organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,5-Dihydroxybenzaldehyde 4-methylthiosemicarbazone

Kong Wai Tan,^a Chew Hee Ng,^b Mohd Jamil Maah^c* and Seik Weng Ng^c

^aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, ^bFaculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: mjamil@um.edu.my

Received 20 June 2008; accepted 21 June 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.055; wR factor = 0.124; data-to-parameter ratio = 14.8.

The planar molecules of the title compound, $C_9H_{11}N_3O_2S$, are linked into a supramolecualr chain *via* $O-H\cdots S$ hydrogen bonds. These chains are connected into a two-dimensional array via $N-H\cdots O$ hydrogen bonds; an intramolecular $O-H\cdots N$ hydrogen bond is also present.

Related literature

For the medicinal activity of 2,5-dihydroxybenzaldehyde thiosemicarbazone, see: Libermann *et al.* (1953); Taniyama & Tanaka (1965); Xue *et al.* (2007). For the structure of 2-hydroxybenzaldehyde 4-methylthiosemicarbazone, see: Vrdoljak *et al.* (2005). For the structure of 3,4-dihydroxybenzaldehyde 4-ethylthiosemicarbazone, see: Kayed *et al.* (2008).

c = 10.3272 (6) Å

 $\alpha = 78.552 \ (4)^{\circ}$

 $\beta = 74.181 \ (4)^{\circ}$

 $\gamma = 81.743 \ (4)^{\circ}$

V = 495.06 (6) Å³

Experimental

Crystal data $C_9H_{11}N_3O_2S$ $M_r = 225.27$ Triclinic, $P\overline{1}$ a = 5.9932 (4) Å b = 8.5207 (6) Å

Z = 2Mo $K\alpha$ radiation $\mu = 0.31 \text{ mm}^{-1}$

Data collection

Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.929, \ T_{\max} = 0.994$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.123$ S = 1.032258 reflections 153 parameters 4 restraints T = 100 (2) K $0.24 \times 0.16 \times 0.02 \text{ mm}$

4189 measured reflections	
2258 independent reflections	
1580 reflections with $I > 2\sigma(I)$)
$R_{\rm int} = 0.050$	

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.32 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.47 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$D1 - H1o \cdots N3$ $D2 - H2o \cdots S1^{i}$ $N2 - H2n \cdots O1^{ii}$	0.84 (3)	1.97 (2)	2.698 (3)	144 (3)
	0.84 (3)	2.46 (2)	3.182 (2)	144 (3)
	0.84 (3)	2.47 (3)	3.111 (3)	134 (3)

Symmetry codes: (i) x + 1, y + 1, z - 1; (ii) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

We thank the University of Malaya (P0265/2007 A) for supporting this study. KWT thanks the Ministry of Higher Education for a SLAI scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2278).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kayed, S. F., Farina, Y., Baba, I. & Simpson, J. (2008). Acta Cryst. E64, 0824– 0825.
- Libermann, D., Moyeux, M., Rouaix, A., Maillard, J., Hengl, L. & Himbert, J. (1953). Bull. Soc. Chim. Fr. pp. 957–962.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Taniyama, H. & Tanaka, Y. (1965). Yakugaku Kenkyu, 36, 319-328.
- Vrdoljak, V., Cindrić, M., Milić, D., Matković-Čalogović, D., Novak, P. & Kamenar, B. (2005). *Polyhedron*, 24, 1717–1726.
- Westrip, S. P. (2008). publCIF. In preparation.
- Xue, C.-B., Zhang, L., Luo, W.-C., Xie, X.-Y., Jiang, L. & Xiao, T. (2007). Bioorg. Med. Chem. 15, 2006–2015.

supporting information

Acta Cryst. (2008). E64, o1344 [doi:10.1107/S1600536808018801]

2,5-Dihydroxybenzaldehyde 4-methylthiosemicarbazone

Kong Wai Tan, Chew Hee Ng, Mohd Jamil Maah and Seik Weng Ng

S1. Comment

The title compound (I, Fig. 1) possesses useful medicinal properties (Libermann *et al.*, 1953; Taniyama & Tanaka, 1965; Xue *et al.*, 2007). The molecules are linked into supramolecular chains by O-H···S hydrogen bonds involving the O2-hydroxy group, Table 1. The hydrogen-bonded chains are consolidated into a layer motif via N-NH···O hydrogen bond, involving the O1-hydroxy group. An intramolecular N-H···O hydrogen bond, also involving the O1-hydroxy group is also noted. In contrast, 2-hydroxybenzaldehyde 4-methylthiosemicarbazone, which features an intramolecular O–H···N hydrogen bond, adopts a chain structure (Vrdoljak *et al.*, 2005) as it lacks a second hydroxy substituent for layer formation.

S2. Experimental

4-Methylthiosemicarbazide (0.11 g, 1 mmol) and 2,5-dihydroxybenzaldehyde (0.14 g, 1 mmol) were heated in ethanol (10 ml) for 1 h. Slow evaporation of the solvent yielded yellow crystals of (I).

