# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# catena-Poly[[[aquabis(1*H*-imidazole- $\kappa N^3$ )copper(II)]- $\mu$ -naphthalene-1,4-dicarboxylato- $\kappa^2 O^1:O^4$ ] dihydrate]

#### Jun-Hua Li, Jing-Jing Nie and Duan-Jun Xu\*

Department of Chemistry, Zhejiang University, People's Republic of China Correspondence e-mail: xudj@mail.hz.zj.cn

Received 17 June 2008; accepted 18 June 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma$ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.036; wR factor = 0.098; data-to-parameter ratio = 14.2.

In the title compound,  $\{[Cu(C_{12}H_6O_4)(C_3H_4N_2)_2(H_2O)]$ -2H<sub>2</sub>O}<sub>n</sub>, the Cu<sup>II</sup> cation is coordinated by two naphthalene-1,4-dicarboxylate (naph) dianions, two imidazole molecules and one water molecule in a distorted square-pyramidal geometry. The Cu–O bond distance in the apical direction is 0.509 (3) Å longer than the mean Cu–O bond distance in the basal plane. The naph dianion bridges two Cu<sup>II</sup> cations, forming a one-dimensional polymeric chain. The coordinated water molecule is hydrogen-bonded to the carboxylate groups and imidazole ligands of adjacent polymeric chains, forming a three-dimensional supramolecular structure. No  $\pi$ - $\pi$  stacking is observed in the crystal structure. One solvent water molecule is disordered equally over two positions.

#### **Related literature**

For general background, see: Su & Xu (2004); Li *et al.* (2005). For related structures, see: Derissen *et al.* (1979); Li *et al.* (2008).



## Experimental

 $2H_2O$ 

 $M_r = 467.92$ 

Crystal data  $[Cu(C_{12}H_6O_4)(C_3H_4N_2)_2(H_2O)]$ --

Monoclinic,  $P2_1/n$  a = 12.571 (2) Å b = 14.698 (3) Å

#### Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995)  $T_{\rm min} = 0.660, T_{\rm max} = 0.765$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$  $wR(F^2) = 0.097$ S = 1.063989 reflections Mo K $\alpha$  radiation  $\mu = 1.12 \text{ mm}^{-1}$  T = 295 (2) K  $0.33 \times 0.30 \times 0.24 \text{ mm}$ 

23205 measured reflections 3989 independent reflections 3251 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.043$ 

280 parameters H-atom parameters constrained  $\Delta \rho_{max} = 0.50$  e Å<sup>-3</sup>  $\Delta \rho_{min} = -0.39$  e Å<sup>-3</sup>

#### Table 1

Selected bond lengths (Å).

| Cu-N1 |       | 1.992  | (2)  | Cu-O3 <sup>i</sup> | 2.0116 (17) |
|-------|-------|--------|------|--------------------|-------------|
| Cu-N3 |       | 1.990  | (2)  | Cu-O5              | 2.506 (2)   |
| Cu-O1 |       | 1.9819 | (17) |                    |             |
|       | <br>1 | 1      | 1    |                    |             |

Symmetry code: (i)  $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$ .

#### Table 2

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                       | D-H                     | $H \cdot \cdot \cdot A$              | $D \cdots A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $D - \mathbf{H} \cdots A$ |
|----------------------------------------|-------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| $O1W-H1A\cdots O3$                     | 0.87                    | 1.99                                 | 2.846 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170                       |
| $O1W-H1B\cdots O4^{ii}$                | 0.89                    | 1.93                                 | 2.789 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 162                       |
| $O2WA - H2A \cdots O1W$                | 0.91                    | 1.97                                 | 2.828 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 155                       |
| $O2WB - H2C \cdot \cdot \cdot O2WA$    | 0.85                    | 1.55                                 | 2.156 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 126                       |
| $N2 - H2N \cdot \cdot \cdot O1W^{iii}$ | 0.86                    | 1.96                                 | 2.798 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 165                       |
| $N4-H4N\cdots O5^{iv}$                 | 0.86                    | 2.02                                 | 2.866 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 166                       |
| $O5-H5A\cdots O2^{ii}$                 | 0.85                    | 1.90                                 | 2.716 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 162                       |
| $O5-H5B\cdots O4^{v}$                  | 0.85                    | 1.95                                 | 2.791 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 172                       |
| $C17-H17\cdots O2^{vi}$                | 0.93                    | 2.50                                 | 3.389 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 160                       |
| Symmetry codes: (ii)                   | $x - \frac{1}{2}, -y +$ | $\frac{1}{2}, z - \frac{1}{2};$ (iii | $-x+\frac{1}{2}, y-\frac{1}{2}, y-\frac{1}{2$ | $-z + \frac{3}{2};$ (iv)  |

