organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-{(*E*)-({2-[(1*E*)-(2,4-Dihydroxybenzylidene)amino]phenyl}iminiomethyl)-5hydroxyphenolate methanol solvate

Naser Eltaher Eltayeb,^a‡ Siang Guan Teoh,^a Suchada Chantrapromma,^b§ Hoong-Kun Fun^c* and Rohana Adnan^a

^aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 11 May 2008; accepted 14 May 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.057; wR factor = 0.163; data-to-parameter ratio = 20.7.

The asymmetric unit of the title compound, C₂₀H₁₆N₂O₄.-CH₃OH, contains two Schiff base zwitterions and two methanol solvent molecules. The dihedral angles between the central benzene ring and the two outer benzene rings of the Schiff base are 2.57 (7) and 52.30 (7) $^{\circ}$ in one molecule and 5.83 (7) and 49.82 (7) $^{\circ}$ in the other molecule. Intramolecular $O-H \cdots N$ and $N-H \cdots O$ hydrogen bonds generate S(6) ring motifs, whereas intramolecular N-H···N hydrogen bonds generate S(5) ring motifs. In the crystal structure, $O-H \cdots O$, hydrogen bonds and weak C-H···O interactions link the molecules into one-dimensional chains along the b-axis direction and are further connected by $O-H\cdots O$ and weak C-H···O interactions into a three-dimensional network. C- $H \cdots \pi$ and $\pi - \pi$ interactions [centroid-centroid distances = 3.6228 (9) and 3.6881 (9) Å] are also observed in the crystal structure.

Related literature

For bond-length data, see: Allen *et al.* (1987). For details of hydrogen-bond motifs, see: Bernstein *et al.* (1995). For related structures, see, for example: Eltayeb *et al.* (2007*a,b*). For background to applications of Schiff base ligands, see, for example: Dao *et al.* (2000); Eltayeb & Ahmed (2005*a,b*); Fakhari *et al.* (2005); Karthikeyan *et al.* (2006); Sriram *et al.* (2006).

OH

 $\begin{array}{l} C_{20}H_{16}N_2O_4 \cdot CH_4O\\ M_r = 380.39\\ \text{Triclinic, } P\overline{1}\\ a = 8.3672 \ (2) \ \mathring{A}\\ b = 11.0813 \ (2) \ \mathring{A}\\ c = 20.3217 \ (3) \ \mathring{A}\\ \alpha = 89.313 \ (1)^\circ\\ \beta = 80.309 \ (1)^\circ \end{array}$

Data collection

```
Bruker SMART APEX2 CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
T<sub>min</sub> = 0.952, T<sub>max</sub> = 0.984
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.162$ S = 1.0510651 reflections 42593 measured reflections 10651 independent reflections 7203 reflections with $I > 2\sigma(I)$ ' $R_{\text{int}} = 0.034$

OH

V = 1826.73 (6) Å³

Mo $K\alpha$ radiation

 $\mu = 0.10 \text{ mm}^{-3}$

T = 100.0 (1) K

 $0.50 \times 0.34 \times 0.17 \text{ mm}$

Z = 4

515 parameters H-atom parameters constrained
$$\begin{split} &\Delta\rho_{max}=0.44~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.34~e~{\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1A - H1OA \cdots O5B^{i}$	0.95	1.71	2.6610 (16)	176
$O3A - H3OA \cdots N2A$	0.96	1.78	2.6637 (16)	153
$O4A - H4OA \cdots O2A^{ii}$	0.82	1.83	2.6330 (16)	164
$N1A - H1NA \cdots O2A$	0.92	1.84	2.6021 (16)	138
$N1A - H1NA \cdot \cdot \cdot N2A$	0.92	2.31	2.7063 (16)	106
$O1B-H1OB\cdots O5A^{iii}$	0.99	1.64	2.6205 (16)	170
$O3B - H3OB \cdot \cdot \cdot N2B$	0.94	1.77	2.6526 (16)	154
$O4B-H4OB\cdots O2B^{iv}$	0.89	1.74	2.6241 (16)	174
$N1B - H1NB \cdot \cdot \cdot O2B$	0.87	1.88	2.6006 (16)	139
$N1B - H1NB \cdot \cdot \cdot N2B$	0.87	2.32	2.7020 (16)	107
$O5A - H5OA \cdots O2B$	0.84	1.91	2.7145 (16)	162
O5A−H5OA···O3B	0.84	2.58	2.9703 (15)	110
$O5B-H5OB\cdots O2A$	0.91	1.83	2.7034 (16)	160
$C4A - H4A \cdots O5B^{i}$	0.93	2.48	3.165 (2)	131
$C4B - H4B \cdots O5A^{iii}$	0.93	2.48	3.1596 (19)	130
$C7A - H7A \cdots O4B^{iv}$	0.93	2.36	3.1691 (17)	146
$C7B - H7B \cdots O4A^{ii}$	0.93	2.35	3.1253 (17)	141
$C12B - H12B \cdots O1B^{v}$	0.93	2.55	3.3603 (18)	146
$C21B-H21D\cdots O3A$	0.96	2.44	3.134 (2)	129
$C21B-H21D\cdots Cg3^{vi}$	0.96	2.86	3.568 (2)	132

 $[\]mathbf{Experimental}$ $Crystal \ data$ $C_{20}H_{16}N_2O_4:CH_4O$ $\gamma = 79.641 \ (1)^\circ$

[‡] On study leave from International University of Africa, Sudan. E-mail: nasertaha90@hotmail.com.

[§] Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for E-Science Fund and RU research grants (PKIMIA/613308, PKIMIA/815002, 203/ PKIMIA/671083) and a fellowship for NEE. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. The authors also thank Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/671064.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2499).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). *Eur. J. Med. Chem.* **35**, 805–813.
- Eltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Tech. 6, 51-59.
- Eltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97-108.
- Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, 03094–03095.
- Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, 03234–03235.
- Fakhari, A. R., Khorrami, A. R. & Naeimi, H. (2005). Talanta, 66, 813-817.
- Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). *Bioorg. Med. Chem.* 14, 7482–7489.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sriram, D., Yogesswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.

supporting information

Acta Cryst. (2008). E64, o1246-o1247 [doi:10.1107/S1600536808014487]

2-((*E*)-{2-[(1*E*)-(2,4-Dihydroxybenzylidene)amino]phenyl}iminiomethyl)-5-hydroxyphenolate methanol solvate

Naser Eltaher Eltayeb, Siang Guan Teoh, Suchada Chantrapromma, Hoong-Kun Fun and Rohana Adnan

S1. Comment

Schiff bases have received much attention because of their potential applications with some of these compounds exhibiting various pharmacological activities, as noted by their anticancer (Dao *et al.*, 2000), anti-HIV (Sriram *et al.*, 2006), antibacterial and antifungal (Karthikeyan *et al.*, 2006) properties. In addition, some of them may be used as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005*a*,*b*) such as nickel in some natural food products (Fakhari *et al.*, 2005). We reported the crystal structures of 5,5'-Dimethoxy-2,2'-[1,2-phenylenebis(nitrilomethylidyne)diphenol (Eltayeb *et al.*, 2007*a*) and 4,4'-Dimethoxy-2,2'-[1,2-phenylenebis(nitrilomethylidyne)diphenol (Eltayeb *et al.*, 2007*b*) and we report here the structure of the title compound (I), a closely-related Schiff base.

The asymmetric unit of (I) (Fig. 1) contains two Schiff base zwitterions and two methanol molecules (*A* and *B*). The zwitterion results from protonation of the imine N1A and N1B atoms with protons from the O2A and O2B hydroxy groups resulting in the formation of iminium and hydroxyphenolate groups. In the structure, the hydroxyphenolate ring (C1–C6/O1-O2) is nearly coplanar with the phenyl ring (C8–C13) as indicated by the dihedral angles between these two rings being 2.57 (7)° in molecule *A* and 5.83 (7)° in molecule *B* and the torsion angle C8/N1/C7/C6 = 179.33 (2)° in molecule *A* and 178.07 (12)° in molecule *B*. The C8–C13 phenyl ring makes a dihedral angle of 52.30 (7)° with the dihydroxyphenyl ring (C15–C20/O3–O4) in molecule *A* [49.82 (7)° in molecule *B*].

Intramolecular hydrogen bonds, O3A—H3OA···N2A, N1A—H1NA···O2A, O3B—H3OB···N2B and N1B— H1NB···O2B (Table 1) generate S(6) ring motifs whereas N1A—H1NA···N2A and N1B—H1NB···N2B generate S(5) ring motifs (Bernstein *et al.*, 1995). Bond lengths and angles are in normal ranges (Allen *et al.*, 1987) and comparable to those in related structures (Eltayeb *et al.*, 2007*a,b*). In the crystal packing (Fig. 2), O—H···O, hydrogen bonds and weak C—H···O interactions (Table 1) link the molecules into one dimensional chains along the *b* direction and are further connected by O—H···O and weak C—H···O interactions (Table 1) into a three-dimensional network (Table 1). The crystal is further stabilized by weak C—H··· π interactions (Table 1). π ··· π interactions were also observed with the distances of Cg_1 ··· $Cg_5 = 3.6228$ (9) Å and Cg_2 ··· $Cg_4 = 3.6881$ (9) Å (symmetry code : x, y, z in each case); Cg_1 , Cg_2 , Cg_3 , Cg_4 and Cg_5 are the centroids of the C1A–C6A, C8A–C13A, C15A–C20A, C1B–C6B and C8B–C13B benzene rings, respectively.

S2. Experimental

The title compound was synthesized by adding 2,4-dihydroxybenzaldehyde (0.552 g, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered. Yellow single crystals of the title compound suitable for x-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent at room temperature over several days.

S3. Refinement

Hydroxyl and imine H atoms were located from the difference map and refined riding on the parent atoms with refinement of the isotropic thermal parameters. The remaining H atoms were placed in calculated positions with d(C-H) = 0.93 Å, $U_{iso}=1.2U_{eq}(C)$ for aromatic, CH, 0.96 Å, $U_{iso}=1.5U_{eq}(C)$ for CH₃ atoms A rotating group model was used for the methyl groups.

Figure 1

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular O—H…N, N—H…O and N—H…N hydrogen bonds are drawn as dashed lines.

Figure 2

The crystal packing of (I), viewed along the a axis, showing the molecular chains along the b axis. Hydrogen bonds are drawn as dashed lines.

