organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(1H-Benzimidazol-1-yl)-1-phenylethanone

Özden Özel Güven,^a Taner Erdoğan,^a Simon J. Coles^b and Tuncer Hökelek^c*

^aZonguldak Karaelmas University, Department of Chemistry, 67100 Zonguldak, Turkey, ^bSouthampton University, Department of Chemistry, Southampton SO17 1BJ, England, and ^cHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey

Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 18 June 2008; accepted 24 June 2008

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.119; data-to-parameter ratio = 12.4.

In the molecule of the title compound, $C_{15}H_{12}N_2O$, the planar benzimidazole system is oriented at a dihedral angle of $80.43(5)^{\circ}$ with respect to the phenyl ring. In the crystal structure, non-classical intermolecular C-H···N and C- $H \cdots O$ hydrogen bonds link the molecules into layers parallel to the *ab* plane.

Related literature

For general backgroud, see: Göker et al. (2002); Özden et al. (2004); Özel Güven et al. (2007a,b); Schar et al. (1976). For related literature, see: Peeters et al. (1997); Freer et al. (1986); Özel Güven et al. (2007).

Experimental

Crystal data

C15H12N2O $M_r = 236.27$ Monoclinic, P21 a = 5.0475 (2) Å b = 11.2319 (6) Å c = 10.3517 (5) Å $\beta = 96.620 \ (3)^{\circ}$

