organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-Cyclododecyl-5-(dimethylamino)naphthalene-1-sulfonamide

Conrad Fischer,^a Tobias Gruber,^a Wilhelm Seichter,^a Edwin Weber^a and Bakhtiyar T. Ibragimov^b*

^aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany, and ^bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, H Abdullaev 83, Tashkent 100125, Uzbekistan Correspondence e-mail: bahtier@academy.uzsci.net

Received 31 March 2008; accepted 28 May 2008

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.001 Å; disorder in main residue; R factor = 0.039; wR factor = 0.121; data-to-parameter ratio = 31.7.

The molecule of the title compound, $C_{24}H_{36}N_2O_2S$, displays a U-shaped conformation. The prominent intermolecular interactions are N-H···O hydrogen bonds, resulting in the formation of dimers. Additional C-H··· π contacts involving one of the methylene groups of the macrocycle and the naphthalene rings of a neighbouring molecule stabilize the packing structure. In the crystal structure, the cyclododecyl ring is disordered over two positions; the site occupancy factors are *ca* 0.86 and 0.14.

Related literature

For general background, see: Weber *et al.* (2004); Schönefeld *et al.* (2005); Gruber *et al.* (2008). For C $-H \cdots \pi$ contacts, see: Nishio (2004). For related structures, see: Dunitz & Shearer (1960); Rudert *et al.* (1994); Feiler *et al.* (1995).

Experimental

Crystal data $C_{24}H_{36}N_2O_2S$ $M_r = 416.62$

Monoclinic, $P2_1/c$ *a* = 10.3564 (3) Å b = 13.5117 (4) Å c = 16.2076 (4) Å $\beta = 95.814 (1)^{\circ}$ $V = 2256.30 (11) \text{ Å}^{3}$ Z = 4

Data collection

Bruker Kappa APEXII CCD	
diffractometer	
Absorption correction: multi scan	
(SADABS; Sheldrick, 2002)	
$T_{\rm min} = 0.826, \ T_{\rm max} = 0.954$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.120$ S = 1.0214866 reflections 469 parameters H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.46 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Mo $K\alpha$ radiation

 $0.54 \times 0.42 \times 0.29$ mm

71103 measured reflections 14866 independent reflections

10604 reflections with $I > 2\sigma(I)$

 $\mu = 0.17 \text{ mm}^{-1}$

T = 93 (2) K

 $R_{\rm int}=0.034$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2\cdotsO1^{i}$	0.83 (1)	2.28 (1)	3.065 (1)	154 (1)
$C4 - H4 \cdots O1$	0.95	2.34	3.026 (1)	128
$C20-H20A\cdots CgA^{ii}$	1.03(1)	2.88(1)	3.595 (1)	126 (1)
$C20-H20B\cdots CgB^{ii}$	0.96 (1)	2.84 (1)	3.613 (1)	140 (1)
$C20A - H20D \cdots CgB^{ii}$	0.99	2.81	3.792 (1)	170

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x + 1, y, z. *CgA* and *CgB* are the centroids of the C1–C5/C10 and C5–C10 benzene rings, respectively.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Financial support from the German Federal Ministry of Economics and Technolgy (BMWi) under grant No. 16IN0218 'ChemoChips' is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2416).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dunitz, J. D. & Shearer, H. M. M. (1960). Helv. Chim. Acta, 43, 18-35.
- Feiler, L., Langhals, H. & Polborn, K. (1995). Liebigs Ann. pp. 1229-1244.
- Gruber, T., Seichter, W. & Weber, E. (2008). Supramol. Chem. In the press.
- Nishio, M. (2004). *CrystEngComm*, **6**, 130–158.
- Rudert, R., Vollhardt, D. & Czichocki, G. (1994). Acta Cryst. C50, 1054–1057. Schönefeld, K., Barann, A., Vogel, K., Feller, K.-H., Kunze, D., Müller, P. &
- Weber, E. (2005). Int. J. Environ. Anal. Chem. 85, 655-663.
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Weber, E., Kunze, D. & Seichter, W. (2004). Acta Cryst. E60, o2331-o2333.

supporting information

Acta Cryst. (2008). E64, o1204 [doi:10.1107/S1600536808016164]

N-Cyclododecyl-5-(dimethylamino)naphthalene-1-sulfonamide

Conrad Fischer, Tobias Gruber, Wilhelm Seichter, Edwin Weber and Bakhtiyar T. Ibragimov

S1. Comment

The title compound (I) was prepared as part of our studies concerning fluorogenic receptor molecules with possible analytical applications (Weber *et al.*, 2004; Schönefeld *et al.*, 2005; Gruber *et al.*, 2008).

The molecular geometry of the molecule (figure 1) is best described by an angular conformation, whereas the cyclododecyl ring is disordered over two positions giving rise to an entirely filled cavity. The torsion angle are 71.44 (6)° (C6 —S1—N2—C13) and 51.5 (3)° (C6—S1—N2—C13A), respectively, while the mean planes of the cyclododecylamine and the naphthalene include an angle of 20.1°. Weak C—H··· π contacts (Nishio, 2004) involving one methylene group of the cycloalkyl ring and the two aromatic rings, and a C—H···O interaction between H4 and O1 stabilize the crystal packing. Furthermore, N—H···O hydrogen bonding leads to dimerization similar to carboxylic acids. The equatorial arrangement and conformation of the cyclododecyl moiety correspond to reported data (Dunitz & Shearer, 1960; Rudert *et al.*, 1994; Feiler *et al.*, 1995).