2-((E)-{2-[(1E)-(2,4- Dihydroxybenzylidene)amino]phenyl}}iminiomethyl)-5-hydroxyphenolate methanol solvate

Crystal data	
$C_{20}H_{16}N_2O_4$ ·CH ₄ O	Z = 4
$M_r = 380.39$	F(000) = 800
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.383 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.3672 (2) Å	Cell parameters from 10651 reflections
b = 11.0813 (2) Å	$\theta = 1.0 - 30.0^{\circ}$
c = 20.3217 (3) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\alpha = 89.313 (1)^{\circ}$	T = 100 K
$\beta = 80.309 \ (1)^{\circ}$	Block, yellow
$\gamma = 79.641 \ (1)^{\circ}$	$0.50 \times 0.34 \times 0.17 \text{ mm}$
V = 1826.73 (6) Å ³	
Data collection	
Bruker SMART APEX2 CCD area-detector	ω scans
diffractometer	Absorption correction: multi-scan
Radiation source: fine-focus sealed tube	(SADABS; Bruker, 2005)
Graphite monochromator	$T_{\min} = 0.952, \ T_{\max} = 0.984$
Detector resolution: 8.33 pixels mm ⁻¹	42593 measured reflections

$h = -11 \rightarrow 10$
$k = -15 \rightarrow 15$
$l = -28 \rightarrow 28$
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0788P)^2 + 0.3402P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. **Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01A	0.38240 (14)	1.21218 (9)	0.37963 (5)	0.0269 (3)	
H1OA	0.3231	1.1862	0.4197	0.055 (6)*	
O2A	0.70037 (13)	0.81358 (9)	0.39164 (5)	0.0243 (2)	
O3A	0.83682 (14)	0.59449 (9)	0.48780 (5)	0.0268 (3)	
H3OA	0.8948	0.5957	0.4431	0.054 (6)*	
O4A	0.49475 (14)	0.34820 (10)	0.60844 (5)	0.0272 (3)	
H4OA	0.4485	0.2903	0.6031	0.061 (7)*	
N1A	0.94132 (15)	0.74067 (10)	0.29384 (6)	0.0193 (3)	
H1NA	0.8739	0.7270	0.3329	0.042 (5)*	
N2A	0.97260 (16)	0.52908 (11)	0.36228 (6)	0.0211 (3)	
C1A	0.73415 (19)	1.05359 (13)	0.26751 (7)	0.0220 (3)	
H1A	0.7991	1.0678	0.2273	0.026*	
C2A	0.60758 (19)	1.14282 (13)	0.29478 (7)	0.0231 (3)	
H2A	0.5870	1.2175	0.2736	0.028*	
C3A	0.50713 (19)	1.12139 (12)	0.35571 (7)	0.0215 (3)	
C4A	0.53930 (19)	1.01151 (12)	0.38853 (7)	0.0213 (3)	
H4A	0.4740	0.9996	0.4290	0.026*	
C5A	0.66928 (18)	0.91814 (12)	0.36127 (7)	0.0201 (3)	
C6A	0.76932 (18)	0.93925 (12)	0.29904 (7)	0.0191 (3)	
C7A	0.90059 (18)	0.84951 (12)	0.26841 (7)	0.0198 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H7A	0.9618	0.8679	0.2282	0.024*
C8A	1.06914 (18)	0.64458 (12)	0.26672 (7)	0.0191 (3)
C9A	1.17540 (19)	0.65455 (13)	0.20737 (7)	0.0220 (3)
H9A	1.1653	0.7274	0.1840	0.026*
C10A	1.29635 (19)	0.55566 (14)	0.18314 (8)	0.0251 (3)
H10A	1.3668	0.5620	0.1432	0.030*
C11A	1.31301 (19)	0.44739 (14)	0.21809 (8)	0.0260 (3)
H11A	1.3952	0.3815	0.2017	0.031*
C12A	1.20798 (19)	0.43678 (13)	0.27732 (8)	0.0250(3)
H12A	1.2205	0.3640	0.3007	0.030*
C13A	1.08334 (18)	0.53462 (13)	0.30223 (7)	0.0204 (3)
C14A	0.90878 (19)	0.43132 (13)	0.37372 (7)	0.0221 (3)
H14A	0.9346	0.3700	0.3408	0.026*
C15A	0.80086 (19)	0.41174 (12)	0.43391 (7)	0.0206 (3)
C16A	0.76986 (19)	0.49236 (12)	0.49003 (7)	0.0206 (3)
C17A	0.67009 (19)	0.46828 (13)	0.54807 (7)	0.0223 (3)
H17A	0.6535	0.5202	0.5851	0.027*
C18A	0.59436 (19)	0.36593 (13)	0.55096 (7)	0.0220 (3)
C19A	0.6219 (2)	0.28485 (13)	0.49599 (7)	0.0243 (3)
H19A	0.5723	0.2159	0.4983	0.029*
C20A	0.72290 (19)	0.30880 (13)	0.43892 (7)	0.0241 (3)
H20A	0.7405	0.2555	0.4024	0.029*
O1B	1.06277 (14)	0.29566 (9)	0.12539 (5)	0.0263 (2)