 $V = 582.96 (5) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^-$ T = 120 (2) K 0.45 \times 0.22 \times 0.03 mm


```
Bruker-Nonius KappaCCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 2007)
  T_{\min} = 0.962, T_{\max} = 0.997
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	1 restraint
$vR(F^2) = 0.119$	All H-atom parameters refined
S = 1.06	$\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-3}$
639 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
212 parameters	

6918 measured reflections

 $R_{\rm int} = 0.057$

2639 independent reflections

2265 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} \hline C8-H81\cdots N2^{i}\\ C8-H82\cdots O1^{ii} \end{array}$	0.95 (2)	2.43 (2)	3.355 (3)	165.2 (17)
	0.98 (2)	2.38 (2)	3.351 (3)	170.1 (17)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z; (ii) x + 1, y, z.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge Zonguldak Karaelmas University Research Fund (grant No: 2004–13-02–16).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2097).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Freer, A. A., Pearson, A. & Salole, E. G. (1986). Acta Cryst. C42, 1350-1352. Göker, H., Kuş, C., Boykin, D. W., Yıldız, S. & Altanlar, N. (2002). Bioorg. Med. Chem. 10, 2589-2596.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Özden, S., Karataş, H., Yıldız, S. & Göker, H. (2004). Arch. Pharm. 337, 556-562.
- Özel Güven, Ö., Erdoğan, T., Çaylak, N. & Hökelek, T. (2007). Acta Cryst. E63, 03463-03464.
- Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233-2236.
- Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731-734.
- Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1997). Bull. Soc. Chim. Belg. 88, 265-272.
- Schar, G., Kayser, F. H. & Dupont, M. C. (1976). Chemotheraphy, 22, 211-220. Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o1358 [doi:10.1107/S1600536808019107]

2-(1H-Benzimidazol-1-yl)-1-phenylethanone

Özden Özel Güven, Taner Erdoğan, Simon J. Coles and Tuncer Hökelek

S1. Comment

Benzimidazoles have been shown to exhibit a large number of biological activities. Some of the substituted benzimidazole derivatives have highly potent antifungal (Göker *et al.*, 2002) and antibacterial (Özden *et al.*, 2004) activities. Recently, it has been reported that benzimidazole ring containing aryl ethers (Özel Güven *et al.*, 2007*a*,b) similar to miconazole (Peeters *et al.*, 1997) and econazole (Freer *et al.*, 1986) structures have more antibacterial activities than antifungal activities (Schar *et al.*, 1976). The crystal structure of oxime form of the benzimidazole substituted ketone has been reported previously (Özel Güven *et al.*, 2007). We report herein the crystal structure of ketone, which is a starting material for biologically important molecules.