S2. Experimental

To a solution of cyclododecylamine (8.18 mmol) and triethylamine (14.39 mmol) in THF (50 ml), dansylchloride (9.63 mmol) in THF (50 ml) was added dropwise and refluxed for 2 h. After evaporation of the solvent under reduced pressure, the residue was dissolved in water/chloroform (100 ml of each). The organic extract was dried (Na₂SO₄) and the solvent distilled off. Recrystallization from *n*-hexane/dichloromethane (1:1) yielded light yellow crystals. (34%). Anal. Calcd. for $C_{24}H_{36}N_2O_2S$: C, 69.19; H, 8.71; N, 6.72; Found: C, 69.21; H, 8.83; N, 7.00%.

S3. Refinement

The cyclododecyl ring is disordered over two positions and refinement of occupancies converged to 0.8623:1377. H atoms of the major component of the disordered cyclododecyl were located in a difference Fourier map and refined isotropically. Imino H atom was also located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C-H = 0.95 - 0.99 Å, and refined in a riding mode with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Figure 1

Molecular structure of the title compound with 30% probability displacement ellipsoids.

N-Cyclododecyl-5-(dimethylamino)naphthalene-1-sulfonamide

Crystal data

 $C_{24}H_{36}N_2O_2S$ $M_r = 416.62$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.3564 (3) Å b = 13.5117 (4) Å c = 16.2076 (4) Å $\beta = 95.814$ (1)° V = 2256.30 (11) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi scan (*SADABS*; Sheldrick, 2002) $T_{\min} = 0.826, T_{\max} = 0.954$ F(000) = 904 $D_x = 1.227 \text{ Mg m}^{-3}$ Melting point: 437 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9249 reflections $\theta = 2.5-39.0^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 93 KPlate, light yellow $0.54 \times 0.42 \times 0.29 \text{ mm}$