-x + 1, -y + 1, -z + 1; (v) x, y, z - 1; (vi)  $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}.$ 

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The work was supported by the ZIJIN project of Zhejiang University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2252).

### References

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Derissen, J. L., Timmermans, C. & Schoone, J. C. (1979). Cryst. Struct. Commun. 8, 533–536.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan. Li, J.-H., Nie, J.-J. & Xu, D.-J. (2008). *Acta Cryst.* E64, m729. Li, H., Yin, K.-L. & Xu, D.-J. (2005). *Acta Cryst.* C61, m19–m21. Rigaku (1998). *PROCESS-AUTO*. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.

# supporting information

Acta Cryst. (2008). E64, m948-m949 [doi:10.1107/S1600536808018515]

# *catena*-Poly[[[aquabis(1*H*-imidazole- $\kappa N^3$ )copper(II)]- $\mu$ -naphthalene-1,4-dicarboxylato- $\kappa^2 O^1:O^4$ ] dihydrate]

# Jun-Hua Li, Jing-Jing Nie and Duan-Jun Xu

# S1. Comment

As part of our investigation on the nature of  $\pi$ - $\pi$  stacking between aromatic rings (Li *et al.*, 2005), the title polymeric complex of Cu<sup>II</sup> incorporating imidazole and naphthalenedicarboxylate (naph) ligands has been prepared and its crystal structure is reported here.

The Cu<sup>II</sup> cation is coordinated by two naph dianions, two imidazole molecules and one water molecule in a distorted square pyramidal geometry. The Cu—O(water) bond distance in the apical direction is longer than mean Cu—O(carboxyl) bond distance in the basal plane by 0.509 (3) Å. The naph dianion bridges two Cu<sup>II</sup> cations by two carboxyl groups to form the one dimensional polymeric chain (Fig. 1). Two carboxyl groups of the naph dianion are twisted with respect to the C1-benzene ring with the dihedral angles of 32.0 (2)° and 38.2 (2)°, which are close to that found in the free naphthalenedicarboxylic acid (*ca* 40°; Derissen *et al.*, 1979) but are much smaller than those [52.5 (3)° and 48.7 (3)°] found in a Mn<sup>II</sup> complex with the uncoordinated naph dianion (Li *et al.*, 2008). The coordinated water molecule (O5) is hydrogen bonded to carboxyl groups and imidazole ligand of adjacent polymeric chains (Table 2) to form the three dimensional supra-molecular structure.

The parallel C8-benzene and C8<sup>iii</sup>-benzene rings from the adjacent polymeric chains overlap as shown in Fig. 2 [symmetry code: (iii) 1 - x, 1 - y, 2 - z] with a face-to-face separation of 3.67 (2) Å indicating no  $\pi$ - $\pi$  stacking existing between benzene rings, a similar situation to that found in the Mn<sup>II</sup> complex with uncoordinated naph dianion (Li *et al.*, 2008). The face-to-face distances between parallel N1-imidazole and N1<sup>iv</sup>-imidazole rings and between parallel N3imidazole and N3<sup>v</sup>-imidazole rings are 3.310 (4) and 3.050 (17) Å, respectively [symmetry codes: (iv) 1 - x, -y, 1 - z; (v) 1 - x, 1 - y, 1 - z]. However the imidazole rings are not overlapping each other in the crystal structure (Fig. 3), therefore no  $\pi$ -p\ stacking exists between parallel imidazole rings too.

