

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(µ-naphthalene-1,8-dicarboxylato)bis[aqua(2,2'-bipyridine)zinc(II)] tetrahydrate

Xia Feng and Yi-Hang Wen*

Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China

Correspondence e-mail: wyh@zjnu.edu.cn

Received 23 October 2008; accepted 6 November 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.112; data-to-parameter ratio = 15.7.

The title complex, $[Zn_2(C_{12}H_6O_4)_2(C_{10}H_8N_2)_2(H_2O)_2]\cdot 4H_2O$, is a binuclear complex with two independent Zn^{II} ions in a slightly disorted trigonal bipyramidal environment, coordinated by one aqua ligand, two naphthalene-1,8-dicarboxylate ligands and one 2,2'-bipyridine ligand. π - π Interactions [centroid-centroid distance of 3.8489 (5) Å] and O-H···O hydrogen bonds connect the molecules, forming a threedimensional structure.

Related literature

1,8-naphthalenecarboxylic anhydride, which is hydrolysed to the naphthalene-1,8-dicarboxylate ligand under hydrothermal conditions, is employed as a starting material in the preparation of coordination polymers, see: Feng *et al.* (2008); He *et al.* (2007); Wen *et al.* (2007, 2008).

Experimental

Crystal data

 $[Zn_2(C_{12}H_6O_4)_2(C_{10}H_8N_2)_2 \beta = 80.254 \ (7)^{\circ}$ $(H_{2}O)_{2}].4H_{2}O$ $\gamma = 72.197 \ (6)^{\circ}$ $M_r = 979.54$ V = 2071.2 (4) Å³ Triclinic, $P\overline{1}$ Z = 2a = 10.5774 (12) Å Mo $K\alpha$ radiation b = 11.3074 (13) Å $\mu = 1.24 \text{ mm}^$ c = 18.486 (2) Å T = 296 (2) K $\alpha = 83.863 \ (7)^{\circ}$ $0.27 \times 0.23 \times 0.10 \text{ mm}$

Data collection

Bruker APEXII area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.72, T_{\max} = 0.88$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.112$ S = 1.049464 reflections 601 parameters 55 restraints

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.75 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

34410 measured reflections

 $R_{\rm int} = 0.040$

9464 independent reflections

6948 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1WA\cdots O2$	0.824 (17)	1.861 (19)	2.644 (3)	158 (3)
$O1W = H1WB \cdots O7$	0.825(17)	1.97 (2)	2.763 (3)	162(3)
$O2W = H2WA \cdots O3$	0.848(17)	1.743 (19)	2.570 (3)	164(3)
$O2W - H2WB \cdots O6$	0.808(17)	2.05(2)	2.778 (3)	150 (3)
$O3W - H3WA \cdots O5W^{i}$	0.93(9)	2.26(7)	2.807 (7)	117 (6)
$O3W - H3WB \cdots O4W$	0.91 (6)	1.97 (5)	2.785 (6)	149 (7) 122
$O4W - H4WA \cdots O5W$	0.85	2.10	2.721 (3)	123
$O4W - H4WB \cdots O5^{ii}$		1.96	2.798 (4)	167
$O5W - H5WA \cdots O3W^{4}$	0.85	2.30	2.807 (7)	119
$O5W - H5WB \cdots O2$	0.85	1.88	2.719 (3)	170
$O6W-H6WA\cdots O7$	0.829 (18)	2.08 (2)	2.902 (3)	171 (4)
$O6W-H6WB\cdots O3^{iii}$	0.849 (18)	2.117 (19)	2.949 (3)	167 (4)
	· · ·	· · ·		. ,

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x, y - 1, z; (iii) x + 1, y, z.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Foundation of Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces (grant No. 0506) for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2661).

References

Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Feng, X., Tang, Z. W., Feng, Y. L., Lan, Y. Z. & Wen, Y. H. (2008). Chin. J. Inorg. Chem. 10, 1713–1717. He, Y. H., Feng, X., Feng, Y. L., Sun, H. & Wen, Y. H. (2007). Chin. J. Inorg. Chem. 10, 1805–1808.

Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany. Sheldrick, G. M. (2008). *Acta Cryst*. A64, 112–122.

Wen, Y. H., Feng, X., Feng, Y. L., Lan, Y. Z. & Yao, Y. G. (2008). Inorg. Chem. Commun. 11, 659–661.

Wen, Y.-H., Feng, X., He, Y.-H., Lan, Y.-Z. & Sun, H. (2007). Acta Cryst. C63, m504–m506.

supporting information

Acta Cryst. (2008). E64, m1559-m1560 [doi:10.1107/S160053680803643X]

Bis(*µ*-naphthalene-1,8-dicarboxylato)bis[aqua(2,2'-bipyridine)zinc(II)] tetrahydrate

Xia Feng and Yi-Hang Wen

S1. Comment

As known, naphthyl-containing aromatic multicarboxylato ligands are versatile building blocks to construct interesting structures with potential properties due to their variety of bridging abilities. In our former work, 1,8-naphthalenecarboxy-lic anhydride, which is hydrolyzed to naphthalene-1,8-dicarboxylate ligand in hydrothermal condition, is employed as starting material to prepare coordination polymers (Wen *et al.*, 2007; He *et al.*, 2007; Wen *et al.*, 2008; Feng *et al.*, 2008).

The structure of (I) (Fig.1) is a zero-dimensional molecule. Each central Zn^{II} ion is in a slightly distorted trigonal bipyramid environment, coordinated by one aqua ligand, two naphthalene-1,8-dicarboxylate ligands and one 2,2'-bipyridine ligand. Two naphthalene-1,8-dicarboxylate ligands link two five-coordinated Zn^{II} ions to form a eighteenmembered ring. O—H···O hydrogen bonds link independent molecules to form a two-dimensional network. Weak π - π interactions with centroid-centroid distance of 3.849Å connect the layers to yield a three-dimensional structure.

S2. Experimental

 $Zn(CH_3COO)_2.2H_2O$ (0.1108 g, 0.5 mmol), 1, 8-naphthalenecarboxylic anhydride (0.0996 g, 0.5 mmol), NaOH (0.0405 g, 1 mmol), 2,2'-bipy (0.0385 g, 0.25 mmol) and H₂O-ethanol (2:1, 15 ml) was sealed in a 25 ml stainless-steel reactor with a Teflon liner and was heated at 433 K for 3 d. On completion of the reaction, the reactor was cooled slowly to room temperature and the mixture was filtered, giving pink single crystals suitable for X-ray analysis in yield 39%.

S3. Refinement

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.93 Å $U_{iso}(H) = 1.2U_{eq}(C)$]. The water H atoms were located from different maps and their positions were refined isotropically, with O—H distances fixed by O—H = 0.85 (2) Å and H…H = 1.30 (2) Å, their displacement parameters were set to $1.5U_{eq}(O)$.

Figure 1

View of the title structure, showing 30% probability displacement ellipsoids.

Figure 2

The supramolecular structure of the title complex. All H atoms have been omitted for clarity (the green dash lines represent the O—H···O hydrogen bonds and the red lines represent the π - π interactions).

Bis(µ-naphthalene-1,8-dicarboxylato)bis[aqua(2,2'-bipyridine)zinc(II)] tetrahydrate

Z = 2

F(000) = 1008 $D_x = 1.571 \text{ Mg m}^{-3}$

 $\theta = 1.9-27.6^{\circ}$

 $\mu = 1.24 \text{ mm}^{-1}$

 $0.27 \times 0.23 \times 0.10$ mm

 $\theta_{\rm max} = 27.6^\circ, \ \theta_{\rm min} = 1.9^\circ$

34410 measured reflections 9464 independent reflections 6948 reflections with $I > 2\sigma(I)$

T = 296 K

Block, pink

 $R_{\rm int} = 0.040$

 $h = -13 \rightarrow 13$ $k = -14 \rightarrow 14$ $l = -24 \rightarrow 24$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7692 reflections