In the molecule of the title compound (Fig. 1) the bond lengths and angles are generally within normal ranges. The planar benzimidazole ring system is oriented with respect to the phenyl ring at a dihedral angle of 80.43 (5)°. Atoms C8 and C9 are -0.010 (2) Å and 0.044 (2) Å away from the ring planes of benzimidazole and phenyl, respectively. So, they are coplanar with the adjacent rings. The N1—C8—C9 [111.88 (15)°] and C8—C9—C10 [117.10 (15)°] bond angles are highly different from each other, while O1—C9—C8 [121.07 (16)°] and O1—C9—C10 [121.84 (17)°] bond angles are nearly equal. The N1—C1—N2 [114.25 (18)°], N2—C2—C7 [110.35 (17)°] and C2—C7—C6 [123.30 (18)°] bond angles are enlarged, while C5—C6—C7 [116.34 (19)°] bond angle is narrowed, probably due to the intermolecular C—H…N and C—H…O hydrogen bonds (Table 1).

In the crystal structure, non-classical intermolecular C—H···N and C—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to the a,b plane (Fig. 2), in which they seem to be effective in the stabilization of the crystal structure.

S2. Experimental

The title compound, was synthesized by the reaction of 2-bromo-1-phenyl- ethanone (Özel Güven *et al.*, 2007*a*) with 1*H*-benzimidazole. A solution of 2-bromo-1-phenylethanone (4.00 g, 20.10 mmol) in dioxane-ether (8 ml) was added to an ice-cold solution of benzimidazole (11.87 g, 100.5 mmol) in methanol (20 ml) over 60 min under argon atmosphere. The reaction mixture was warmed to ambient temperature and stirred for an additional 18 h, diluted with water (20 ml), and then extracted with chloroform. Organic extract was dried over anhydrous sodium sulfate, concentrated under reduced pressure, and then chromatographed on neutral silica-gel column using chloroform-methanol as eluent. Crystals suitable for X-ray analysis were obtained by the recrystallization of the ketone from a mixture of hexane/ethyl acetate (1:2) (yield; 2.85 g, 60%).

S3. Refinement

In the absence of significant anomalous scattering effects, Friedel pairs were merged. H atoms were located in difference syntheses and refined isotropically [C—H = 0.95 (2)–1.06 (3) Å; $U_{iso}(H) = 0.020$ (5)–0.061 (9) Å²].

Figure 1

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A partial packing diagram of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

2-(1*H*-Benzimidazol-1-yl)-1-phenylethanone

ıl data	
N_2O	V = 582.96 (5) Å ³
236.27	Z = 2
clinic, $P2_1$	F(000) = 248
ymbol: P 2yb	$D_{\rm x} = 1.346 {\rm ~Mg} {\rm ~m}^{-3}$
0475 (2) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
.2319 (6) Å	Cell parameters from 1379 reflections
.3517 (5) Å	$\theta = 2.9 - 27.5^{\circ}$
.620 (3)°	$\mu=0.09~\mathrm{mm}^{-1}$
36.27 clinic, <i>P</i> 2 ₁ ymbol: P 2yb 0475 (2) Å .2319 (6) Å .3517 (5) Å 6.620 (3)°	Z = 2 F(000) = 248 $D_x = 1.346 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1379 reflection $\theta = 2.9-27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$

T = 120 KPlate, colorless

Data collection

Bruker–Nonius Roper CCD camera on κ-
goniostat
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 9.091 pixels mm ⁻¹
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	All H-atom parameters refined
$wR(F^2) = 0.119$	$w = 1/[\sigma^2(F_o^2) + (0.0651P)^2 + 0.019P]$
S = 1.06	where $P = (F_0^2 + 2F_c^2)/3$
2639 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
212 parameters	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.091 (14)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $0.45 \times 0.22 \times 0.03 \text{ mm}$