# **S2.** Experimental

A water-ethanol solution (12 ml, 1:1) containing naphthalene-1,4-dicarboxyllic acid (0.162 g, 0.75 mmol), sodium hydroxide (0.053 g, 1.3 mmol), sodium acetate trihydrate (0.204 g, 1.5 mmol), cupric chloride dihydrate (0.085 g, 0.5 mmol) and imidazole (0.034 g, 0.5 mmol) was refluxed for 3 h. After cooling to room temperature the solution was filtered. The single crystals of the title compound were obtained from the filtrate after 8 d.

# **S3. Refinement**

The lattice water O2WB is close to an inversion center, while the lattice O2WA is *ca* 1.5 Å apart from O2WB<sup>vi</sup> [symmetry code: (vi) -*x*, 1 - *y*, 1 - *z*]. The site occupancy factors of the O2WA and O2WB atoms were initially refined and converged to 0.48 and 0.45, and fixed as 0.50 for each at final cycles of refinemens. Water H atoms were placed in a difference Fourier map and refined in riding mode with  $U_{iso}(H) = 1.5U_{eq}(O)$ . Other H atoms were placed in calculated



positions with C—H = 0.93 Å and N—H = 0.86 Å, and refined in riding mode with  $U_{iso}(H) = 1.2U_{eq}(C,N)$ .

# Figure 1

A segment of the polymeric chain of the title compound with 30% probability displacement ellipsoids (arbitrary spheres for H atoms); dashed lines indicate hydrogen bonding [symmetry codes: (i) x + 1/2, -y + 1/2, z - 1/2; (ii) x - 1/2, -y + 1/2, z + 1/2].



# Figure 2

A digram showing the ovelapped arrangement of adjacent naphthaline ligands [symmetry code: (iii) 1 - x, 1 - y, 2 - z].



# Figure 3

A diagram showing the contacts between imidazole rings [symmetry codes: (iv) 1 - x, -y, 1 - z; (v) 1 - x, 1 - y, 1 - z].

# *catena*-Poly[[[aquabis(1H-imidazole- $\kappa$ N<sup>3</sup>)copper(II)]- $\mu$ -naphthalene-1,4-dicarboxylato- $\kappa^2O^1:O^4$ ] dihydrate]

# Crystal data

| $[Cu(C_{12}H_6O_4)(C_3H_4N_2)_2(H_2O)]\cdot 2H_2O$ | F(000) = 964                                          |
|----------------------------------------------------|-------------------------------------------------------|
| $M_r = 467.92$                                     | $D_{\rm x} = 1.522 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Monoclinic, $P2_1/n$                               | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn                                | Cell parameters from 5466 reflections                 |
| a = 12.571 (2)  Å                                  | $\theta = 2.0-24.5^{\circ}$                           |
| b = 14.698 (3) Å                                   | $\mu = 1.12 \text{ mm}^{-1}$                          |
| c = 12.636 (2) Å                                   | T = 295  K                                            |
| $\beta = 119.011 \ (6)^{\circ}$                    | Prism, blue                                           |
| V = 2041.8 (6) Å <sup>3</sup>                      | $0.33 \times 0.30 \times 0.24$ mm                     |
| Z = 4                                              |                                                       |
| Data collection                                    |                                                       |
| Rigaku R-AXIS RAPID IP                             | 23205 measured reflections                            |
| 11.00                                              |                                                       |

| diffractometer                                    | 3989 independent reflections                                        |
|---------------------------------------------------|---------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube          | 3251 reflections with $I > 2\sigma(I)$                              |
| Graphite monochromator                            | $R_{\rm int} = 0.043$                                               |
| Detector resolution: 10.0 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$ |
| $\omega$ scans                                    | $h = -15 \rightarrow 15$                                            |
| Absorption correction: multi-scan                 | $k = -18 \rightarrow 17$                                            |
| (ABSCOR; Higashi, 1995)                           | $l = -15 \rightarrow 15$                                            |
| $T_{\min} = 0.660, \ T_{\max} = 0.765$            |                                                                     |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier      |
|-------------------------------------------------|-------------------------------------------------------|
| Least-squares matrix: full                      | map                                                   |
| $R[F^2 > 2\sigma(F^2)] = 0.036$                 | Hydrogen site location: inferred from                 |
| $wR(F^2) = 0.097$                               | neighbouring sites                                    |
| S = 1.06                                        | H-atom parameters constrained                         |
| 3989 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0469P)^2 + 1.2324P]$     |
| 280 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                        |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                   |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.50 \ { m e} \ { m \AA}^{-3}$ |
| direct methods                                  | $\Delta \rho_{\min} = -0.39 \text{ e} \text{ Å}^{-3}$ |
|                                                 |                                                       |

# Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|--------------|--------------|--------------|-----------------------------|-----------|
| Cu   | 0.61473 (3)  | 0.26395 (2)  | 0.57692 (3)  | 0.02692 (12)                |           |
| N1   | 0.60619 (19) | 0.13328 (15) | 0.6141 (2)   | 0.0324 (5)                  |           |
| N2   | 0.5581 (2)   | 0.00805 (16) | 0.6757 (2)   | 0.0408 (6)                  |           |
| H2N  | 0.5252       | -0.0276      | 0.7056       | 0.049*                      |           |
| N3   | 0.64575 (19) | 0.39456 (14) | 0.56052 (19) | 0.0310 (5)                  |           |
| N4   | 0.6481 (2)   | 0.54324 (16) | 0.5765 (2)   | 0.0423 (6)                  |           |
| H4N  | 0.6401       | 0.5966       | 0.5997       | 0.051*                      |           |
| 01   | 0.52250 (17) | 0.29662 (13) | 0.66172 (17) | 0.0356 (4)                  |           |
| O2   | 0.69612 (18) | 0.29561 (17) | 0.8353 (2)   | 0.0515 (6)                  |           |
| O3   | 0.19639 (16) | 0.27227 (12) | 0.98022 (16) | 0.0311 (4)                  |           |
| O4   | 0.37130 (19) | 0.25600 (14) | 1.14909 (18) | 0.0436 (5)                  |           |
| O5   | 0.41477 (17) | 0.27662 (13) | 0.38636 (17) | 0.0387 (5)                  |           |
| H5A  | 0.3510       | 0.2580       | 0.3861       | 0.058*                      |           |
| H5B  | 0.4082       | 0.2721       | 0.3166       | 0.058*                      |           |
| O1W  | 0.0571 (2)   | 0.37164 (15) | 0.7624 (2)   | 0.0548 (6)                  |           |
| H1A  | 0.1072       | 0.3426       | 0.8274       | 0.082*                      |           |
| H1B  | 0.0011       | 0.3328       | 0.7129       | 0.082*                      |           |
| O2WA | 0.1105 (11)  | 0.4187 (8)   | 0.5762 (10)  | 0.181 (5)                   | 0.50      |
| H2A  | 0.0710       | 0.4002       | 0.6169       | 0.271*                      | 0.50      |
| H2B  | 0.1794       | 0.3868       | 0.6144       | 0.271*                      | 0.50      |
| O2WB | -0.0010 (9)  | 0.5394 (6)   | 0.5243 (9)   | 0.127 (3)                   | 0.50      |
| H2C  | 0.0693       | 0.5188       | 0.5711       | 0.190*                      | 0.50      |
| H2D  | -0.0381      | 0.5579       | 0.5650       | 0.190*                      | 0.50      |
| C1   | 0.5111 (2)   | 0.30793 (18) | 0.8430 (2)   | 0.0294 (6)                  |           |
| C2   | 0.3978 (2)   | 0.26894 (18) | 0.7913 (2)   | 0.0325 (6)                  |           |