Crystal data

$$\begin{split} & [Zn_2(C_{12}H_6O_4)_2(C_{10}H_8N_2)_2(H_2O)_2] \cdot 4H_2O \\ & M_r = 979.54 \\ & \text{Triclinic, } P\overline{1} \\ & \text{Hall symbol: -P 1} \\ & a = 10.5774 \ (12) \text{ Å} \\ & b = 11.3074 \ (13) \text{ Å} \\ & c = 18.486 \ (2) \text{ Å} \\ & a = 83.863 \ (7)^\circ \\ & \beta = 80.254 \ (7)^\circ \\ & \gamma = 72.197 \ (6)^\circ \\ & V = 2071.2 \ (4) \text{ Å}^3 \end{split}$$

Data collection

Bruker APEXII area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.72, \ T_{\max} = 0.88$

Refinement

nojmenteni	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.112$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
9464 reflections	and constrained refinement
601 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0603P)^2 + 0.2947P]$
55 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.75 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.61 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
0.19633 (3)	0.96571 (3)	0.149481 (16)	0.03397 (9)
0.20365 (3)	0.75742 (3)	0.377195 (16)	0.03175 (9)
0.0126 (2)	1.0899 (2)	0.12294 (12)	0.0372 (5)
	x 0.19633 (3) 0.20365 (3) 0.0126 (2)	x y 0.19633 (3) 0.96571 (3) 0.20365 (3) 0.75742 (3) 0.0126 (2) 1.0899 (2)	x y z 0.19633 (3) 0.96571 (3) 0.149481 (16) 0.20365 (3) 0.75742 (3) 0.377195 (16) 0.0126 (2) 1.0899 (2) 0.12294 (12)

N2	0.2418 (2)	1.0038 (2)	0.03553 (12)	0.0365 (5)
N3	0.1927 (2)	0.7166 (2)	0.49093 (12)	0.0356 (5)
N4	0.3241 (2)	0.56839 (19)	0.38523 (12)	0.0359 (5)
01	0.11681 (17)	0.82126 (16)	0.16625 (10)	0.0368 (4)
O1W	0.39543 (18)	0.8563 (2)	0.15636 (11)	0.0428 (5)
H1WA	0.386 (3)	0.786 (2)	0.1646 (18)	0.064*
H1WB	0.432 (3)	0.876 (3)	0.1873 (16)	0.064*
02	0.29945 (19)	0.66321 (19)	0.17988 (12)	0.0497 (5)
O2W	0.07124 (18)	0.93711 (17)	0.38616 (11)	0.0387 (4)
H2WA	0.005 (2)	0.929 (3)	0.3695 (17)	0.058*