71103 measured reflections 14866 independent reflections 10604 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 41.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -18 \rightarrow 19$ $k = -24 \rightarrow 24$ $l = -29 \rightarrow 29$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.120$	neighbouring sites
S = 1.02	H atoms treated by a mixture of independent
14866 reflections	and constrained refinement
469 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0655P)^2 + 0.1633P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.46 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. ¹H NMR (400 MHz, CDCl₃, δ , p.p.m.): 0.95 (4*H*, m, CH₂, 1.09 (4*H*, m, CH₂), 1.20 (12*H*, m, CH₂), 1.41 (2*H*, m, CH₂), 2.88 (6*H*, s, N(CH₃)₂), 3.20 (1*H*, m, C*H*NH), 4.57 (1*H*, s, CHN*H*), 7.17 (1*H*, d, A*rH*), 7.53 (2*H*, d, A*r*H), 8.32 (2*H*, m, A*r*H), 8.52 (1*H*, d, A*r*H). ¹³C NMR (100 MHz, CDCl₃, δ , p.p.m.): 21.09, 23.06, 23.17, 23.24, 23.52, 31.13 (CH₂), 45.36 (N(CH₃)₂), 50.53 (CHNH), 115.03 (6-A*r*C), 119.00, 123.09 (2-, 8-A*r*C), 128.21, 129.61, 129.76, 129.84, 130.24 (3-,4-,4a-,7-,8a-A*r*C), 135.57 (1-A*r*C), 151.89 (5-A*r*C). IR (KBr): 3290 (N—H); 3076, 3051 (C—H_{ar}); 2937, 2862 (C—H_{alk}); 2787 (N—CH₃); 1620, 1592, 1574 (C?C); 1474; 1453; 1413; 1356; 1313; 1231; 1206; 1164; 1150; 1092; 1074; 1060; 1028; 946; 882; 792; 689; 632; 578.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.039201 (15)	0.332136 (11)	0.456193 (9)	0.01773 (4)	
O1	-0.06052 (5)	0.36676 (4)	0.50517 (3)	0.02297 (10)	
O2	0.11146 (5)	0.24527 (4)	0.48235 (3)	0.02405 (10)	
N1	-0.23380 (5)	0.42906 (4)	0.08519 (3)	0.01851 (9)	
N2	0.14083 (5)	0.42236 (4)	0.45239 (3)	0.01769 (9)	
H2′	0.1060 (11)	0.4782 (9)	0.4485 (7)	0.034 (3)*	
C1	-0.21013 (5)	0.44354 (4)	0.17181 (4)	0.01559 (9)	
C2	-0.25882 (6)	0.52375 (5)	0.21154 (4)	0.01812 (10)	
H2	-0.3110	0.5712	0.1804	0.022*	
C3	-0.23173 (7)	0.53578 (5)	0.29785 (4)	0.01954 (11)	
Н3	-0.2671	0.5909	0.3242	0.023*	
C4	-0.15557 (6)	0.46971 (5)	0.34466 (4)	0.01791 (10)	
H4	-0.1360	0.4807	0.4025	0.021*	
C5	-0.10584 (6)	0.38498 (4)	0.30710 (4)	0.01552 (9)	
C6	-0.02721 (6)	0.31162 (4)	0.35209 (4)	0.01712 (10)	
C7	0.01112 (7)	0.22697 (5)	0.31416 (4)	0.02077 (11)	
H7	0.0636	0.1796	0.3452	0.025*	
C8	-0.02742 (7)	0.21044 (5)	0.22930 (5)	0.02228 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H8	-0.0040	0.1506	0.2039	0.027*	
С9	-0.09844 (6)	0.28033 (5)	0.18340 (4)	0.01948 (10)	
Н9	-0.1227	0.2687	0.1261	0.023*	
C10	-0.13641 (5)	0.36992 (4)	0.21999 (4)	0.01529 (9)	
C11	-0.11742 (7)	0.43858 (6)	0.04101 (4)	0.02615 (13)	
H11A	-0.0945	0.5087	0.0370	0.039*	
H11B	-0.1349	0.4107	-0.0148	0.039*	
H11C	-0.0453	0.4027	0.0714	0.039*	
C12	-0.33772 (7)	0.48886 (6)	0.04336 (4)	0.02499 (13)	
H12A	-0.4145	0.4848	0.0739	0.037*	
H12B	-0.3593	0.4641	-0.0132	0.037*	
H12C	-0.3092	0.5579	0.0413	0.037*	
C13	0.26599 (10)	0.40723 (8)	0.41631 (6)	0.01599 (15)	0.8623 (12)
H13	0.2564 (11)	0.3489 (8)	0.3830 (7)	0.015 (2)*	0.8623 (12)
C14	0.29031 (8)	0.49533 (6)	0.36018 (5)	0.01951 (13)	0.8623 (12)
H14A	0.3902 (12)	0.5005 (9)	0.3563 (7)	0.026 (3)*	0.8623 (12)
H14B	0.2651 (13)	0.5557 (10)	0.3868 (8)	0.031 (3)*	0.8623 (12)
C15	0.21831 (8)	0.48964 (6)	0.27273 (5)	0.02269 (15)	0.8623 (12)
H15A	0.1238 (12)	0.4829 (9)	0.2768 (7)	0.025 (3)*	0.8623 (12)
H15B	0.2324 (13)	0.5552 (10)	0.2449 (8)	0.031 (3)*	0.8623 (12)
C16	0.25964 (11)	0.40350 (9)	0.21972 (7)	0.02426 (19)	0.8623 (12)
H16A	0.2467 (12)	0.3403 (9)	0.2514 (8)	0.020 (3)*	0.8623 (12)
H16B	0.2029 (13)	0.4015 (10)	0.1665 (8)	0.032 (3)*	0.8623 (12)
C17	0.39987 (9)	0.40970 (6)	0.19824 (5)	0.02443 (15)	0.8623 (12)
H17A	0.4599 (12)	0.4308 (9)	0.2472 (8)	0.026 (3)*	0.8623 (12)
H17B	0.4033 (14)	0.4678 (11)	0.1564 (9)	0.041 (4)*	0.8623 (12)
C18	0.45099 (12)	0.31286 (7)	0.16479 (6)	0.02798 (18)	0.8623 (12)
H18A	0.5359 (15)	0.3266 (11)	0.1369 (9)	0.040 (4)*	0.8623 (12)
H18B	0.3903 (16)	0.2865 (13)	0.1204 (10)	0.051 (4)*	0.8623 (12)
C19	0.47808 (14)	0.23333 (9)	0.23171 (8)	0.0257 (2)	0.8623 (12)
H19A	0.4022 (12)	0.2275 (9)	0.2587 (8)	0.027 (3)*	0.8623 (12)
H19B	0.4843 (15)	0.1656 (11)	0.2067 (9)	0.042 (4)*	0.8623 (12)
C20	0.59746 (8)	0.25578 (6)	0.29262 (6)	0.02371 (15)	0.8623 (12)
H20A	0.6066 (13)	0.3314 (9)	0.2995 (8)	0.027 (3)*	0.8623 (12)
H20B	0.6733 (13)	0.2330 (10)	0.2690 (8)	0.033 (3)*	0.8623 (12)
C21	0.59636 (9)	0.20577 (6)	0.37710 (6)	0.02530 (16)	0.8623 (12)
H21A	0.5887 (13)	0.1346 (10)	0.3676 (8)	0.032 (3)*	0.8623 (12)
H21B	0.6813 (12)	0.2197 (9)	0.4102 (8)	0.025 (3)*	0.8623 (12)
C22	0.48776 (10)	0.24042 (7)	0.42801 (6)	0.02177 (15)	0.8623 (12)
H22A	0.4013 (12)	0.2295 (9)	0.3935 (7)	0.024 (3)*	0.8623 (12)
H22B	0.4854 (13)	0.1965 (10)	0.4788 (8)	$0.030(3)^*$	0.8623(12)
C23	0 50024 (8)	0 34853 (6)	0 45558 (5)	0.02195(14)	0.8623(12)
H23A	0.5261(11)	0.3903 (9)	0.4092 (7)	0.022 (3)*	0.8623(12)
H23B	0.5757(12)	0 3529 (9)	0.4994(8)	0.022(3)*	0.8623(12)
C24	0.37593 (8)	0.39027 (6)	0.48608 (5)	0.01908(13)	0.8623(12)
H24A	0 3437 (12)	0 3419 (8)	0 5269 (8)	0.021 (3)*	0.8623(12)
H24B	0 3937 (12)	0 4520 (9)	0 5149 (8)	0.026 (3)*	0.8623(12)
C13A	0.2423(7)	0.1320(5) 0.4184(5)	0 3938 (4)	0.020(3)	0.1377(12)
UIJA	0.2723(7)	UT107 (J)	0.5750 (+)	0.017 + (11)	0.15//(14)