H1OB	1.1264	0.3111	0.0813	0.060 (7)*
O2B	0.78690 (13)	0.70842 (9)	0.11637 (5)	0.0246 (2)
O3B	0.65725 (14)	0.90440 (9)	0.01575 (5)	0.0263 (2)
H3OB	0.5866	0.9158	0.0575	0.050 (6)*
O4B	1.01686 (14)	1.13045 (10)	-0.11108 (5)	0.0269 (2)
H4OB	1.0777	1.1886	-0.1138	0.065 (7)*
N1B	0.53881 (15)	0.78591 (10)	0.21044 (6)	0.0188 (3)
H1NB	0.6050	0.7965	0.1739	0.043 (6)*
N2B	0.50773 (16)	0.98985 (11)	0.13603 (6)	0.0212 (3)
C1B	0.72248 (19)	0.46765 (13)	0.23763 (7)	0.0218 (3)
H1B	0.6540	0.4555	0.2773	0.026*
C2B	0.84138 (19)	0.37362 (13)	0.21012 (7)	0.0227 (3)
H2B	0.8535	0.2978	0.2306	0.027*
C3B	0.94691 (19)	0.39181 (12)	0.14999 (7)	0.0209 (3)
C4B	0.92878 (19)	0.50368 (13)	0.11862 (7)	0.0218 (3)
H4B	0.9983	0.5136	0.0789	0.026*
C5B	0.80678 (18)	0.60236 (12)	0.14599 (7)	0.0195 (3)
C6B	0.70035 (18)	0.58425 (12)	0.20722 (7)	0.0189 (3)
C7B	0.57163 (18)	0.67648 (12)	0.23642 (7)	0.0191 (3)
H7B	0.5062	0.6598	0.2760	0.023*
C8B	0.40985 (18)	0.88345 (12)	0.23481 (7)	0.0186 (3)
C9B	0.30337 (19)	0.87881 (13)	0.29475 (7)	0.0223 (3)
H9B	0.3152	0.8092	0.3208	0.027*
C10B	0.17954 (19)	0.97810 (14)	0.31555 (8)	0.0249 (3)
H10B	0.1086	0.9754	0.3558	0.030*

C11B	0.16100 (19)	1.08150 (14)	0.27664 (8)	0.0264 (3)
H11B	0.0766	1.1474	0.2906	0.032*
C12B	0.26700 (19)	1.08732 (13)	0.21731 (8)	0.0245 (3)
H12B	0.2533	1.1570	0.1914	0.029*
C13B	0.39474 (19)	0.98924 (13)	0.19586 (7)	0.0204 (3)
C14B	0.56811 (19)	1.08790 (13)	0.12067 (7)	0.0222 (3)
H14B	0.5372	1.1544	0.1504	0.027*
C15B	0.68020 (19)	1.09985 (12)	0.06030 (7)	0.0212 (3)
C16B	0.72244 (19)	1.00770 (12)	0.00920 (7)	0.0211 (3)
C17B	0.83261 (19)	1.02095 (13)	-0.04789 (7)	0.0225 (3)
H17B	0.8579	0.9607	-0.0814	0.027*
C18B	0.90569 (19)	1.12444 (13)	-0.05529 (7)	0.0222 (3)
C19B	0.8645 (2)	1.21803 (13)	-0.00595 (7)	0.0253 (3)
H19B	0.9114	1.2883	-0.0115	0.030*
C20B	0.7541 (2)	1.20413 (13)	0.05044 (7)	0.0255 (3)
H20B	0.7275	1.2658	0.0832	0.031*
O5A	0.78442 (15)	0.63854 (10)	-0.01097 (6)	0.0355 (3)
H5OA	0.7819	0.6756	0.0250	0.053*
C21A	0.6263 (3)	0.6108 (3)	-0.00516 (12)	0.0693 (8)
H21A	0.5458	0.6836	0.0074	0.104*
H21B	0.6128	0.5498	0.0283	0.104*
H21C	0.6116	0.5797	-0.0472	0.104*
O5B	0.77865 (16)	0.87056 (10)	0.50980 (6)	0.0370 (3)
H5OB	0.7381	0.8399	0.4761	0.055*
C21B	0.9533 (3)	0.84547 (17)	0.50003 (11)	0.0475 (5)
H21D	0.9915	0.7584	0.4966	0.071*
H21E	0.9903	0.8780	0.5372	0.071*
H21F	0.9964	0.8831	0.4597	0.071*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01A	0.0347 (7)	0.0192 (5)	0.0245 (6)	0.0013 (5)	-0.0056 (5)	0.0008 (4)
O2A	0.0273 (6)	0.0196 (5)	0.0238 (5)	-0.0020 (4)	-0.0007 (5)	0.0079 (4)
O3A	0.0374 (7)	0.0182 (5)	0.0266 (6)	-0.0113 (5)	-0.0032 (5)	-0.0006 (4)
O4A	0.0351 (7)	0.0275 (6)	0.0202 (5)	-0.0114 (5)	-0.0025 (5)	0.0051 (4)
N1A	0.0202 (7)	0.0189 (6)	0.0191 (6)	-0.0048 (5)	-0.0029 (5)	0.0028 (4)
N2A	0.0232 (7)	0.0197 (6)	0.0207 (6)	-0.0045 (5)	-0.0039 (5)	0.0032 (5)
C1A	0.0274 (8)	0.0213 (7)	0.0196 (7)	-0.0087 (6)	-0.0065 (6)	0.0048 (5)
C2A	0.0318 (9)	0.0162 (6)	0.0238 (7)	-0.0063 (6)	-0.0101 (7)	0.0057 (5)
C3A	0.0253 (8)	0.0174 (6)	0.0233 (7)	-0.0037 (6)	-0.0082 (6)	-0.0016 (5)
C4A	0.0250 (8)	0.0200 (7)	0.0193 (7)	-0.0052 (6)	-0.0033 (6)	0.0028 (5)
C5A	0.0227 (8)	0.0182 (6)	0.0214 (7)	-0.0067 (6)	-0.0063 (6)	0.0039 (5)