H2WB	0.109 (3)	0.979 (3)	0.3572 (15)	0.058*
03	-0.09786(17)	0.88271 (17)	0.32078 (11)	0.0432(5)
03W	0 3790 (6)	0.3502 (6)	-0.0468(3)	0.0132(3)
H3WA	0.3790(0) 0.437(8)	0.395(8)	-0.041(5)	0.251*
H3WB	0.137(0)	0.312(8)	-0.001(3)	0.251*
	0.377(5)	0.512(0) 0.71267(16)	0.001(3)	0.231
O4 O4W	0.07943(10) 0.4224(2)	0.71207(10)	0.31900(10)	0.0330(4)
	0.4334 (3)	0.2007 (3)	0.0970 (2)	0.1101(13) 0.177*
	0.4375	0.5196	0.1302	0.177*
H4WB	0.3734	0.2517	0.1155	0.1//*
05	0.2689 (2)	1.1513(2)	0.1/454 (11)	0.0517(5)
USW USWA	0.5200 (3)	0.4/28 (3)	0.1361 (2)	0.10/9 (11)
H5WA	0.5130	0.5039	0.0925	0.162*
H5WB	0.4494	0.5267	0.1543	0.162*
06	0.17171 (17)	1.03172 (16)	0.25133 (10)	0.0373 (4)
O6W	0.6463 (2)	1.0749 (2)	0.30347 (15)	0.0595 (6)
H6WA	0.587 (3)	1.046 (3)	0.296 (2)	0.089*
H6WB	0.721 (2)	1.019 (3)	0.301 (2)	0.089*
07	0.46117 (17)	0.94964 (17)	0.27237 (10)	0.0390 (4)
08	0.36064 (17)	0.81452 (16)	0.33168 (11)	0.0402 (4)
C1	0.1562 (3)	0.5342 (3)	0.11411 (17)	0.0490 (7)
H1A	0.2444	0.5247	0.0924	0.059*
C2	0.0848 (4)	0.4619 (3)	0.0920 (2)	0.0635 (9)
H2A	0.1262	0.4037	0.0569	0.076*
C3	-0.0445 (4)	0.4768 (3)	0.1220 (2)	0.0606 (9)
H3A	-0.0923	0.4307	0.1056	0.073*
C4	-0.1081 (3)	0.5600 (3)	0.17708 (17)	0.0439 (7)
C5	-0.2442 (3)	0.5775 (3)	0.2066 (2)	0.0528 (8)
H5A	-0.2914	0.5315	0.1895	0.063*
C6	-0.3076 (3)	0.6585 (3)	0.25848 (19)	0.0494 (8)
H6A	-0.3982	0.6705	0.2757	0.059*
C7	-0.2357 (3)	0.7248 (3)	0.28642 (17)	0.0417 (7)
H7A	-0.2793	0.7796	0.3231	0.050*
C8	-0.1022(2)	0.7105 (2)	0.26084 (15)	0.0344 (6)
C9	-0.0344 (3)	0.6310 (2)	0.20291 (15)	0.0348 (6)
C10	0.0992 (3)	0.6185 (2)	0.16696 (15)	0.0359 (6)
C11	0.1776(2)	0 7069 (2)	0 17370 (14)	0.0352 (6)
C12	-0.0337(2)	0.7753(2)	0.30211(14)	0.0322(0)
C13	0.0007(2)	0.9583 (3)	-0.00541(16)	0.0328(3)
015	0.5000 (5)	0.7505 (5)	0.00341 (10)	0.0400(7)