 $T_{\min} = 0.962, T_{\max} = 0.997$ 6918 measured reflections 2639 independent reflections 2265 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.6^{\circ}$

 $R_{\rm int} = 0.057$

 $h = -6 \rightarrow 6$ $k = -14 \rightarrow 14$ $l = -13 \rightarrow 13$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.0968 (3)	0.55671 (14)	0.26162 (13)	0.0288 (4)	
N1	0.3784 (3)	0.56655 (14)	0.05460 (15)	0.0236 (4)	
N2	0.3592 (4)	0.41520 (16)	-0.08838 (17)	0.0301 (4)	
C1	0.4848 (4)	0.46224 (19)	0.0180 (2)	0.0265 (4)	
H1	0.651 (6)	0.432 (3)	0.074 (3)	0.048 (7)*	
C2	0.1553 (4)	0.49603 (17)	-0.12561 (19)	0.0251 (4)	
C3	-0.0424 (4)	0.49415 (19)	-0.2318 (2)	0.0288 (5)	
Н3	-0.051 (5)	0.422 (2)	-0.291 (2)	0.034 (6)*	
C4	-0.2249 (4)	0.5857 (2)	-0.2443 (2)	0.0315 (5)	
H4	-0.366 (5)	0.584 (3)	-0.317 (3)	0.045 (7)*	
C5	-0.2133 (4)	0.67987 (19)	-0.1537 (2)	0.0293 (5)	
Н5	-0.340 (4)	0.742 (2)	-0.168 (2)	0.020 (5)*	

C6	-0.0171 (4)	0.68387 (18)	-0.0477 (2)	0.0258 (4)
H6	-0.013 (5)	0.753 (3)	0.011 (3)	0.048 (7)*
C7	0.1634 (4)	0.59090 (17)	-0.03658 (18)	0.0237 (4)
C8	0.4659 (4)	0.63860 (18)	0.16674 (18)	0.0241 (4)
H81	0.481 (4)	0.720 (2)	0.143 (2)	0.025 (5)*
H82	0.642 (4)	0.609 (2)	0.203 (2)	0.025 (5)*
С9	0.2788 (4)	0.62815 (17)	0.27150 (18)	0.0222 (4)
C10	0.3283 (4)	0.70936 (18)	0.38542 (18)	0.0226 (4)
C11	0.5216 (4)	0.79730 (19)	0.39188 (18)	0.0273 (5)
H11	0.646 (4)	0.805 (2)	0.326 (2)	0.024 (5)*
C12	0.5582 (4)	0.8738 (2)	0.4985 (2)	0.0310 (5)
H12	0.695 (5)	0.934 (2)	0.503 (2)	0.031 (6)*
C13	0.3975 (4)	0.8617 (2)	0.5977 (2)	0.0351 (5)
H13	0.420 (5)	0.920 (3)	0.678 (3)	0.047 (7)*
C14	0.2068 (5)	0.7743 (2)	0.5926 (2)	0.0352 (5)
H14	0.089 (6)	0.761 (3)	0.658 (3)	0.061 (9)*
C15	0.1691 (4)	0.69726 (19)	0.4872 (2)	0.0284 (5)
H15	0.036 (4)	0.636 (2)	0.481 (2)	0.025 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0307 (7)	0.0341 (8)	0.0215 (7)	-0.0053 (6)	0.0026 (5)	0.0005 (6)
N1	0.0279 (8)	0.0236 (8)	0.0200 (8)	-0.0005 (7)	0.0049 (6)	-0.0003 (6)
N2	0.0377 (9)	0.0257 (8)	0.0282 (9)	-0.0016 (8)	0.0098 (7)	-0.0009 (7)
C1	0.0316 (10)	0.0239 (9)	0.0249 (10)	-0.0013 (8)	0.0071 (8)	0.0010 (8)
C2	0.0276 (9)	0.0245 (10)	0.0245 (10)	-0.0034 (8)	0.0085 (7)	-0.0015 (8)
C3	0.0341 (10)	0.0313 (11)	0.0219 (10)	-0.0098 (9)	0.0075 (8)	-0.0055 (8)
C4	0.0300 (11)	0.0417 (12)	0.0230 (10)	-0.0051 (9)	0.0034 (8)	0.0013 (8)
C5	0.0303 (10)	0.0336 (12)	0.0244 (10)	0.0019 (9)	0.0052 (8)	0.0009 (8)
C6	0.0297 (10)	0.0265 (10)	0.0222 (9)	0.0016 (8)	0.0072 (7)	-0.0015 (8)
C7	0.0271 (9)	0.0276 (10)	0.0170 (9)	-0.0050 (8)	0.0045 (7)	0.0006 (8)
C8	0.0269 (10)	0.0256 (11)	0.0200 (9)	-0.0007 (8)	0.0029 (8)	-0.0002 (8)
C9	0.0210 (9)	0.0241 (9)	0.0207 (9)	0.0012 (8)	-0.0003 (7)	0.0034 (7)
C10	0.0249 (9)	0.0246 (9)	0.0173 (9)	0.0043 (8)	-0.0022 (7)	0.0027 (7)
C11	0.0293 (10)	0.0311 (11)	0.0218 (10)	-0.0011 (9)	0.0041 (8)	0.0027 (8)
C12	0.0378 (11)	0.0294 (11)	0.0248 (10)	-0.0045 (10)	-0.0001 (9)	-0.0017 (8)
C13	0.0464 (13)	0.0341 (12)	0.0248 (11)	-0.0012 (10)	0.0043 (9)	-0.0040 (9)
C14	0.0414 (11)	0.0437 (13)	0.0222 (10)	-0.0004 (10)	0.0101 (9)	-0.0020 (9)
C15	0.0297 (10)	0.0311 (11)	0.0243 (10)	-0.0029 (9)	0.0032 (7)	0.0015 (8)