C6A	0.0202 (8)	0.0182 (6)	0.0209 (7)	-0.0061 (6)	-0.0067 (6)	0.0034 (5)
C7A	0.0225 (8)	0.0217 (7)	0.0177 (7)	-0.0086 (6)	-0.0054 (6)	0.0030 (5)
C8A	0.0173 (7)	0.0204 (6)	0.0204 (7)	-0.0048 (5)	-0.0042 (6)	-0.0001 (5)
C9A	0.0233 (8)	0.0238 (7)	0.0207 (7)	-0.0075 (6)	-0.0060 (6)	0.0028 (5)
C10A	0.0214 (8)	0.0304 (8)	0.0236 (7)	-0.0080 (6)	-0.0007 (6)	-0.0029 (6)

C11A	0.0201 (8)	0.0247 (7)	0.0321 (8)	-0.0020 (6)	-0.0029 (7)	-0.0064 (6)
C12A	0.0246 (8)	0.0210 (7)	0.0299 (8)	-0.0041 (6)	-0.0061 (7)	-0.0003 (6)
C13A	0.0227 (8)	0.0206 (7)	0.0194 (7)	-0.0061 (6)	-0.0054 (6)	0.0018 (5)
C14A	0.0253 (8)	0.0198 (6)	0.0222 (7)	-0.0046 (6)	-0.0065 (6)	0.0012 (5)
C15A	0.0244 (8)	0.0181 (6)	0.0200 (7)	-0.0053 (6)	-0.0043 (6)	0.0023 (5)
C16A	0.0239 (8)	0.0169 (6)	0.0228 (7)	-0.0051 (6)	-0.0076 (6)	0.0036 (5)
C17A	0.0284 (9)	0.0194 (6)	0.0202 (7)	-0.0041 (6)	-0.0069 (6)	0.0008 (5)
C18A	0.0244 (8)	0.0218 (7)	0.0198 (7)	-0.0037 (6)	-0.0049 (6)	0.0056 (5)
C19A	0.0290 (9)	0.0210 (7)	0.0246 (8)	-0.0096 (6)	-0.0042 (6)	0.0033 (6)
C20A	0.0292 (9)	0.0208 (7)	0.0235 (7)	-0.0077 (6)	-0.0038 (6)	-0.0017 (6)
O1B	0.0326 (7)	0.0182 (5)	0.0253 (6)	0.0023 (4)	-0.0047 (5)	0.0008 (4)
O2B	0.0270 (6)	0.0182 (5)	0.0257 (5)	-0.0024 (4)	0.0011 (5)	0.0069 (4)
O3B	0.0342 (7)	0.0198 (5)	0.0261 (6)	-0.0106 (5)	-0.0024 (5)	-0.0001 (4)
O4B	0.0331 (7)	0.0283 (6)	0.0203 (5)	-0.0107 (5)	-0.0024 (5)	0.0052 (4)
N1B	0.0196 (6)	0.0179 (5)	0.0188 (6)	-0.0040 (5)	-0.0019 (5)	0.0013 (4)
N2B	0.0234 (7)	0.0198 (6)	0.0206 (6)	-0.0041 (5)	-0.0040 (5)	0.0029 (5)
C1B	0.0254 (8)	0.0227 (7)	0.0191 (7)	-0.0080 (6)	-0.0049 (6)	0.0060 (5)
C2B	0.0290 (9)	0.0174 (6)	0.0234 (7)	-0.0065 (6)	-0.0072 (6)	0.0059 (5)
C3B	0.0241 (8)	0.0187 (6)	0.0209 (7)	-0.0030 (6)	-0.0077 (6)	0.0000 (5)
C4B	0.0235 (8)	0.0208 (7)	0.0203 (7)	-0.0038 (6)	-0.0018 (6)	0.0029 (5)
C5B	0.0209 (8)	0.0178 (6)	0.0210 (7)	-0.0061 (6)	-0.0042 (6)	0.0043 (5)
C6B	0.0196 (8)	0.0185 (6)	0.0201 (7)	-0.0051 (6)	-0.0059 (6)	0.0027 (5)
C7B	0.0208 (8)	0.0219 (7)	0.0163 (6)	-0.0076 (6)	-0.0040 (6)	0.0031 (5)
C8B	0.0170 (7)	0.0192 (6)	0.0207 (7)	-0.0042 (5)	-0.0048 (6)	-0.0014 (5)
C9B	0.0227 (8)	0.0240 (7)	0.0214 (7)	-0.0079 (6)	-0.0034 (6)	0.0012 (5)
C10B	0.0211 (8)	0.0316 (8)	0.0222 (7)	-0.0079 (6)	-0.0004 (6)	-0.0036 (6)
C11B	0.0196 (8)	0.0255 (7)	0.0335 (8)	-0.0029 (6)	-0.0036 (7)	-0.0063 (6)
C12B	0.0261 (8)	0.0194 (7)	0.0293 (8)	-0.0042 (6)	-0.0080 (7)	0.0013 (6)
C13B	0.0218 (8)	0.0202 (6)	0.0207 (7)	-0.0056 (6)	-0.0057 (6)	-0.0003 (5)
C14B	0.0262 (8)	0.0197 (7)	0.0213 (7)	-0.0041 (6)	-0.0063 (6)	0.0003 (5)
C15B	0.0255 (8)	0.0188 (6)	0.0206 (7)	-0.0048 (6)	-0.0074 (6)	0.0024 (5)
C16B	0.0252 (8)	0.0184 (6)	0.0222 (7)	-0.0060 (6)	-0.0091 (6)	0.0042 (5)
C17B	0.0280 (9)	0.0200 (7)	0.0202 (7)	-0.0042 (6)	-0.0063 (6)	0.0004 (5)
C18B	0.0246 (8)	0.0244 (7)	0.0187 (7)	-0.0059 (6)	-0.0062 (6)	0.0066 (5)
C19B	0.0315 (9)	0.0204 (7)	0.0262 (8)	-0.0095 (6)	-0.0061 (7)	0.0037 (6)
C20B	0.0323 (9)	0.0221 (7)	0.0234 (8)	-0.0085 (6)	-0.0045 (7)	0.0005 (6)
O5A	0.0446 (8)	0.0320 (6)	0.0259 (6)	-0.0036 (5)	0.0020 (5)	-0.0061 (5)
C21A	0.0710 (18)	0.0941 (19)	0.0535 (14)	-0.0471 (15)	-0.0052 (12)	-0.0218 (13)
O5B	0.0476 (8)	0.0312 (6)	0.0264 (6)	0.0059 (6)	-0.0035 (6)	-0.0034 (5)