H13A	0.4286	0.9014	0.0166	0.055*
C14	0.3852 (3)	0.9922 (3)	-0.07931 (18)	0.0550 (8)
H14A	0.4692	0.9592	-0.1064	0.066*
C15	0.2843 (3)	1.0749 (3)	-0.11157 (18)	0.0608 (9)
H15A	0.2989	1.0995	-0.1611	0.073*
C16	0.1611 (3)	1.1218 (3)	-0.07067 (17)	0.0557 (8)
H16A	0.0913	1.1777	-0.0923	0.067*
C17	0.1416 (3)	1.0849 (2)	0.00341 (15)	0.0374 (6)
C18	0.0132 (3)	1.1297 (2)	0.05200 (15)	0.0360 (6)
C19	-0.1027 (3)	1.2065 (3)	0.02682 (18)	0.0493 (7)
H19A	-0.1017	1.2335	-0.0225	0.059*
C20	-0.2188 (3)	1.2422 (3)	0.0757 (2)	0.0560 (8)
H20A	-0.2971	1.2938	0.0596	0.067*
C21	-0.2186 (3)	1.2014 (3)	0.1479 (2)	0.0559 (8)
H21A	-0.2964	1.2250	0.1817	0.067*
C22	-0.1012 (3)	1.1249 (3)	0.16987 (17)	0.0478 (7)
H22A	-0.1011	1.0967	0.2190	0.057*
C23	0.1569 (3)	1.3201 (3)	0.29420 (18)	0.0451 (7)
H23A	0.1422	1.3569	0.2477	0.054*
C24	0.1184 (3)	1.3945 (3)	0.3548 (2)	0.0530 (8)
H24A	0.0794	1.4799	0.3485	0.064*
C25	0.1385 (3)	1.3411 (3)	0.42265 (19)	0.0495 (7)
H25A	0.1072	1.3896	0.4632	0.059*
C26	0.2062 (3)	1.2129 (3)	0.43301 (16)	0.0409 (6)
C27	0.2336 (3)	1.1603 (3)	0.50399 (17)	0.0509 (8)
H27A	0.2045	1.2104	0.5439	0.061*
C28	0.3013 (3)	1.0385 (3)	0.51466 (17)	0.0536 (8)
H28A	0.3178	1.0052	0.5615	0.064*
C29	0.3461 (3)	0.9633 (3)	0.45468 (16)	0.0452 (7)
H29A	0.3936	0.8800	0.4623	0.054*
C30	0.3222 (2)	1.0086 (2)	0.38493 (14)	0.0335 (6)
C31	0.2498 (2)	1.1365 (2)	0.37202 (14)	0.0322 (5)
C32	0.2158 (2)	1.1942 (2)	0.30217 (15)	0.0353 (6)
C33	0.2235 (3)	1.1223 (2)	0.23787 (15)	0.0367 (6)
C34	0.3838(2)	0.9198 (2)	0.32488 (15)	0.0335 (6)
C35	0.1273 (3)	0.7988 (3)	0.54229 (16)	0.0432 (7)
H35A	0.0798	0.8787	0.5270	0.052*
C36	0.1279 (3)	0.7698 (3)	0.61537 (17)	0.0483 (7)
H36A	0.0839	0.8295	0.6492	0.058*
C37	0.1941 (3)	0.6512 (3)	0.63862(17)	0.0562 (8)
H37A	0.1939	0.6291	0.6885	0.067*
C38	0.2604 (3)	0.5660 (3)	0.58776 (17)	0.0495 (7)
H38A	0.3055	0.4851	0.6028	0.059*
C39	0.2603 (2)	0.6008 (2)	0.51321 (15)	0.0348 (6)
C40	0.3340 (2)	0.5173 (2)	0.45381 (15)	0.0340 (6)
C41	0.4099(3)	0.3947(3)	0.46601 (18)	0.0464 (7)
H41A	0.4175	0.3609	0.5138	0.056*
C42	0.4735 (3)	0.3240 (3)	0.40738 (19)	0.0521 (8)
		(=)		

