	neighbouring sites
S = 1.18 439 reflections 43 parameters	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0528P)^2 + 0.1112P]$ where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	1.0000	0.88684 (11)	0.6920 (2)	0.0148 (4)	
C1	0.88552 (16)	0.88552 (16)	0.7497 (3)	0.0145 (6)	
H1	0.8819	0.8819	0.8722	0.017*	
C2	0.76794 (17)	0.76794 (17)	0.6771 (3)	0.0162 (5)	
H2	0.7743	0.7743	0.5549	0.019*	
C3	0.76350 (16)	0.64144 (15)	0.7298 (2)	0.0208 (5)	
H31	0.8430	0.6440	0.6945	0.025*	
H32	0.7582	0.6339	0.8508	0.025*	
C4	0.64605 (15)	0.52264 (14)	0.6519(3)	0.0257 (5)	
H41	0.6559	0.5258	0.5312	0.031*	
H42	0.6430	0.4438	0.6917	0.031*	
C5	0.51833 (18)	0.51833 (18)	0.6966 (3)	0.0233 (6)	
H51	0.5020	0.5020	0.8155	0.028*	
H52	0.4471	0.4471	0.6369	0.028*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0117 (7)	0.0142 (6)	0.0176 (11)	0.0058 (4)	0.000	-0.0021 (5)
C1	0.0153 (9)	0.0153 (9)	0.0142 (14)	0.0087 (8)	0.0007 (7)	0.0007 (7)
C2	0.0147 (8)	0.0147 (8)	0.0189 (14)	0.0072 (8)	0.0010 (8)	0.0010 (8)
C3	0.0171 (7)	0.0166 (8)	0.0300 (13)	0.0095 (6)	-0.0013 (7)	0.0025 (7)
C4	0.0186 (8)	0.0143 (7)	0.0428 (14)	0.0072 (6)	-0.0014 (8)	-0.0001 (8)
C5	0.0164 (8)	0.0164 (8)	0.0315 (17)	0.0041 (9)	0.0041 (9)	0.0041 (9)

Geometric parameters (Å, °)

O1—C1	1.426 (3)	C3—H32	0.9700
C1—C2	1.509 (3)	C4—C5	1.531 (2)

C1—H1 C2—C3 C2—H2 C3—C4 C3—H31	0.9800 1.5328 (18) 0.9800 1.532 (2) 0.9700	C4—H41 C4—H42 C5—H51 C5—H52	0.9700 0.9700 0.9700 0.9700
$C1^{i} - 01 - C1$ $O1^{ii} - C1 - 01$ $O1^{ii} - C1 - C2$ $O1^{-ii} - C1 - C2$ $O1^{ii} - C1 - H1$ $O1 - C1 - H1$ $C2 - C1 - H1$ $C1 - C2 - C3$ $C1 - C2 - H2$ $C3 - C2 - H2$ $C4 - C3 - C2$ $C4 - C3 - H31$ $C2 - C3 - H31$	111.0 (2) 109.12 (19) 108.68 (14) 108.68 (13) 110.1 110.1 110.1 111.23 (12) 108.2 108.2 111.01 (14) 109.4 109.4	C4—C3—H32 C2—C3—H32 H31—C3—H32 C5—C4—C3 C5—C4—H41 C3—C4—H41 C5—C4—H42 C3—C4—H42 H41—C4—H42 C4—C5—H51 C4—C5—H52 H51—C5—H52	109.4 109.4 108.0 111.40 (16) 109.3 109.3 109.3 109.3 108.0 109.3 109.3 109.3 109.3
$C1^{i}$ — $O1$ — $C1$ — $O1^{ii}$ $C1^{i}$ — $O1$ — $C1$ — $C2$ $O1^{ii}$ — $C1$ — $C2$ — $C3$	58.5 (3) 176.87 (11) 178.04 (17)	O1-C1-C2-C3 C1-C2-C3-C4 C2-C3-C4-C5	59.4 (2) -178.44 (18) -56.1 (2)

Symmetry codes: (i) -y+2, x-y+1, z; (ii) -x+y+1, -x+2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C1—H1···O1 ⁱⁱⁱ	0.98	2.56	3.534 (3)	176

Symmetry code: (iii) y, -x+y+1, z+1/2.