C21B	0.0521 (14)	0.0349 (10)	0.0598 (13)	-0.0127 (9)	-0.0163 (11)	0.0007 (9)
			• •			

Geometric parameters (Å, °)

O1A—C3A	1.3420 (17)	O4B—C18B	1.3493 (18)	
O1A—H1OA	0.9500	O4B—H4OB	0.8863	
O2A—C5A	1.3113 (16)	N1B—C7B	1.3183 (17)	
O3A—C16A	1.3473 (16)	N1B—C8B	1.4112 (18)	
ОЗА—НЗОА	0.9560	N1B—H1NB	0.8691	

O4A—C18A	1.3503 (18)	N2B—C14B	1.2921 (18)
O4A—H4OA	0.8240	N2B—C13B	1.4097 (19)
N1A—C7A	1.3169 (17)	C1B—C2B	1.357 (2)
N1A—C8A	1.4098 (18)	C1B—C6B	1.4209 (18)
N1A—H1NA	0.9215	C1B—H1B	0.9300
N2A—C14A	1.2934 (18)	C2B—C3B	1.417 (2)
N2A—C13A	1.4105 (19)	C2B—H2B	0.9300
C1A—C2A	1.358 (2)	C3B—C4B	1.3828 (19)
C1A—C6A	1.4186 (19)	C4B—C5B	1.403 (2)
C1A—H1A	0.9300	C4B—H4B	0.9300
C2A—C3A	1.418 (2)	C5B—C6B	1.438 (2)
C2A—H2A	0.9300	C6B—C7B	1.400 (2)
C3A—C4A	1 3868 (19)	C7B—H7B	0.9300
C4A—C5A	1.402 (2)	C8B-C9B	1.389 (2)
C4A—H4A	0.9300	C8B—C13B	14053(19)
C5A—C6A	1436(2)	C9B-C10B	1 384 (2)
C6A - C7A	1.100(2) 1.405(2)	C9B—H9B	0.9300
C7A—H7A	0.9300	C10B-C11B	1.385(2)
C8A—C9A	1389(2)	C10B—H10B	0.9300
C8A - C13A	1.305(2) 1 4054 (19)	C11B—C12B	1,380(2)
C9A-C10A	1 383 (2)	C11B—H11B	0.9300
С9А—Н9А	0.9300	C12B— $C13B$	1.397(2)
C10A-C11A	1.384(2)	C12B $H12B$	0.9300
C10A—H10A	0.9300	C14B— $C15B$	1434(2)
C11A—C12A	1.383(2)	C14B— $H14B$	0.9300
C11A—H11A	0.9300	C15B-C20B	1 4028 (19)
C12A - C13A	1 396 (2)	C15B $C16B$	1.1026 (19)
C12A—H12A	0.9300	C16B-C17B	1.379(2)
C14A - C15A	1432(2)	C17B— $C18B$	1.379(2) 1 389(2)
C14A - H14A	0.9300	C17B— $H17B$	0.9300
C15A - C20A	1 4069 (19)	C18B-C19B	1407(2)
C15A-C16A	1 4169 (19)	C19B-C20B	1.107(2) 1.371(2)
C16A - C17A	1 378 (2)	C19B - H19B	0.9300
C17A - C18A	1.370(2) 1.391(2)	C20B—H20B	0.9300
C17A - H17A	0.9300	O5A - C21A	1.398(2)
C18A - C19A	1404(2)	05A—H50A	0.8380
C19A - C20A	1.161(2) 1.368(2)	C21A—H21A	0.9600
C19A - H19A	0.9300	C21A - H21B	0.9600
C_{20A} H20A	0.9300	C21A - H21C	0.9600
O1B-C3B	1.3428(17)	O5B-C21B	1418(2)
OIB-HIOB	0.9923	05B—H50B	0.9079
$0^{2}B-C^{5}B$	1 3106 (16)	C21B—H21D	0.9600
O3B-C16B	1 3498 (16)	C21B—H21F	0.9600
03B—H30B	0.9451	C21B—H21F	0.9600
	0.9 10 1		0.9000
C3A—O1A—H1OA	108.9	C2B—C1B—C6B	121.45 (14)
C16A—O3A—H3OA	104.7	C2B—C1B—H1B	119.3
C18A—O4A—H4OA	109.0	C6B—C1B—H1B	119.3
-			

C7A—N1A—C8A	127.48 (13)	C1B—C2B—C3B	119.54 (13)
C7A—N1A—H1NA	114.2	C1B—C2B—H2B	120.2
C8A—N1A—H1NA	118.2	C3B—C2B—H2B	120.2
C14A—N2A—C13A	118.47 (12)	O1B—C3B—C4B	122.39 (14)
C2A—C1A—C6A	121.38 (14)	O1B—C3B—C2B	116.82 (12)
C2A—C1A—H1A	119.3	C4B—C3B—C2B	120.78 (13)
C6A—C1A—H1A	119.3	C3B—C4B—C5B	120.80 (14)
C1A—C2A—C3A	119.60 (13)	C3B—C4B—H4B	119.6
C1A—C2A—H2A	120.2	C5B—C4B—H4B	119.6
C3A—C2A—H2A	120.2	O2B—C5B—C4B	121.44 (13)
O1A—C3A—C4A	122.46 (14)	O2B—C5B—C6B	120.08 (13)
O1A—C3A—C2A	116.87 (12)	C4B—C5B—C6B	118.46 (12)
C4A—C3A—C2A	120.67 (13)	C7B—C6B—C1B	118.99 (13)
C3A—C4A—C5A	120.66 (14)	C7B—C6B—C5B	122.01 (12)
СЗА—С4А—Н4А	119.7	C1B—C6B—C5B	118.96 (13)
С5А—С4А—Н4А	119.7	N1B—C7B—C6B	123.07 (13)
O2A—C5A—C4A	121.24 (13)	N1B—C7B—H7B	118.5
O2A—C5A—C6A	120.17 (13)	C6B—C7B—H7B	118.5
C4A—C5A—C6A	118.59 (12)	C9B—C8B—C13B	120.41 (13)
C7A—C6A—C1A	119.15 (13)	C9B—C8B—N1B	122.93 (12)
C7A—C6A—C5A	121.77 (12)	C13B—C8B—N1B	116.65 (13)
C1A—C6A—C5A	119.08 (13)	C10B—C9B—C8B	119.76 (14)
N1A—C7A—C6A	123.28 (13)	C10B—C9B—H9B	120.1
N1A—C7A—H7A	118.4	C8B—C9B—H9B	120.1
С6А—С7А—Н7А	118.4	C9B—C10B—C11B	120.23 (15)