H13A	0.2460	0.3492	0.3722	0.023*	0.1377 (12)
C14A	0.2135 (5)	0.4874 (4)	0.3205 (3)	0.0217 (9)	0.1377 (12)
H14C	0.2274	0.5566	0.3396	0.026*	0.1377 (12)
H14D	0.1211	0.4805	0.2989	0.026*	0.1377 (12)
C15A	0.2983 (6)	0.4673 (4)	0.2497 (4)	0.0269 (10)	0.1377 (12)
H15C	0.2839	0.5208	0.2081	0.032*	0.1377 (12)
H15D	0.3907	0.4697	0.2724	0.032*	0.1377 (12)
C16A	0.2720 (8)	0.3687 (6)	0.2067 (5)	0.0289 (13)	0.1377 (12)
H16C	0.1888	0.3727	0.1710	0.035*	0.1377 (12)
H16D	0.2629	0.3171	0.2491	0.035*	0.1377 (12)
C17A	0.3806 (6)	0.3380 (5)	0.1532 (4)	0.0292 (11)	0.1377 (12)
H17C	0.3500	0.2805	0.1186	0.035*	0.1377 (12)
H17D	0.3959	0.3932	0.1152	0.035*	0.1377 (12)
C18A	0.5089 (6)	0.3109 (4)	0.2021 (4)	0.0262 (10)	0.1377 (12)
H18C	0.5739	0.3006	0.1621	0.031*	0.1377 (12)
H18D	0.5380	0.3684	0.2370	0.031*	0.1377 (12)
C19A	0.5103 (9)	0.2219 (7)	0.2568 (5)	0.0290 (14)	0.1377 (12)
H19C	0.5224	0.1629	0.2222	0.035*	0.1377 (12)
H19D	0.4235	0.2160	0.2770	0.035*	0.1377 (12)
C20A	0.6097 (5)	0.2175 (4)	0.3309 (3)	0.0226 (9)	0.1377 (12)
H20C	0.6965	0.2290	0.3121	0.027*	0.1377 (12)
H20D	0.6094	0.1500	0.3546	0.027*	0.1377 (12)
C21A	0.5887 (5)	0.2918 (4)	0.3989 (3)	0.0226 (9)	0.1377 (12)
H21C	0.6677	0.2934	0.4388	0.027*	0.1377 (12)
H21D	0.5779	0.3584	0.3736	0.027*	0.1377 (12)
C22A	0.4735 (6)	0.2708 (5)	0.4459 (4)	0.0227 (10)	0.1377 (12)
H22C	0.4006	0.2494	0.4056	0.027*	0.1377 (12)
H22D	0.4958	0.2145	0.4837	0.027*	0.1377 (12)
C23A	0.4269 (5)	0.3538 (4)	0.4958 (3)	0.0227 (9)	0.1377 (12)
H23C	0.5009	0.3787	0.5335	0.027*	0.1377 (12)
H23D	0.3614	0.3277	0.5305	0.027*	0.1377 (12)
C24A	0.3680 (5)	0.4397 (4)	0.4452 (3)	0.0220 (9)	0.1377 (12)
H24C	0.3535	0.4948	0.4835	0.026*	0.1377 (12)
H24D	0.4317	0.4628	0.4078	0.026*	0.1377 (12)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01813 (7)	0.01768 (7)	0.01798 (6)	0.00164 (5)	0.00484 (5)	0.00483 (5)
01	0.0224 (2)	0.0277 (2)	0.0202 (2)	0.00305 (18)	0.00882 (17)	0.00475 (17)
O2	0.0248 (2)	0.0197 (2)	0.0278 (2)	0.00326 (17)	0.00366 (18)	0.00930 (18)
N1	0.0155 (2)	0.0247 (2)	0.01568 (19)	0.00039 (17)	0.00316 (16)	-0.00216 (17)
N2	0.0186 (2)	0.0165 (2)	0.0185 (2)	0.00146 (17)	0.00489 (17)	0.00115 (16)
C1	0.0131 (2)	0.0173 (2)	0.0167 (2)	-0.00111 (17)	0.00304 (17)	-0.00180 (17)
C2	0.0187 (2)	0.0171 (2)	0.0185 (2)	0.00267 (19)	0.00184 (19)	-0.00127 (19)
C3	0.0226 (3)	0.0173 (2)	0.0189 (2)	0.0045 (2)	0.0028 (2)	-0.00262 (19)
C4	0.0204 (2)	0.0166 (2)	0.0170 (2)	0.00290 (19)	0.00259 (19)	-0.00208 (18)
C5	0.0148 (2)	0.0140 (2)	0.0182 (2)	-0.00004 (17)	0.00383 (17)	-0.00080 (17)