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to 1.2-1.5 $U_{eq}(C)$. The hydroxy and amino H-atoms were located in a difference Fourier map, and were refined isotropically with distance restraints of O–H, N–H = 0.85±0.01 Å.

Figure 1

Thermal ellipsoid plot of (I) at the 70% probability level showing atom labeling. Hydrogen atoms are drawn as spheres of arbitrary radii.

2,5-Dihydroxybenzaldehyde 4-methylthiosemicarbazone

Crystal data

C₉H₁₁N₃O₂S $M_r = 225.27$ Triclinic, *P*1 Hall symbol: -P 1 a = 5.9932 (4) Å b = 8.5207 (6) Å c = 10.3272 (6) Å a = 78.552 (4)° $\beta = 74.181$ (4)° $\gamma = 81.743$ (4)° V = 495.06 (6) Å³

Data collection

Bruker SMART APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.929, T_{\max} = 0.994$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.123$ S = 1.032258 reflections 153 parameters 4 restraints Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 236 $D_x = 1.511 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 558 reflections $\theta = 2.9-23.0^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$ T = 100 KPlate, yellow $0.24 \times 0.16 \times 0.02 \text{ mm}$

4189 measured reflections 2258 independent reflections 1580 reflections with $I > 2\sigma(I)$ $R_{int} = 0.050$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.5^{\circ}$ $h = -7 \rightarrow 7$ $k = -11 \rightarrow 8$ $l = -13 \rightarrow 13$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0471P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.32$ e Å⁻³ $\Delta\rho_{min} = -0.47$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.44298 (12)	0.47335 (9)	0.72966 (7)	0.0189 (2)	
01	1.3132 (3)	0.8655 (2)	0.47568 (18)	0.0188 (4)	
02	1.2446 (3)	1.1893 (2)	-0.03406 (18)	0.0200 (5)	
N1	0.8637 (4)	0.5405 (3)	0.7312 (2)	0.0147 (5)	
N2	0.7415 (4)	0.6387 (3)	0.5359 (2)	0.0159 (5)	
N3	0.9289 (4)	0.7298 (3)	0.4833 (2)	0.0145 (5)	
C1	0.8391 (5)	0.4576 (3)	0.8709 (2)	0.0188 (6)	
H1A	0.9802	0.4633	0.8996	0.028*	
H1B	0.8160	0.3447	0.8763	0.028*	
H1C	0.7044	0.5088	0.9310	0.028*	
C2	0.7001 (4)	0.5552 (3)	0.6642 (2)	0.0134 (6)	
C3	0.9368 (4)	0.8121 (3)	0.3637 (2)	0.0136 (6)	

Н3	0.8213	0.8018	0.3194	0.016*	
C4	1.1147 (4)	0.9200 (3)	0.2937 (2)	0.0133 (6)	
C5	1.2915 (4)	0.9450 (3)	0.3503 (2)	0.0140 (6)	
C6	1.4505 (5)	1.0551 (3)	0.2796 (2)	0.0157 (6)	
H6	1.5673	1.0745	0.3193	0.019*	
C7	1.4389 (5)	1.1372 (3)	0.1504 (3)	0.0153 (6)	
H7	1.5496	1.2111	0.1016	0.018*	
C8	1.2669 (4)	1.1117 (3)	0.0929 (2)	0.0149 (6)	
С9	1.1055 (4)	1.0049 (3)	0.1638 (2)	0.0146 (6)	
H9	0.9866	0.9887	0.1243	0.018*	
H10	1.206 (4)	0.805 (3)	0.511 (3)	0.048 (12)*	
H2o	1.352 (5)	1.245 (4)	-0.082 (3)	0.059 (13)*	
H1n	0.988 (3)	0.581 (4)	0.689 (3)	0.032 (9)*	
H2n	0.640 (4)	0.656 (4)	0.491 (3)	0.042 (10)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0149 (4)	0.0241 (4)	0.0175 (3)	-0.0083 (3)	-0.0051 (3)	0.0033 (3)
01	0.0222 (11)	0.0221 (12)	0.0140 (9)	-0.0081 (9)	-0.0089 (8)	0.0025 (8)
O2	0.0244 (11)	0.0202 (12)	0.0149 (9)	-0.0088 (9)	-0.0059 (8)	0.0047 (8)
N1	0.0114 (12)	0.0181 (13)	0.0148 (11)	-0.0035 (10)	-0.0038 (9)	-0.0007 (9)
N2	0.0153 (12)	0.0168 (13)	0.0158 (11)	-0.0060 (10)	-0.0056 (9)	0.0024 (9)
N3	0.0121 (11)	0.0136 (12)	0.0175 (11)	-0.0050 (9)	-0.0013 (9)	-0.0023 (9)
C1	0.0198 (15)	0.0231 (16)	0.0128 (12)	-0.0048 (12)	-0.0051 (11)	0.0015 (11)
C2	0.0137 (13)	0.0106 (14)	0.0155 (12)	-0.0011 (11)	-0.0032 (10)	-0.0022 (11)
C3	0.0136 (13)	0.0138 (14)	0.0147 (12)	-0.0019 (11)	-0.0053 (10)	-0.0025 (11)
C4	0.0134 (13)	0.0118 (14)	0.0153 (12)	-0.0008 (10)	-0.0034 (10)	-0.0038 (11)
C5	0.0137 (13)	0.0154 (15)	0.0133 (12)	0.0001 (11)	-0.0041 (10)	-0.0034 (11)
C6	0.0139 (13)	0.0162 (15)	0.0193 (13)	-0.0029 (11)	-0.0070 (10)	-0.0039 (11)
C7	0.0163 (14)	0.0102 (14)	0.0178 (13)	-0.0021 (11)	-0.0024 (10)	-0.0006 (11)
C8	0.0160 (14)	0.0144 (15)	0.0143 (12)	0.0006 (11)	-0.0050 (10)	-0.0023 (11)
C9	0.0158 (14)	0.0156 (15)	0.0140 (12)	-0.0021 (11)	-0.0059 (10)	-0.0031 (11)