C9A—C8A—C13A	120.45 (13)	C9B—C10B—H10B	119.9
C9A—C8A—N1A	122.92 (12)	C11B—C10B—H10B	119.9
C13A—C8A—N1A	116.61 (13)	C12B—C11B—C10B	120.40 (14)
C10A—C9A—C8A	119.76 (13)	C12B—C11B—H11B	119.8
С10А—С9А—Н9А	120.1	C10B—C11B—H11B	119.8
С8А—С9А—Н9А	120.1	C11B—C12B—C13B	120.44 (14)
C9A—C10A—C11A	120.34 (15)	C11B—C12B—H12B	119.8
C9A—C10A—H10A	119.8	C13B—C12B—H12B	119.8
C11A—C10A—H10A	119.8	C12B—C13B—C8B	118.71 (14)
C12A—C11A—C10A	120.27 (14)	C12B—C13B—N2B	123.18 (13)
C12A—C11A—H11A	119.9	C8B—C13B—N2B	118.09 (13)
C10A—C11A—H11A	119.9	N2B—C14B—C15B	123.63 (13)
C11A—C12A—C13A	120.43 (14)	N2B—C14B—H14B	118.2
C11A—C12A—H12A	119.8	C15B—C14B—H14B	118.2
C13A—C12A—H12A	119.8	C20B—C15B—C16B	117.67 (14)
C12A—C13A—C8A	118.72 (14)	C20B—C15B—C14B	120.20 (13)
C12A—C13A—N2A	122.94 (13)	C16B—C15B—C14B	122.12 (13)
C8A—C13A—N2A	118.32 (13)	O3B-C16B-C17B	118.42 (12)
N2A—C14A—C15A	124.04 (13)	O3B-C16B-C15B	120.78 (13)
N2A—C14A—H14A	118.0	C17B—C16B—C15B	120.79 (13)
C15A—C14A—H14A	118.0	C16B—C17B—C18B	119.86 (13)
C20A—C15A—C16A	117.79 (13)	C16B—C17B—H17B	120.1
C20A—C15A—C14A	119.92 (13)	C18B—C17B—H17B	120.1

C16A—C15A—C14A	122.29 (13)	O4B—C18B—C17B	117.28 (13)
O3A—C16A—C17A	118.50 (12)	O4B-C18B-C19B	122.12 (13)
O3A—C16A—C15A	120.74 (13)	C17B—C18B—C19B	120.60 (14)
C17A—C16A—C15A	120.76 (13)	C20B—C19B—C18B	118.98 (13)
C16A—C17A—C18A	119.73 (13)	C20B—C19B—H19B	120.5
С16А—С17А—Н17А	120.1	C18B—C19B—H19B	120.5
C18A—C17A—H17A	120.1	C19B—C20B—C15B	122.06 (13)
O4A—C18A—C17A	117.35 (13)	C19B—C20B—H20B	119.0
O4A—C18A—C19A	121.91 (13)	C15B—C20B—H20B	119.0
C17A—C18A—C19A	120.74 (14)	C21A—O5A—H5OA	103.6
C20A—C19A—C18A	119.01 (13)	O5A—C21A—H21A	109.5
C20A—C19A—H19A	120.5	O5A—C21A—H21B	109.5
C18A - C19A - H19A	120.5	H_{21A} C_{21A} H_{21B}	109.5
C19A - C20A - C15A	121.93 (13)	05A - C21A - H21C	109.5
C19A - C20A - H20A	119.0	H_{21A} $-C_{21A}$ $-H_{21C}$	109.5
C15A - C20A - H20A	119.0	H_{21B} C_{21A} H_{21C}	109.5
C3B = O1B = H1OB	113.4	$C_{21B} = O_{5B} = H_{5OB}$	112.5
$C_{16B} = O_{3B} = H_{3}O_{B}$	103.5	O5B-C21B-H21D	109.5
C18B - O4B - H4OB	118.9	O5B $C21B$ $H21E$	109.5
C7B—N1B—C8B	127 42 (13)	H_{21D} C_{21B} H_{21E}	109.5
C7B $N1B$ $H1NB$	114.3	O5B-C21B-H21E	109.5
C8B—N1B—H1NB	118.3	H_{21D} C_{21B} H_{21F}	109.5
C14B N2B $C13B$	118.92 (12)	H21F - C21B - H21F	109.5
	110.92 (12)		109.5
C6A—C1A—C2A—C3A	-0.6 (2)	C6B—C1B—C2B—C3B	0.4 (2)
C1A—C2A—C3A—O1A	-178.94 (13)	C1B—C2B—C3B—O1B	179.61 (13)
C1A—C2A—C3A—C4A	1.6 (2)	C1B—C2B—C3B—C4B	-0.8 (2)
O1A—C3A—C4A—C5A	178.95 (12)	O1B-C3B-C4B-C5B	-179.67 (12)
C2A—C3A—C4A—C5A	-1.6 (2)	C2B—C3B—C4B—C5B	0.8 (2)
C3A—C4A—C5A—O2A	-179.61 (13)	C3B—C4B—C5B—O2B	-179.15 (13)
C3A—C4A—C5A—C6A	0.6 (2)	C3B—C4B—C5B—C6B	-0.4 (2)
C2A—C1A—C6A—C7A	179.34 (13)	C2B—C1B—C6B—C7B	177.55 (13)
C2A—C1A—C6A—C5A	-0.4 (2)	C2B-C1B-C6B-C5B	0.0 (2)
O2A—C5A—C6A—C7A	0.9 (2)	O2B—C5B—C6B—C7B	1.3 (2)
C4A—C5A—C6A—C7A	-179.35 (13)	C4B—C5B—C6B—C7B	-177.51 (13)
O2A—C5A—C6A—C1A	-179.39 (12)	O2B-C5B-C6B-C1B	178.79 (12)
C4A—C5A—C6A—C1A	0.36 (19)	C4B-C5B-C6B-C1B	0.00 (19)
C8A—N1A—C7A—C6A	179.33 (12)	C8B—N1B—C7B—C6B	178.07 (12)
C1A—C6A—C7A—N1A	-179.54 (13)	C1B—C6B—C7B—N1B	-177.73 (13)
C5A—C6A—C7A—N1A	0.2 (2)	C5B—C6B—C7B—N1B	-0.2 (2)
C7A—N1A—C8A—C9A	1.4 (2)	C7B—N1B—C8B—C9B	4.9 (2)