C6	0.0167 (2)	0.0147 (2)	0.0205 (2)	0.00090 (18)	0.00426 (18)	0.00131 (18)
C7	0.0205 (3)	0.0149 (2)	0.0275 (3)	0.00235 (19)	0.0049 (2)	0.0006 (2)
C8	0.0221 (3)	0.0164 (2)	0.0290 (3)	0.0023 (2)	0.0058 (2)	-0.0049 (2)
C9	0.0182 (2)	0.0176 (2)	0.0231 (3)	-0.00017 (19)	0.0049 (2)	-0.0059 (2)
C10	0.0136 (2)	0.0147 (2)	0.0181 (2)	-0.00075 (16)	0.00396 (17)	-0.00231 (17)
C11	0.0223 (3)	0.0366 (4)	0.0209 (3)	0.0001 (3)	0.0090(2)	-0.0012 (3)
C12	0.0225 (3)	0.0328 (3)	0.0192 (3)	0.0043 (2)	-0.0004 (2)	-0.0007 (2)
C13	0.0180 (4)	0.0155 (3)	0.0149 (4)	0.0001 (3)	0.0041 (3)	-0.0004 (3)
C14	0.0211 (3)	0.0178 (3)	0.0202 (3)	-0.0010 (2)	0.0051 (2)	0.0013 (2)
C15	0.0194 (3)	0.0273 (4)	0.0217 (3)	0.0012 (3)	0.0042 (2)	0.0074 (3)
C16	0.0239 (4)	0.0321 (5)	0.0170 (4)	-0.0055 (4)	0.0032 (3)	0.0019 (4)
C17	0.0291 (4)	0.0230 (3)	0.0230 (3)	-0.0026 (3)	0.0113 (3)	0.0045 (3)
C18	0.0400 (6)	0.0270 (4)	0.0185 (3)	-0.0025 (4)	0.0104 (4)	-0.0012 (3)
C19	0.0334 (6)	0.0189 (4)	0.0258 (5)	-0.0070 (4)	0.0072 (4)	-0.0033 (4)
C20	0.0234 (3)	0.0205 (3)	0.0289 (4)	-0.0014 (3)	0.0111 (3)	-0.0005 (3)
C21	0.0275 (4)	0.0203 (3)	0.0292 (4)	0.0075 (3)	0.0080 (3)	0.0018 (3)
C22	0.0267 (4)	0.0159 (3)	0.0237 (4)	0.0017 (3)	0.0076 (3)	0.0011 (3)
C23	0.0187 (3)	0.0197 (3)	0.0271 (3)	0.0014 (2)	0.0011 (3)	-0.0044 (3)
C24	0.0201 (3)	0.0196 (3)	0.0172 (3)	0.0015 (3)	0.0002 (2)	-0.0037 (2)
C13A	0.018 (3)	0.020 (2)	0.020 (3)	0.0042 (18)	0.002 (2)	0.002 (2)
C14A	0.027 (2)	0.0186 (19)	0.020 (2)	0.0021 (16)	0.0067 (16)	0.0068 (15)
C15A	0.029 (2)	0.023 (2)	0.031 (2)	0.0003 (18)	0.012 (2)	0.0089 (18)
C16A	0.023 (3)	0.036 (4)	0.028 (3)	-0.007 (3)	0.002 (2)	0.001 (3)
C17A	0.029 (3)	0.040 (3)	0.020 (2)	-0.002 (2)	0.0107 (19)	0.007 (2)
C18A	0.030 (3)	0.026 (2)	0.024 (2)	-0.0026 (19)	0.012 (2)	0.0017 (18)
C19A	0.033 (4)	0.028 (3)	0.027 (3)	-0.007 (3)	0.011 (3)	-0.006 (3)
C20A	0.027 (2)	0.0194 (19)	0.022 (2)	0.0026 (16)	0.0073 (17)	0.0040 (17)
C21A	0.0190 (19)	0.024 (2)	0.025 (2)	0.0020 (16)	0.0036 (16)	-0.0023 (17)
C22A	0.024 (2)	0.021 (2)	0.023 (2)	0.0085 (19)	0.0006 (18)	0.0006 (19)
C23A	0.0167 (19)	0.026 (2)	0.024 (2)	0.0079 (17)	-0.0056 (15)	-0.0060 (17)
C24A	0.0172 (18)	0.0193 (19)	0.029 (2)	0.0022 (15)	-0.0011 (16)	-0.0050 (17)

Geometric parameters (Å, °)

<u>S1—O2</u>	1.4328 (5)	C19—H19A	0.941 (13)
S1—01	1.4428 (5)	C19—H19B	1.006 (15)
S1—N2	1.6157 (6)	C20—C21	1.5280 (13)
S1—C6	1.7781 (7)	C20—H20A	1.031 (12)
N1—C1	1.4140 (8)	C20—H20B	0.959 (14)
N1—C12	1.4570 (9)	C21—C22	1.5340 (13)
N1-C11	1.4687 (8)	C21—H21A	0.975 (13)
N2—C13A	1.487 (7)	C21—H21B	1.001 (12)
N2—C13	1.4891 (12)	C22—C23	1.5292 (13)
N2—H2′	0.835 (12)	C22—H22A	1.017 (12)
C1—C2	1.3818 (8)	C22—H22B	1.017 (13)
C1-C10	1.4357 (9)	C23—C24	1.5326 (11)
С2—С3	1.4080 (9)	C23—H23A	0.997 (12)
С2—Н2	0.9500	С23—Н23В	1.003 (13)