Geometric parameters (Å, °)

S1—C2	1.695 (3)	C1—H1B	0.9800
01—C5	1.367 (3)	C1—H1C	0.9800
O1—H10	0.84 (3)	C3—C4	1.450 (4)
O2—C8	1.379 (3)	С3—Н3	0.9500
O2—H2o	0.84 (3)	C4—C5	1.401 (4)
N1C2	1.325 (3)	C4—C9	1.403 (3)
N1C1	1.453 (3)	C5—C6	1.388 (4)
N1—H1n	0.84 (3)	C6—C7	1.393 (3)
N2—C2	1.349 (3)	С6—Н6	0.9500
N2—N3	1.382 (3)	C7—C8	1.383 (4)
N2—H2n	0.84 (3)	C7—H7	0.9500
N3—C3	1.286 (3)	C8—C9	1.379 (4)

supporting information

C1—H1A	0.9800	С9—Н9	0.9500
С5—01—Н1О	110 (2)	С4—С3—Н3	118.6
C8—O2—H2O	117 (3)	C5—C4—C9	118.9 (2)
C2—N1—C1	123.8 (2)	C5—C4—C3	123.2 (2)
C2—N1—H1N	117 (2)	C9—C4—C3	117.9 (2)
C1—N1—H1N	119 (2)	O1—C5—C6	117.7 (2)
C2—N2—N3	121.3 (2)	O1—C5—C4	122.3 (2)
C2—N2—H2N	122 (2)	C6—C5—C4	120.0 (2)
N3—N2—H2N	116 (2)	C5—C6—C7	120.1 (3)
C3—N3—N2	114.5 (2)	С5—С6—Н6	120.0
N1—C1—H1A	109.5	С7—С6—Н6	120.0
N1—C1—H1B	109.5	C8—C7—C6	120.3 (2)
H1A—C1—H1B	109.5	С8—С7—Н7	119.9
N1—C1—H1C	109.5	С6—С7—Н7	119.9
H1A—C1—H1C	109.5	O2—C8—C9	116.7 (2)
H1B—C1—H1C	109.5	O2—C8—C7	123.3 (2)
N1—C2—N2	118.2 (2)	C9—C8—C7	119.9 (2)
N1-C2-S1	123.80 (19)	C8—C9—C4	120.8 (2)
N2—C2—S1	118.0 (2)	С8—С9—Н9	119.6
N3—C3—C4	122.7 (2)	С4—С9—Н9	119.6
N3—C3—H3	118.6		
C2—N2—N3—C3	-175.1 (2)	C3—C4—C5—C6	-177.4 (2)
C1—N1—C2—N2	178.3 (2)	O1—C5—C6—C7	178.8 (2)
C1—N1—C2—S1	-2.5 (4)	C4—C5—C6—C7	-2.0 (4)
N3—N2—C2—N1	-11.0 (4)	C5—C6—C7—C8	1.1 (4)
N3—N2—C2—S1	169.69 (19)	C6—C7—C8—O2	179.7 (2)
N2—N3—C3—C4	177.5 (2)	C6—C7—C8—C9	0.2 (4)
N3—C3—C4—C5	-0.6 (4)	O2—C8—C9—C4	179.8 (2)
N3—C3—C4—C9	-179.5 (2)	C7—C8—C9—C4	-0.7 (4)
C9—C4—C5—O1	-179.3 (2)	C5—C4—C9—C8	-0.2 (4)
C3—C4—C5—O1	1.8 (4)	C3—C4—C9—C8	178.8 (2)
C9—C4—C5—C6	1.5 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
01—H10····N3	0.84 (3)	1.97 (2)	2.698 (3)	144 (3)
O2— $H2o$ ···S1 ⁱ	0.84 (3)	2.46 (2)	3.182 (2)	144 (3)
N2—H2 <i>n</i> ···O1 ⁱⁱ	0.84 (3)	2.47 (3)	3.111 (3)	134 (3)

Symmetry codes: (i) *x*+1, *y*+1, *z*-1; (ii) *x*-1, *y*, *z*.