| H2  | 0.3638     | 0.2466       | 0.7127     | 0.039*     |
|-----|------------|--------------|------------|------------|
| C3  | 0.3324 (2) | 0.26212 (18) | 0.8547 (2) | 0.0327 (6) |
| Н3  | 0.2564     | 0.2343       | 0.8181     | 0.039*     |
| C4  | 0.3787 (2) | 0.29591 (18) | 0.9699 (2) | 0.0283 (5) |
| C5  | 0.5331 (3) | 0.3954 (2)   | 1.1323 (2) | 0.0376 (6) |
| Н5  | 0.4903     | 0.3923       | 1.1750     | 0.045*     |
| C6  | 0.6357 (3) | 0.4476 (2)   | 1.1762 (3) | 0.0441 (7) |
| H6  | 0.6605     | 0.4810       | 1.2468     | 0.053*     |
| C7  | 0.7035 (3) | 0.4508 (2)   | 1.1152 (3) | 0.0452 (7) |
| H7  | 0.7740     | 0.4856       | 1.1463     | 0.054*     |
| C8  | 0.6671 (3) | 0.4035 (2)   | 1.0115 (3) | 0.0399 (7) |
| H8  | 0.7144     | 0.4053       | 0.9733     | 0.048*     |
| C9  | 0.5581 (2) | 0.35118 (17) | 0.9593 (2) | 0.0287 (5) |
| C10 | 0.4903 (2) | 0.34582 (17) | 1.0226 (2) | 0.0284 (5) |
| C11 | 0.5842 (3) | 0.30043 (18) | 0.7771 (3) | 0.0329 (6) |
| C12 | 0.3125 (2) | 0.27394 (17) | 1.0399 (2) | 0.0289 (6) |
| C13 | 0.6235 (2) | 0.46473 (19) | 0.6125 (2) | 0.0352 (6) |
| H13 | 0.5945     | 0.4598       | 0.6674     | 0.042*     |
| C14 | 0.6877 (3) | 0.5244 (2)   | 0.4974 (3) | 0.0585 (9) |
| H14 | 0.7112     | 0.5661       | 0.4572     | 0.070*     |
| C15 | 0.6865 (3) | 0.4329 (2)   | 0.4878 (3) | 0.0561 (9) |
| H15 | 0.7099     | 0.4006       | 0.4391     | 0.067*     |
| C16 | 0.5431 (3) | 0.0979 (2)   | 0.6621 (3) | 0.0418 (7) |
| H16 | 0.4940     | 0.1315       | 0.6838     | 0.050*     |
| C17 | 0.6345 (3) | -0.0168 (2)  | 0.6339 (3) | 0.0405 (7) |
| H17 | 0.6612     | -0.0754      | 0.6316     | 0.049*     |
| C18 | 0.6642 (3) | 0.05965 (19) | 0.5964 (3) | 0.0389 (6) |
| H18 | 0.7161     | 0.0627       | 0.5635     | 0.047*     |
|     |            |              |            |            |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$      |
|------|--------------|--------------|--------------|--------------|--------------|---------------|
| Cu   | 0.03055 (19) | 0.02963 (19) | 0.03180 (19) | 0.00027 (12) | 0.02397 (15) | -0.00133 (13) |
| N1   | 0.0350 (12)  | 0.0336 (13)  | 0.0378 (12)  | 0.0004 (10)  | 0.0250 (10)  | -0.0019 (10)  |
| N2   | 0.0484 (14)  | 0.0342 (14)  | 0.0467 (14)  | -0.0069 (11) | 0.0287 (12)  | 0.0010 (11)   |
| N3   | 0.0341 (12)  | 0.0315 (12)  | 0.0365 (12)  | 0.0011 (9)   | 0.0241 (10)  | 0.0009 (9)    |
| N4   | 0.0448 (14)  | 0.0314 (13)  | 0.0511 (15)  | -0.0005 (10) | 0.0234 (12)  | -0.0021 (11)  |
| 01   | 0.0446 (11)  | 0.0381 (11)  | 0.0412 (11)  | 0.0005 (8)   | 0.0344 (10)  | -0.0015 (8)   |
| O2   | 0.0333 (12)  | 0.0736 (15)  | 0.0599 (14)  | 0.0010 (10)  | 0.0323 (11)  | -0.0102 (11)  |
| 03   | 0.0295 (10)  | 0.0387 (10)  | 0.0359 (10)  | -0.0006 (8)  | 0.0243 (9)   | 0.0022 (8)    |
| O4   | 0.0398 (11)  | 0.0662 (14)  | 0.0322 (11)  | 0.0016 (10)  | 0.0233 (9)   | 0.0083 (9)    |
| 05   | 0.0379 (11)  | 0.0476 (12)  | 0.0360 (10)  | -0.0086 (9)  | 0.0222 (9)   | -0.0074 (9)   |
| O1W  | 0.0509 (13)  | 0.0544 (14)  | 0.0585 (14)  | 0.0047 (11)  | 0.0261 (11)  | -0.0028 (11)  |
| O2WA | 0.216 (12)   | 0.203 (12)   | 0.214 (12)   | -0.016 (9)   | 0.175 (11)   | 0.029 (9)     |
| O2WB | 0.117 (6)    | 0.131 (8)    | 0.126 (7)    | -0.021 (6)   | 0.054 (6)    | -0.012 (6)    |
| C1   | 0.0315 (14)  | 0.0311 (14)  | 0.0351 (14)  | 0.0024 (11)  | 0.0236 (12)  | 0.0008 (11)   |
| C2   | 0.0341 (15)  | 0.0403 (16)  | 0.0315 (14)  | -0.0037 (11) | 0.0225 (12)  | -0.0070 (11)  |
| C3   | 0.0287 (14)  | 0.0423 (16)  | 0.0350 (14)  | -0.0053 (11) | 0.0218 (12)  | -0.0046 (12)  |
|      |              |              |              |              |              |               |