supporting information

H42A	0.5239	0.2416	0.4149	0.062*
C43	0.4618 (3)	0.3763 (3)	0.33749 (19)	0.0515 (8)
H43A	0.5038	0.3300	0.2968	0.062*
C44	0.3867 (3)	0.4988 (3)	0.32860 (17)	0.0459 (7)
H44A	0.3795	0.5344	0.2812	0.055*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.03452 (16)	0.03960 (18)	0.02821 (17)	-0.01121 (13)	-0.00770 (12)	0.00229 (13)
Zn2	0.03274 (16)	0.02909 (16)	0.03286 (18)	-0.00729 (12)	-0.00830 (12)	0.00109 (12)
N1	0.0382 (12)	0.0408 (13)	0.0336 (12)	-0.0122 (10)	-0.0093 (10)	0.0020 (10)
N2	0.0388 (12)	0.0432 (13)	0.0303 (12)	-0.0155 (10)	-0.0079 (10)	0.0010 (10)
N3	0.0353 (11)	0.0327 (12)	0.0380 (13)	-0.0085 (9)	-0.0080 (10)	0.0016 (10)
N4	0.0381 (11)	0.0299 (11)	0.0391 (13)	-0.0065 (9)	-0.0109 (10)	-0.0009 (10)
01	0.0363 (9)	0.0335 (10)	0.0412 (11)	-0.0107 (8)	-0.0095 (8)	0.0030 (8)
O1W	0.0355 (8)	0.0534 (13)	0.0393 (11)	-0.0132 (8)	-0.0079 (8)	0.0024 (10)
O2	0.0385 (10)	0.0480 (12)	0.0596 (14)	-0.0069 (9)	-0.0121 (10)	0.0004 (10)
O2W	0.0365 (10)	0.0325 (10)	0.0477 (12)	-0.0085 (8)	-0.0102 (9)	-0.0033 (9)
O3	0.0361 (10)	0.0396 (11)	0.0524 (12)	-0.0026 (8)	-0.0126 (9)	-0.0116 (9)
O3W	0.183 (5)	0.195 (5)	0.125 (4)	-0.062 (4)	-0.011 (4)	-0.009 (3)
O4	0.0342 (9)	0.0324 (9)	0.0385 (10)	-0.0048 (7)	-0.0145 (8)	-0.0022 (8)
O4W	0.084 (2)	0.083 (2)	0.173 (4)	-0.0234 (17)	0.019 (2)	-0.006 (2)
05	0.0615 (13)	0.0598 (13)	0.0341 (12)	-0.0205 (11)	-0.0081 (10)	0.0063 (10)
O5W	0.0714 (18)	0.102 (2)	0.136 (3)	0.0045 (17)	-0.0108 (19)	-0.041 (2)
O6	0.0417 (10)	0.0381 (10)	0.0366 (10)	-0.0146 (8)	-0.0137 (8)	-0.0001 (8)
O6W	0.0530 (13)	0.0523 (14)	0.0749 (16)	-0.0155 (10)	-0.0125 (13)	-0.0058 (12)
O7	0.0333 (9)	0.0439 (11)	0.0408 (11)	-0.0142 (8)	-0.0051 (8)	0.0013 (9)
08	0.0349 (9)	0.0324 (10)	0.0516 (12)	-0.0097 (8)	-0.0023 (8)	-0.0014 (9)
C1	0.0535 (17)	0.0436 (17)	0.0477 (18)	-0.0086 (14)	-0.0102 (15)	-0.0045 (14)
C2	0.087 (3)	0.049 (2)	0.058 (2)	-0.0159 (18)	-0.0169 (19)	-0.0201 (17)
C3	0.078 (2)	0.053 (2)	0.063 (2)	-0.0280 (17)	-0.0266 (19)	-0.0073 (17)
C4	0.0553 (17)	0.0394 (16)	0.0446 (17)	-0.0183 (13)	-0.0231 (14)	0.0034 (13)
C5	0.0549 (18)	0.0497 (18)	0.067 (2)	-0.0287 (15)	-0.0309 (17)	0.0120 (17)
C6	0.0389 (15)	0.0492 (18)	0.064 (2)	-0.0175 (13)	-0.0170 (15)	0.0111 (16)
C7	0.0363 (14)	0.0406 (15)	0.0477 (17)	-0.0095 (12)	-0.0132 (13)	0.0060 (13)
C8	0.0362 (13)	0.0333 (14)	0.0352 (15)	-0.0103 (11)	-0.0141 (11)	0.0061 (11)
C9	0.0409 (14)	0.0305 (13)	0.0363 (15)	-0.0109 (11)	-0.0178 (12)	0.0045 (11)
C10	0.0426 (14)	0.0284 (13)	0.0349 (15)	-0.0052 (11)	-0.0125 (12)	0.0017 (11)
C11	0.0346 (13)	0.0407 (15)	0.0281 (14)	-0.0077 (11)	-0.0056 (11)	-0.0011 (11)
C12	0.0340 (13)	0.0354 (14)	0.0299 (14)	-0.0127 (11)	-0.0045 (11)	0.0010 (11)
C13	0.0402 (15)	0.0597 (19)	0.0399 (17)	-0.0185 (13)	-0.0049 (13)	-0.0036 (14)
C14	0.0535 (18)	0.069 (2)	0.0431 (18)	-0.0258 (16)	0.0070 (15)	-0.0055 (16)
C15	0.068 (2)	0.079 (2)	0.0332 (17)	-0.0253 (19)	-0.0030 (16)	0.0110 (16)
C16	0.061 (2)	0.068 (2)	0.0358 (17)	-0.0178 (17)	-0.0149 (15)	0.0126 (16)
C17	0.0471 (15)	0.0385 (15)	0.0319 (14)	-0.0182 (12)	-0.0127 (12)	0.0025 (12)
C18	0.0410 (14)	0.0347 (14)	0.0355 (15)	-0.0135 (11)	-0.0132 (12)	0.0037 (11)
C19	0.0533 (18)	0.0475 (17)	0.0455 (18)	-0.0095 (14)	-0.0184 (15)	0.0060 (14)