C3—C4	1.3686 (9)	C24—H24A	1.011 (12)
С3—Н3	0.9500	C24—H24B	0.965 (13)
C4—C5	1.4178 (8)	C13A—C24A	1.501 (8)
C4—H4	0.9500	C13A—C14A	1.516 (8)
C5—C10	1.4298 (8)	С13А—Н13	0.968 (13)
C5—C6	1.4341 (8)	С13А—Н13А	1.0000
C6—C7	1.3760 (9)	C14A—C15A	1.538 (7)
C7—C8	1.4105 (10)	C14A—H14C	0.9900
С7—Н7	0.9500	C14A—H14D	0.9900
C8—C9	1.3694 (10)	C15A—C16A	1.516 (10)
C8—H8	0.9500	С15А—Н15С	0.9900
C9—C10	1.4209 (8)	C15A—H15D	0.9900
С9—Н9	0.9500	C16A—C17A	1.545 (10)
C11—H11A	0.9800	C16A—H16C	0.9900
C11—H11B	0.9800	C16A—H16D	0.9900
C11—H11C	0.9800	C17A—C18A	1.521 (9)
C12—H12A	0.9800	C17A—H17C	0.9900
C12—H12B	0.9800	C17A—H17D	0.9900
C12—H12C	0.9800	C18A—C19A	1.494 (10)
C13—C14	1.5344 (12)	C18A—H18C	0.9900
C13—C24	1.5384 (13)	C18A—H18D	0.9900
C13—H13	0.954 (11)	C19A—C20A	1.501 (10)
C14—C15	1.5352 (12)	С19А—Н19С	0.9900
C14—H14A	1.045 (12)	C19A—H19D	0.9900
C14—H14B	0.970 (13)	C20A—C21A	1.523 (7)
C15—C16	1.5331 (15)	C20A—H20C	0.9900
C15—H15A	0.991 (12)	C20A—H20D	0.9900
C15—H15B	1.012 (13)	C21A—C22A	1.507 (8)
C16—C17	1.5296 (14)	C21A—H21C	0.9900
C16—H16A	1.012 (12)	C21A—H21D	0.9900
C16—H16B	0.994 (13)	C22A—C23A	1.490 (8)
C17—C18	1.5312 (13)	C22A—H22C	0.9900
C17—H17A	0.998 (13)	C22A—H22D	0.9900
C17—H17B	1.040 (15)	C23A—C24A	1.513 (7)
C18—C19	1.5324 (16)	С23А—Н23С	0.9900
C18—H18A	1.045 (15)	C23A—H23D	0.9900
C18—H18B	0.974 (17)	C24A—H24C	0.9900
C19—C20	1.5323 (16)	C24A—H24D	0.9900
O2—S1—O1	118.96 (3)	C22—C21—H21B	107.9 (7)
O2—S1—N2	107.86 (3)	H21A—C21—H21B	108.9 (11)
O1—S1—N2	106.36 (3)	C23—C22—C21	113.82 (7)
O2—S1—C6	107.06 (3)	C23—C22—H22A	110.1 (7)
O1—S1—C6	110.06 (3)	C21—C22—H22A	108.2 (7)
N2—S1—C6	105.80 (3)	C23—C22—H22B	109.2 (7)
C1—N1—C12	115.52 (5)	C21—C22—H22B	109.6 (8)
C1—N1—C11	113.81 (5)	H22A—C22—H22B	105.6 (10)
C12—N1—C11	109.18 (6)	C22—C23—C24	113.38 (7)

C13A—N2—S1	120.1 (3)	С22—С23—Н23А	110.0 (7)
C13—N2—S1	120.51 (5)	С24—С23—Н23А	109.5 (7)
C13A—N2—H2′	108.1 (8)	С22—С23—Н23В	107.4 (7)
C13—N2—H2′	118.7 (8)	C24—C23—H23B	111.7 (7)
S1—N2—H2'	114.0 (8)	H23A—C23—H23B	104.5 (10)
C2-C1-N1	122.44 (6)	C_{23} C_{24} C_{13}	113.65 (7)
$C_2 - C_1 - C_{10}$	119.27 (5)	C23—C24—H24A	108.5 (7)
N1-C1-C10	118.25 (5)	C13 - C24 - H24A	108.0(7)
C1-C2-C3	120 54 (6)	C_{23} C_{24} H_{24B}	100.0(7) 110.5(7)
C1 - C2 - H2	119 7	C_{13} C_{24} H_{24B}	108.5(7)
$C_3 - C_2 - H_2$	119.7	$H_{24} = C_{24} = H_{24}B$	107.6(10)
C_{4} C_{3} C_{2} C_{2}	121 40 (6)	N_2 —C13A—C24A	107.0(10) 105.5(5)
$C_4 - C_3 - H_3$	119 3	N_2 Close Close Class	103.5(5) 112.5(5)
C2-C3-H3	119.3	$C_{24} = C_{13} = C_{14}$	112.5(5) 114.0(6)
$C_{2} = C_{3} = C_{4} = C_{5}$	120.18 (6)	$C_{24A} = C_{13A} = H_{13}$	985(9)
$C_3 = C_4 = C_3$	110.0	$N_2 C_{13A} H_{13A}$	108.2
$C_5 = C_4 = H_4$	119.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.2 113.2 (5)
C_{3} C_{4} C_{5} C_{10}	119.9	$C_{13A} = C_{14A} = C_{13A}$	108.0
$C_{4} = C_{5} = C_{10}$	119.02(5) 123.51(5)	C15A = C14A = H14C	108.9
$C_{1} = C_{2} = C_{0}$	123.31(3) 117.47(5)	$H_{15A} = C_{14A} = H_{14C}$	100.7
$C_{10} - C_{5} - C_{0}$	117.47(5) 121.47(6)	$\begin{array}{c} \text{HI3A} \\ \text{C13A} \\ \text{C14A} \\ \text{H14D} \\ \text{H14D} \\ \end{array}$	109.7
$C_{1} = C_{0} = C_{3}$	121.47(0) 116.99(5)	C15A = C14A = H14D	100.9
$C_{}C_{0}S_{1}$	110.88(3) 121.22(4)	$H_{A} = C_{A} = H_{A}$	108.9
C_{3}	121.32 (4)	H14C - C14A - H14D	107.8
C_{0}	120.09 (6)	C16A - C15A - C14A	114.1 (5)
	120.0	CI6A—CI5A—HI5C	108.7
C8—C/—H/	120.0	CI4A—CI5A—HI5C	108.7
C9—C8—C7	120.25 (6)	CI6A—CI5A—HI5D	108.7
C9—C8—H8	119.9	CI4A—CI5A—HI5D	108.7
C/C8H8	119.9	HISC—CISA—HISD	107.6
C8—C9—C10	121.13 (6)	C15A—C16A—C17A	112.8 (6)
С8—С9—Н9	119.4	C15A—C16A—H16C	109.0
С10—С9—Н9	119.4	C17A—C16A—H16C	109.0
C9—C10—C5	119.36 (6)	C15A—C16A—H16D	109.0
C9—C10—C1	121.17 (5)	C17A—C16A—H16D	109.0
C5—C10—C1	119.40 (5)	H16C—C16A—H16D	107.8
N2—C13—C14	109.15 (7)	C18A—C17A—C16A	114.7 (5)
N2—C13—C24	109.92 (7)	C18A—C17A—H17C	108.6
C14—C13—C24	113.43 (8)	C16A—C17A—H17C	108.6
N2—C13—H13	106.9 (7)	C18A—C17A—H17D	108.6
C14—C13—H13	108.6 (7)	C16A—C17A—H17D	108.6
C24—C13—H13	108.6 (7)	H17C—C17A—H17D	107.6
C13—C14—C15	114.52 (7)	C19A—C18A—H18C	108.0
C13—C14—H14A	108.1 (7)	C17A—C18A—H18C	108.0
C15—C14—H14A	109.8 (7)	C19A—C18A—H18D	108.0
C13—C14—H14B	108.7 (8)	C17A—C18A—H18D	108.0
C15—C14—H14B	109.0 (8)	H18C—C18A—H18D	107.2
H14A—C14—H14B	106.4 (10)	C18A—C19A—C20A	118.1 (7)
C16—C15—C14	114.73 (7)	C18A—C19A—H19C	107.8