| C4  | 0.0290 (13) | 0.0336 (14) | 0.0311 (13) | 0.0035 (10)  | 0.0215 (11) | 0.0028 (11)  |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C5  | 0.0421 (16) | 0.0464 (17) | 0.0325 (14) | -0.0013 (13) | 0.0245 (13) | -0.0036 (12) |
| C6  | 0.0501 (18) | 0.0453 (18) | 0.0374 (16) | -0.0077 (14) | 0.0217 (14) | -0.0098 (13) |
| C7  | 0.0369 (16) | 0.0500 (19) | 0.0490 (18) | -0.0146 (13) | 0.0211 (14) | -0.0088 (14) |
| C8  | 0.0360 (15) | 0.0437 (17) | 0.0478 (17) | -0.0077 (13) | 0.0265 (14) | -0.0009 (13) |
| C9  | 0.0290 (13) | 0.0304 (14) | 0.0329 (13) | 0.0021 (10)  | 0.0200 (11) | 0.0016 (10)  |
| C10 | 0.0309 (13) | 0.0295 (14) | 0.0304 (13) | 0.0027 (10)  | 0.0192 (11) | 0.0016 (10)  |
| C11 | 0.0417 (17) | 0.0273 (14) | 0.0469 (17) | -0.0020 (11) | 0.0351 (14) | -0.0013 (11) |
| C12 | 0.0332 (14) | 0.0292 (14) | 0.0345 (14) | 0.0018 (11)  | 0.0245 (12) | -0.0001 (11) |
| C13 | 0.0354 (15) | 0.0381 (16) | 0.0348 (14) | -0.0012 (12) | 0.0192 (12) | -0.0017 (12) |
| C14 | 0.080 (2)   | 0.0393 (19) | 0.087 (3)   | 0.0010 (16)  | 0.065 (2)   | 0.0105 (17)  |
| C15 | 0.087 (3)   | 0.0380 (18) | 0.081 (2)   | 0.0069 (16)  | 0.070 (2)   | 0.0094 (16)  |
| C16 | 0.0528 (18) | 0.0339 (16) | 0.0551 (18) | -0.0020 (13) | 0.0390 (16) | -0.0023 (13) |
| C17 | 0.0414 (16) | 0.0339 (16) | 0.0454 (16) | 0.0028 (12)  | 0.0206 (14) | 0.0011 (13)  |
| C18 | 0.0403 (16) | 0.0370 (16) | 0.0467 (17) | 0.0057 (12)  | 0.0268 (14) | 0.0023 (13)  |
|     |             |             |             |              |             |              |

Geometric parameters (Å, °)