supporting information

C20	0.0463 (17)	0.0517 (19)	0.067 (2)	-0.0051 (14)	-0.0224 (17)	0.0040 (17)
C21	0.0388 (16)	0.060 (2)	0.063 (2)	-0.0062 (14)	-0.0051 (15)	-0.0041 (17)
C22	0.0438 (16)	0.0539 (18)	0.0427 (17)	-0.0121 (13)	-0.0059 (13)	0.0027 (14)
C23	0.0510 (16)	0.0367 (15)	0.0507 (18)	-0.0151 (13)	-0.0160 (14)	0.0046 (13)
C24	0.0558 (18)	0.0318 (15)	0.075 (2)	-0.0122 (13)	-0.0204 (17)	-0.0036 (15)
C25	0.0515 (17)	0.0433 (17)	0.058 (2)	-0.0157 (14)	-0.0076 (15)	-0.0181 (15)
C26	0.0410 (14)	0.0456 (16)	0.0425 (17)	-0.0202 (12)	-0.0081 (12)	-0.0044 (13)
C27	0.0605 (19)	0.062 (2)	0.0379 (17)	-0.0275 (16)	-0.0056 (14)	-0.0110 (15)
C28	0.068 (2)	0.064 (2)	0.0357 (17)	-0.0280 (17)	-0.0161 (15)	0.0076 (15)
C29	0.0516 (16)	0.0448 (17)	0.0425 (17)	-0.0170 (13)	-0.0156 (14)	0.0061 (14)
C30	0.0326 (12)	0.0371 (14)	0.0352 (15)	-0.0163 (11)	-0.0073 (11)	0.0010 (11)
C31	0.0329 (12)	0.0343 (14)	0.0335 (14)	-0.0151 (10)	-0.0073 (11)	-0.0006 (11)
C32	0.0371 (13)	0.0340 (14)	0.0383 (15)	-0.0148 (11)	-0.0083 (11)	0.0009 (12)
C33	0.0376 (13)	0.0361 (14)	0.0354 (15)	-0.0072 (11)	-0.0136 (12)	0.0052 (12)
C34	0.0262 (12)	0.0358 (14)	0.0391 (15)	-0.0074 (10)	-0.0132 (11)	0.0034 (12)
C35	0.0416 (15)	0.0417 (16)	0.0438 (17)	-0.0087 (12)	-0.0062 (13)	-0.0017 (13)
C36	0.0503 (17)	0.0539 (19)	0.0360 (17)	-0.0089 (14)	-0.0029 (13)	-0.0069 (14)
C37	0.065 (2)	0.068 (2)	0.0299 (16)	-0.0133 (17)	-0.0075 (15)	0.0041 (15)
C38	0.0579 (18)	0.0446 (17)	0.0416 (18)	-0.0085 (14)	-0.0150 (15)	0.0093 (14)
C39	0.0315 (12)	0.0370 (14)	0.0385 (15)	-0.0130 (11)	-0.0102 (11)	0.0040 (12)
C40	0.0328 (13)	0.0324 (13)	0.0403 (15)	-0.0124 (10)	-0.0115 (11)	0.0013 (11)
C41	0.0460 (16)	0.0370 (15)	0.0537 (19)	-0.0062 (12)	-0.0168 (14)	0.0053 (14)
C42	0.0492 (17)	0.0354 (16)	0.067 (2)	-0.0026 (13)	-0.0163 (16)	-0.0010 (15)
C43	0.0493 (17)	0.0425 (17)	0.056 (2)	-0.0018 (13)	-0.0061 (15)	-0.0129 (15)
C44	0.0525 (17)	0.0423 (16)	0.0398 (17)	-0.0086 (13)	-0.0077 (14)	-0.0027 (13)

Geometric parameters (Å, °)