C16—C15—H15A	107.5 (7)	C20A—C19A—H19C	107.8
C14—C15—H15A	109.5 (7)	C18A—C19A—H19D	107.8
C16—C15—H15B	110.7 (7)	C20A—C19A—H19D	107.8
C14—C15—H15B	106.8 (7)	H19C—C19A—H19D	107.1
H15A—C15—H15B	107.3 (10)	C19A—C20A—C21A	114.6 (5)
C17—C16—C15	114.29 (9)	C19A—C20A—H20C	108.6
C17—C16—H16A	109.8 (7)	C21A—C20A—H20C	108.6
C15—C16—H16A	107.3 (7)	C19A—C20A—H20D	108.6
C17—C16—H16B	107.1 (8)	C21A—C20A—H20D	108.6
C15—C16—H16B	109.5 (8)	H20C-C20A-H20D	107.6
H16A—C16—H16B	108.7 (10)	C22A—C21A—C20A	114.9 (5)
C16—C17—C18	113.83 (8)	C22A—C21A—H21C	108.6
С16—С17—Н17А	111.3 (7)	C20A—C21A—H21C	108.6
С18—С17—Н17А	108.4 (7)	C22A—C21A—H21D	108.6
С16—С17—Н17В	106.6 (8)	C20A—C21A—H21D	108.6
C18—C17—H17B	112.2 (8)	H21C—C21A—H21D	107.5
H17A—C17—H17B	104.0(11)	$C_{23}A - C_{22}A - C_{21}A$	116.7 (5)
C17-C18-C19	113.18 (8)	C_{23A} C_{22A} H_{22B}	115.8 (9)
C17—C18—H18A	109 7 (8)	$C_{21}A - C_{22}A - H_{22}B$	110.4 (9)
C19— $C18$ — $H18A$	109.2 (8)	C_{23A} C_{22A} H_{22C}	108.1
C17—C18—H18B	110.7(10)	$C_{21}A - C_{22}A - H_{22}C$	108.1
C19—C18—H18B	108.9 (10)	C_{23A} C_{22A} H_{22D}	108.1
H18A—C18—H18B	104.8 (13)	C_{21A} C_{22A} H_{22D}	108.1
C_{20} C_{19} C_{18}	113 27 (9)	$H_{22}C - C_{22}A - H_{22}D$	107.3
C20—C19—H19A	112.0 (8)	C_{24A} C_{23A} H_{23B}	112.0 (6)
C18—C19—H19A	106 7 (8)	C24A - C23A - H24A	94 1 (8)
C20-C19-H19B	111 1 (9)	C24A - C23A - H24B	459(5)
C18—C19—H19B	111.6 (9)	$C^{22}A - C^{23}A - H^{23}C$	108.6
H19A—C19—H19B	101.6 (11)	C_{24A} C_{23A} H_{23C}	108.6
C_{21} C_{20} C_{19}	114 27 (8)	$C^{22}A - C^{23}A - H^{23}D$	108.6
$C_{21} = C_{20} = H_{20A}$	110.5(7)	C24A - C23A - H23D	108.6
C19 - C20 - H20A	109.0(7)	$H_{23}C - C_{23}A - H_{23}D$	107.6
C_{21} C_{20} H_{20B}	107.2(8)	C_{13A} C_{24A} C_{23A}	107.0 115.7(5)
C19 - C20 - H20B	108.6 (8)	C13A - C24A - H24C	108.4
$H_{20}A = C_{20} = H_{20}B$	107.0(11)	$C_{23}A = C_{24}A = H_{24}C$	108.4
C_{20} C_{21} C_{22}	114 80 (7)	C13A - C24A - H24D	108.4
$C_{20} = C_{21} = H_{21A}$	107.6 (8)	$C_{23}A = C_{24}A = H_{24}D$	108.4
$C_{20} = C_{21} = H_{21A}$	109.4 (8)	H_{24C} C_{24A} H_{24D}	107.4
$C_{22} = C_{21} = H_{21R}$	109.4(0) 108.1(7)		107.4
C20 C21 1121D	100.1 (7)		
$\Omega^2 = S1 = N^2 = C13A$	628(3)	$C^{2}-C^{1}-C^{1}0-C^{5}$	-5.06(8)
01 - S1 - N2 - C13A	-1685(3)	$N_1 - C_1 - C_10 - C_5$	177.07(5)
C6-S1-N2-C13A	-51 5 (3)	$C13A = N^2 = C13 = C14$	42.4 (10)
02 - 81 - N2 - C13	42 85 (6)	$S1_{N2}_{12}_{13}_{14}$	136 27 (6)
01 - 12 - 13	171 52 (6)	$C_{13} = N_2 = C_{13} = C_{24}$	1674(11)
C6-S1-N2-C13	-7144(6)	$S1_{N2}_{C13}_{C24}$	-98.73(7)
$C_1^{-1} = C_1^{-1} = C_1^{-1}$	-14.76(9)	N_{2} C_{13} C_{14} C_{15}	-81.47(9)
$C_{12} - M_{-} C_{1} - C_{2}$	112 73 (7)	C_{24} C_{13} C_{14} C_{15} C_{15}	155.60(7)
$U_1 = W_1 = U_1 = U_2$	112.73 (7)	027-013-014-013	155.00(7)