Geometric parameters (Å, °)

01-C9	1.215 (2)	C7—C2	1.406 (3)	
N1C1	1.361 (3)	C8—H81	0.95 (3)	
N1—C7	1.381 (2)	C8—H82	0.98 (2)	
N1—C8	1.442 (3)	C9—C8	1.522 (3)	
N2—C1	1.317 (3)	С10—С9	1.489 (3)	

	1 202 (2)		1 402 (2)
N2—C2	1.393 (3)	010-015	1.403 (3)
C1—H1	1.02 (3)	C11—C10	1.384 (3)
C3—C2	1.398 (3)	C11—C12	1.394 (3)
C3—C4	1.377 (3)	C11—H11	0.99 (2)
С3—Н3	1.01 (3)	C12—H12	0.96 (3)
C4—H4	0.98 (3)	C13—C12	1.386 (3)
C5—C4	1.410 (3)	C13—C14	1.371 (3)
С5—Н5	0.95 (2)	C13—H13	1.06(3)
C6-C5	1 391 (3)	C14— $C15$	1.389(3)
C6_C7	1.391(3) 1.382(3)	$C_{14} = C_{13}$	1.369(3)
	1.362(3)		0.90(3)
Со—по	0.99 (3)	С15—Н15	0.90 (2)
C1—N1—C7	106.55 (16)	N1—C8—H81	111.1 (13)
C1—N1—C8	127.82 (17)	N1—C8—H82	107.2 (13)
C7-N1-C8	125.63 (16)	C9-C8-H81	109.4(13)
C1 N2 C2	103 83 (17)	C_{0} C_{8} H_{82}	109.1(13) 108.0(13)
C1 - N2 - C2	105.05(17)	$1101 C^{\circ} 1102$	100.0(13)
NI-CI-HI	110.9(10)	$H\delta I = C\delta = H\delta 2$	109.1(19)
N2—CI—NI	114.25 (18)	01-09-08	121.07 (16)
N2—C1—H1	128.8 (16)	01	121.84 (17)
N2—C2—C3	130.22 (18)	C10—C9—C8	117.10 (15)
N2—C2—C7	110.35 (17)	C11—C10—C9	121.91 (17)
C3—C2—C7	119.43 (18)	C11—C10—C15	119.61 (18)
С2—С3—Н3	117.7 (14)	C15—C10—C9	118.47 (18)
C4—C3—C2	118.14 (19)	C10-C11-C12	120.42 (18)
С4—С3—Н3	124.0 (14)	C10-C11-H11	122.1 (13)
C3—C4—C5	121.5 (2)	C12—C11—H11	117.4 (13)
C3—C4—H4	118.4 (17)	C13—C12—C11	119.4 (2)
C5-C4-H4	1201(17)	C_{13} $-C_{12}$ $-H_{12}$	120.8(15)
C6-C5-C4	120.1(17) 121.3(2)	C_{11} C_{12} H_{12}	120.0(15)
C6 C5 H5	121.3(2) 120 4 (12)	$C_{12} = C_{12} = H_{12}$	119.0(15)
$C_0 = C_5 = H_5$	120.4(13)	C12 - C13 - III3	120.3(13)
	110.3(15)	C14 - C13 - C12	120.7(2)
	118.1 (15)	C14—C13—H13	119.0 (15)
C7—C6—C5	116.34 (19)	C13—C14—C15	120.5 (2)
С7—С6—Н6	125.5 (15)	C13—C14—H14	125 (2)
N1—C7—C2	105.01 (16)	C15—C14—H14	115 (2)
N1—C7—C6	131.69 (17)	C10—C15—H15	118.6 (13)
C6—C7—C2	123.30 (18)	C14—C15—C10	119.4 (2)
N1—C8—C9	111.88 (15)	C14—C15—H15	122.0 (13)
	0.2.(2)		0.66 (10)
C/—NI—CI—N2	-0.3(2)	NI - C/ - C2 - N2	0.66 (19)
C8—N1—C1—N2	178.87 (18)	N1—C7—C2—C3	-179.80 (17)
C1—N1—C7—C2	-0.21 (18)	C6—C7—C2—N2	-179.13 (17)
C1—N1—C7—C6	179.6 (2)	C6—C7—C2—C3	0.4 (3)
C8—N1—C7—C2	-179.44 (17)	O1—C9—C8—N1	7.0 (2)
C8—N1—C7—C6	0.3 (3)	C10—C9—C8—N1	-172.76 (16)
C1—N1—C8—C9	-105.9 (2)	C11—C10—C9—O1	-174.63 (18)
C7—N1—C8—C9	73.2 (2)	C11—C10—C9—C8	5.1 (3)
C2—N2—C1—N1	0.7 (2)	C15—C10—C9—O1	3.9 (3)
	· · ·		

C1 - N2 - C2 - C3 $C1 - N2 - C2 - C7$ $C4 - C3 - C2 - N2$ $C4 - C3 - C2 - C7$ $C2 - C3 - C4 - C5$ $C6 - C5 - C4 - C3$ $C5 - C6 - C7 - N1$ $C5 - C6 - C7 - C2$	179.7 (2) -0.8 (2) 178.8 (2) -0.7 (3) 0.6 (3) -0.2 (3) -179.7 (2) 0.0 (3)	C15—C10—C9—C8 C9—C10—C15—C14 C11—C10—C15—C14 C10—C11—C12—C13 C12—C11—C10—C9 C12—C11—C10—C9 C12—C11—C10—C15 C14—C13—C12—C11 C12—C13—C14—C15	-176.38 (17) -178.14 (19) 0.4 (3) -0.6 (3) 178.37 (18) -0.1 (3) 1.1 (3) -0.8 (3)
C5-C6-C7-C2	0.0 (3)	C12—C13—C14—C15	-0.8(3)
C7-C6-C5-C4	-0.1 (3)	C13—C14—C15—C10	0.0(3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
C8—H81···N2 ⁱ	0.95 (2)	2.43 (2)	3.355 (3)	165.2 (17)
C8—H82···O1 ⁱⁱ	0.98 (2)	2.38 (2)	3.351 (3)	170.1 (17)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*; (ii) *x*+1, *y*, *z*.