| Cu—N1               | 1.992 (2)   | C1—C2    | 1.371 (4) |
|---------------------|-------------|----------|-----------|
| Cu—N3               | 1.990 (2)   | C1—C9    | 1.439 (4) |
| Cu—01               | 1.9819 (17) | C1—C11   | 1.515 (3) |
| Cu—O3 <sup>i</sup>  | 2.0116 (17) | C2—C3    | 1.404 (4) |
| Cu—O5               | 2.506 (2)   | C2—H2    | 0.9300    |
| N1-C16              | 1.317 (3)   | C3—C4    | 1.372 (4) |
| N1-C18              | 1.382 (3)   | С3—Н3    | 0.9300    |
| N2-C16              | 1.333 (4)   | C4—C10   | 1.430 (4) |
| N2                  | 1.351 (4)   | C4—C12   | 1.514 (3) |
| N2—H2N              | 0.8600      | C5—C6    | 1.365 (4) |
| N3—C13              | 1.323 (3)   | C5—C10   | 1.421 (4) |
| N3—C15              | 1.372 (4)   | С5—Н5    | 0.9300    |
| N4—C13              | 1.331 (4)   | C6—C7    | 1.400 (4) |
| N4-C14              | 1.344 (4)   | С6—Н6    | 0.9300    |
| N4—H4N              | 0.8600      | C7—C8    | 1.352 (4) |
| 01—C11              | 1.278 (3)   | С7—Н7    | 0.9300    |
| O2—C11              | 1.234 (3)   | C8—C9    | 1.424 (4) |
| O3—C12              | 1.277 (3)   | C8—H8    | 0.9300    |
| O3—Cu <sup>ii</sup> | 2.0116 (17) | C9—C10   | 1.426 (3) |
| O4—C12              | 1.237 (3)   | C13—H13  | 0.9300    |
| O5—H5A              | 0.8450      | C14—C15  | 1.351 (5) |
| O5—H5B              | 0.8478      | C14—H14  | 0.9300    |
| O1W—H1A             | 0.8670      | C15—H15  | 0.9300    |
| O1W—H1B             | 0.8864      | C16—H16  | 0.9300    |
| O2WA—H2A            | 0.9128      | C17—C18  | 1.340 (4) |
| O2WA—H2B            | 0.8933      | C17—H17  | 0.9300    |
| O2WB—H2C            | 0.8461      | C18—H18  | 0.9300    |
| O2WB—H2D            | 0.8876      |          |           |
| O1—Cu—N3            | 91.04 (8)   | С6—С5—Н5 | 119.3     |
|                     |             |          |           |

| O1—Cu—N1                | 89.64 (8)   | С10—С5—Н5   | 119.3     |
|-------------------------|-------------|-------------|-----------|
| N3—Cu—N1                | 172.02 (9)  | C5—C6—C7    | 120.2 (3) |
| O1—Cu—O3 <sup>i</sup>   | 175.67 (8)  | С5—С6—Н6    | 119.9     |
| N3—Cu—O3 <sup>i</sup>   | 90.49 (8)   | С7—С6—Н6    | 119.9     |
| N1—Cu—O3 <sup>i</sup>   | 89.41 (8)   | C8—C7—C6    | 120.4 (3) |
| O5—Cu—N1                | 98.89 (8)   | С8—С7—Н7    | 119.8     |
| O5—Cu—N3                | 89.09 (8)   | С6—С7—Н7    | 119.8     |
| O5—Cu—O1                | 85.66 (7)   | C7—C8—C9    | 121.6 (3) |
| O5—Cu—O3 <sup>i</sup>   | 90.32 (7)   | С7—С8—Н8    | 119.2     |
| C16—N1—C18              | 104.3 (2)   | С9—С8—Н8    | 119.2     |
| C16—N1—Cu               | 127.07 (19) | C8—C9—C10   | 118.2 (2) |
| C18—N1—Cu               | 128.61 (18) | C8—C9—C1    | 122.6 (2) |
| C16—N2—C17              | 107.4 (2)   | C10—C9—C1   | 119.1 (2) |
| C16—N2—H2N              | 126.3       | C5—C10—C9   | 118.2 (2) |
| C17—N2—H2N              | 126.3       | C5—C10—C4   | 122.6 (2) |
| C13—N3—C15              | 104.5 (2)   | C9—C10—C4   | 119.1 (2) |
| C13—N3—Cu               | 126.94 (18) | O2—C11—O1   | 124.2 (2) |
| C15—N3—Cu               | 128.44 (19) | O2—C11—C1   | 119.8 (2) |
| C13—N4—C14              | 107.9 (3)   | O1—C11—C1   | 115.9 (2) |
| C13—N4—H4N              | 126.0       | O4—C12—O3   | 123.3 (2) |
| C14—N4—H4N              | 126.0       | O4—C12—C4   | 119.7 (2) |
| C11—O1—Cu               | 115.93 (16) | O3—C12—C4   | 117.0 (2) |
| C12—O3—Cu <sup>ii</sup> | 114.83 (16) | N3—C13—N4   | 111.5 (2) |
| H5A—O5—H5B              | 110.9       | N3—C13—H13  | 124.3     |
| H1A—O1W—H1B             | 108.4       | N4—C13—H13  | 124.3     |
| H2A—O2WA—H2B            | 100.9       | N4—C14—C15  | 106.2 (3) |
| H2C—O2WB—H2D            | 111.6       | N4—C14—H14  | 126.9     |
| C2—C1—C9                | 119.3 (2)   | C15—C14—H14 | 126.9     |
| C2—C1—C11               | 118.3 (2)   | C14—C15—N3  | 109.9 (3) |
| C9—C1—C11               | 122.4 (2)   | C14—C15—H15 | 125.0     |
| C1—C2—C3                | 121.2 (2)   | N3—C15—H15  | 125.0     |
| С1—С2—Н2                | 119.4       | N1-C16-N2   | 111.8 (3) |
| С3—С2—Н2                | 119.4       | N1—C16—H16  | 124.1     |
| C4—C3—C2                | 121.0 (2)   | N2—C16—H16  | 124.1     |
| С4—С3—Н3                | 119.5       | C18—C17—N2  | 106.5 (3) |
| С2—С3—Н3                | 119.5       | C18—C17—H17 | 126.7     |
| C3—C4—C10               | 119.7 (2)   | N2—C17—H17  | 126.7     |
| C3—C4—C12               | 118.1 (2)   | C17—C18—N1  | 109.9 (2) |
| C10-C4-C12              | 122.1 (2)   | С17—С18—Н18 | 125.1     |
| C6—C5—C10               | 121.4 (2)   | N1—C18—H18  | 125.1     |