C12—N1—C1—C10	163.04 (6)	C13—C14—C15—C16	-64.30 (10)
C11—N1—C1—C10	-69.47 (7)	C14—C15—C16—C17	-65.13 (10)
N1—C1—C2—C3	-179.36 (6)	C15—C16—C17—C18	165.48 (8)
C10—C1—C2—C3	2.87 (9)	C16—C17—C18—C19	-72.80 (12)
C1—C2—C3—C4	0.86 (10)	C17—C18—C19—C20	-71.53 (13)
C2—C3—C4—C5	-2.33 (10)	C18—C19—C20—C21	155.92 (8)
C3—C4—C5—C10	0.04 (9)	C19—C20—C21—C22	-64.74 (11)
C3—C4—C5—C6	-178.96 (6)	C20—C21—C22—C23	-65.97 (11)
C4—C5—C6—C7	175.23 (6)	C21—C22—C23—C24	165.03 (7)
C10—C5—C6—C7	-3.79 (9)	C22—C23—C24—C13	-71.56 (10)
C4—C5—C6—S1	-11.56 (8)	N2-C13-C24-C23	165.44 (7)
C10—C5—C6—S1	169.42 (4)	C14—C13—C24—C23	-72.05 (9)
O2—S1—C6—C7	-6.61 (6)	C13—N2—C13A—C24A	-32.4 (8)
O1—S1—C6—C7	-137.25 (5)	S1—N2—C13A—C24A	-128.7 (4)
N2—S1—C6—C7	108.23 (5)	C13—N2—C13A—C14A	-157.3 (15)
O2—S1—C6—C5	179.88 (5)	S1—N2—C13A—C14A	106.4 (5)
O1—S1—C6—C5	49.24 (6)	N2-C13A-C14A-C15A	-166.6 (5)
N2—S1—C6—C5	-65.28 (5)	C24A—C13A—C14A—C15A	73.3 (7)
C5—C6—C7—C8	-0.35 (10)	C13A—C14A—C15A—C16A	66.8 (7)
S1—C6—C7—C8	-173.85 (5)	C14A—C15A—C16A—C17A	-164.6 (5)
C6—C7—C8—C9	2.78 (10)	C15A—C16A—C17A—C18A	69.2 (8)
C7—C8—C9—C10	-0.90 (10)	C16A—C17A—C18A—C19A	64.7 (8)
C8—C9—C10—C5	-3.35 (9)	C17A—C18A—C19A—C20A	-153.6 (6)
C8—C9—C10—C1	179.58 (6)	C18A—C19A—C20A—C21A	68.7 (8)
C4—C5—C10—C9	-173.51 (6)	C19A—C20A—C21A—C22A	70.4 (7)
C6—C5—C10—C9	5.55 (8)	C20A—C21A—C22A—C23A	-163.5 (5)
C4—C5—C10—C1	3.62 (8)	C21A—C22A—C23A—C24A	67.6 (6)
C6-C5-C10-C1	-177.32 (5)	N2-C13A-C24A-C23A	79.3 (6)
C2-C1-C10-C9	172.01 (6)	C14A—C13A—C24A—C23A	-156.7 (5)
N1-C1-C10-C9	-5.86 (8)	C22A—C23A—C24A—C13A	67.2 (7)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
0.84 (1)	2.28 (1)	3.065 (1)	154 (1)
0.95	2.34	3.026 (1)	128
1.031 (12)	2.88 (1)	3.595 (1)	126 (1)
0.959 (14)	2.84 (1)	3.613 (1)	140 (1)
0.99	2.81	3.792 (1)	170
	<i>D</i> —H 0.84 (1) 0.95 1.031 (12) 0.959 (14) 0.99	D—H H···A 0.84 (1) 2.28 (1) 0.95 2.34 1.031 (12) 2.88 (1) 0.959 (14) 2.84 (1) 0.99 2.81	D—HH···A D ···A0.84 (1)2.28 (1)3.065 (1)0.952.343.026 (1)1.031 (12)2.88 (1)3.595 (1)0.959 (14)2.84 (1)3.613 (1)0.992.813.792 (1)

Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) *x*+1, *y*, *z*.