C7A—N1A—C8A—C13A	-177.32 (13)	C7B—N1B—C8B—C13B	-176.36 (13)
C13A—C8A—C9A—C10A	-0.2 (2)	C13B—C8B—C9B—C10B	1.3 (2)
N1A-C8A-C9A-C10A	-178.88 (12)	N1B-C8B-C9B-C10B	179.98 (13)
C8A—C9A—C10A—C11A	-0.7 (2)	C8B—C9B—C10B—C11B	0.4 (2)
C9A—C10A—C11A—C12A	0.5 (2)	C9B—C10B—C11B—C12B	-0.9 (2)
C10A—C11A—C12A—C13A	0.5 (2)	C10B—C11B—C12B—C13B	-0.2 (2)
C11A C12A C12A C9A	-1.3(2)	C11B_C12B_C13B_C8B	10(2)

C11A—C12A—C13A—N2A	179.96 (13)	C11B—C12B—C13B—N2B	-179.56 (13)
C9A—C8A—C13A—C12A	1.2 (2)	C9B—C8B—C13B—C12B	-2.4 (2)
N1A—C8A—C13A—C12A	179.95 (12)	N1B-C8B-C13B-C12B	178.80 (12)
C9A—C8A—C13A—N2A	179.95 (12)	C9B—C8B—C13B—N2B	178.95 (12)
N1A-C8A-C13A-N2A	-1.28 (18)	N1B-C8B-C13B-N2B	0.20 (18)
C14A—N2A—C13A—C12A	-43.96 (19)	C14B—N2B—C13B—C12B	43.0 (2)
C14A—N2A—C13A—C8A	137.33 (14)	C14B—N2B—C13B—C8B	-138.49 (14)
C13A—N2A—C14A—C15A	177.04 (13)	C13B—N2B—C14B—C15B	-178.21 (13)
N2A—C14A—C15A—C20A	172.92 (14)	N2B-C14B-C15B-C20B	-173.14 (14)
N2A—C14A—C15A—C16A	-7.8 (2)	N2B-C14B-C15B-C16B	5.9 (2)
C20A—C15A—C16A—O3A	-178.04 (13)	C20B—C15B—C16B—O3B	179.28 (13)
C14A—C15A—C16A—O3A	2.7 (2)	C14B—C15B—C16B—O3B	0.2 (2)
C20A—C15A—C16A—C17A	1.7 (2)	C20B—C15B—C16B—C17B	0.1 (2)
C14A—C15A—C16A—C17A	-177.56 (13)	C14B—C15B—C16B—C17B	-178.99 (13)
O3A—C16A—C17A—C18A	177.61 (13)	O3B-C16B-C17B-C18B	-178.07 (13)
C15A—C16A—C17A—C18A	-2.2 (2)	C15B—C16B—C17B—C18B	1.1 (2)
C16A—C17A—C18A—O4A	-178.44 (13)	C16B—C17B—C18B—O4B	177.70 (12)
C16A—C17A—C18A—C19A	1.8 (2)	C16B—C17B—C18B—C19B	-2.0 (2)
O4A—C18A—C19A—C20A	179.29 (13)	O4B-C18B-C19B-C20B	-178.04 (13)
C17A—C18A—C19A—C20A	-0.9 (2)	C17B—C18B—C19B—C20B	1.7 (2)
C18A—C19A—C20A—C15A	0.5 (2)	C18B—C19B—C20B—C15B	-0.4 (2)
C16A—C15A—C20A—C19A	-0.9 (2)	C16B—C15B—C20B—C19B	-0.5 (2)
C14A—C15A—C20A—C19A	178.42 (14)	C14B—C15B—C20B—C19B	178.67 (14)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —Н··· <i>A</i>
01 <i>A</i> —H1 <i>OA</i> ···O5 <i>B</i> ⁱ	0.95	1.71	2.6610 (16)	176
O3 <i>A</i> —H3 <i>OA</i> ···N2 <i>A</i>	0.96	1.78	2.6637 (16)	153
O4 <i>A</i> —H4 <i>OA</i> ···O2 <i>A</i> ⁱⁱ	0.82	1.83	2.6330 (16)	164
N1A—H1NA····O2A	0.92	1.84	2.6021 (16)	138
N1 <i>A</i> —H1 <i>NA</i> ····N2 <i>A</i>	0.92	2.31	2.7063 (16)	106
O1 <i>B</i> —H1 <i>OB</i> ····O5 <i>A</i> ⁱⁱⁱ	0.99	1.64	2.6205 (16)	170
O3 <i>B</i> —H3 <i>OB</i> ···N2 <i>B</i>	0.94	1.77	2.6526 (16)	154
$O4B$ — $H4OB$ ···· $O2B^{iv}$	0.89	1.74	2.6241 (16)	174
N1 <i>B</i> —H1 <i>NB</i> ····O2 <i>B</i>	0.87	1.88	2.6006 (16)	139
N1 <i>B</i> —H1 <i>NB</i> ···N2 <i>B</i>	0.87	2.32	2.7020 (16)	107
O5 <i>A</i> —H5 <i>OA</i> ···O2 <i>B</i>	0.84	1.91	2.7145 (16)	162
O5A—H5OA···O3B	0.84	2.58	2.9703 (15)	110
O5 <i>B</i> —H5 <i>OB</i> ···O2 <i>A</i>	0.91	1.83	2.7034 (16)	160
$C4A$ —H4 A ···O5 B^{i}	0.93	2.48	3.165 (2)	131
C4 <i>B</i> —H4 <i>B</i> ···O5 <i>A</i> ⁱⁱⁱ	0.93	2.48	3.1596 (19)	130
$C7A$ — $H7A$ ···· $O4B^{iv}$	0.93	2.36	3.1691 (17)	146
$C7B$ — $H7B$ ···· $O4A^{ii}$	0.93	2.35	3.1253 (17)	141
$C12B$ — $H12B$ ···· $O1B^{v}$	0.93	2.55	3.3603 (18)	146

supporting information

C21 <i>B</i> —H21 <i>D</i> ···O3 <i>A</i>	0.96	2.44	3.134 (2)	129
C21 <i>B</i> —H21 <i>D</i> ··· <i>Cg</i> 3 ^{vi}	0.96	2.86	3.568 (2)	132

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+2, -*y*+1, -*z*; (iv) -*x*+2, -*y*+2, -*z*; (v) *x*-1, *y*+1, *z*; (vi) -*x*+2, -*y*+1, -*z*+1.