Symmetry codes: (i) x+1/2, -y+1/2, z-1/2; (ii) x-1/2, -y+1/2, z+1/2.

# Hydrogen-bond geometry (Å, °)

| D—H···A                        | D—H  | Н…А  | D····A    | <i>D</i> —H··· <i>A</i> |
|--------------------------------|------|------|-----------|-------------------------|
| 01 <i>W</i> —H1 <i>A</i> ···O3 | 0.87 | 1.99 | 2.846 (3) | 170                     |
| $O1W$ — $H1B$ ···· $O4^{iii}$  | 0.89 | 1.93 | 2.789 (3) | 162                     |

| 0.91 | 1.97                                                 | 2.828 (13)                                                                                                                              | 155                                                                                                                       |                                                      |
|------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 0.85 | 1.55                                                 | 2.156 (16)                                                                                                                              | 126                                                                                                                       |                                                      |
| 0.86 | 1.96                                                 | 2.798 (4)                                                                                                                               | 165                                                                                                                       |                                                      |
| 0.86 | 2.02                                                 | 2.866 (3)                                                                                                                               | 166                                                                                                                       |                                                      |
| 0.85 | 1.90                                                 | 2.716 (3)                                                                                                                               | 162                                                                                                                       |                                                      |
| 0.85 | 1.95                                                 | 2.791 (3)                                                                                                                               | 172                                                                                                                       |                                                      |
| 0.93 | 2.50                                                 | 3.389 (4)                                                                                                                               | 160                                                                                                                       |                                                      |
|      | 0.91<br>0.85<br>0.86<br>0.86<br>0.85<br>0.85<br>0.93 | $\begin{array}{cccc} 0.91 & 1.97 \\ 0.85 & 1.55 \\ 0.86 & 1.96 \\ 0.86 & 2.02 \\ 0.85 & 1.90 \\ 0.85 & 1.95 \\ 0.93 & 2.50 \end{array}$ | 0.911.972.828 (13)0.851.552.156 (16)0.861.962.798 (4)0.862.022.866 (3)0.851.902.716 (3)0.851.952.791 (3)0.932.503.389 (4) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Symmetry codes: (iii) x-1/2, -y+1/2, z-1/2; (iv) -x+1/2, y-1/2, -z+3/2; (v) -x+1, -y+1, -z+1; (vi) x, y, z-1; (vii) -x+3/2, y-1/2, -z+3/2.