Zn1—O1	2.0285 (17)	C9—C10	1.428 (4)
Zn1—O6	2.0458 (19)	C10—C11	1.506 (4)
Zn1—N2	2.108 (2)	C13—C14	1.382 (4)
Zn1—O1W	2.1085 (19)	C13—H13A	0.9300
Zn1—N1	2.121 (2)	C14—C15	1.363 (5)
Zn2—O8	1.9871 (17)	C14—H14A	0.9300
Zn2—O4	2.0270 (17)	C15—C16	1.371 (5)
Zn2—O2W	2.0906 (19)	C15—H15A	0.9300
Zn2—N3	2.095 (2)	C16—C17	1.388 (4)
Zn2—N4	2.132 (2)	C16—H16A	0.9300
N1—C22	1.337 (4)	C17—C18	1.474 (4)
N1—C18	1.340 (3)	C18—C19	1.389 (4)
N2—C13	1.330 (4)	C19—C20	1.373 (5)
N2—C17	1.349 (3)	C19—H19A	0.9300
N3—C39	1.344 (3)	C20—C21	1.366 (5)
N3—C35	1.348 (4)	C20—H20A	0.9300
N4—C44	1.333 (4)	C21—C22	1.376 (4)
N4—C40	1.343 (3)	C21—H21A	0.9300
O1—C11	1.261 (3)	C22—H22A	0.9300
O1W—H1WA	0.824 (17)	C23—C32	1.372 (4)

O1W—H1WB	0.825 (17)	C23—C24	1.403 (4)
O2—C11	1.251 (3)	С23—Н23А	0.9300
O2W—H2WA	0.848 (17)	C24—C25	1.353 (5)
O2W—H2WB	0.808 (17)	C24—H24A	0.9300
O3—C12	1.249 (3)	C25—C26	1.416 (4)
O3W—H3WA	0.93 (9)	C25—H25A	0.9300
O3W—H3WB	0.91 (6)	C26—C27	1.420 (4)
O4—C12	1.266 (3)	C26—C31	1.421 (4)
O4W—H4WA	0.8502	C27—C28	1.354 (5)
O4W—H4WB	0.8504	C27—H27A	0.9300
O5—C33	1.238 (3)	C28—C29	1.398 (4)
O5W—H5WA	0.8503	C28—H28A	0.9300
O5W—H5WB	0.8499	C29—C30	1.371 (4)
O6—C33	1.286 (3)	C29—H29A	0.9300
O6W—H6WA	0.829 (18)	C30—C31	1.430 (3)
O6W—H6WB	0.849 (18)	C30—C34	1.503 (4)
07-C34	1 247 (3)	$C_{31} - C_{32}$	1 434 (4)
08-C34	1 276 (3)	C_{32} - C_{33}	1 488 (4)
C1-C10	1 370 (4)	C35—C36	1 357 (4)
C1-C2	1 399 (4)	C35—H35A	0.9300
C1—H1A	0.9300	C36—C37	1.370 (4)
C2—C3	1.353 (5)	C36—H36A	0.9300
C2—H2A	0.9300	C37—C38	1 365 (4)
C3—C4	1 401 (5)	C37—H37A	0.9300
C3—H3A	0.9300	C38—C39	1.392 (4)
C4—C5	1 411 (4)	C38—H38A	0.9300
C4—C9	1 440 (4)	C39—C40	1 479 (4)
C5—C6	1 343 (5)	C40—C41	1 390 (4)
C5—H5A	0.9300	C41-C42	1.370(4)
C6—C7	1 404 (4)	C41—H41A	0.9300
С6—Н6А	0.9300	C42-C43	1 371 (4)
C7—C8	1 376 (4)	C42—H42A	0.9300
C7—H7A	0.9300	C43 - C44	1.378(4)
C8-C9	1 422 (4)	C43—H43A	0.9300
C8-C12	1.422(4) 1 508(4)	C44—H44A	0.9300
00 012	1.500 (4)		0.9500
01 - 7n1 - 06	104 86 (7)	C14—C15—H15A	120.1
$\Omega_1 = Zn_1 = N_2$	109.17(8)	C_{16} C_{15} H_{15A}	120.1
06-7n1-N2	144 94 (8)	C_{15} C_{16} C_{17}	119 3 (3)
$\Omega_1 = Zn_1 = \Omega_1 W$	95 57 (7)	C_{15} C_{16} H_{16A}	120.4
06-7n1-01W	93.01 (8)	C17— $C16$ — $H16A$	120.1
$N_2 = 7n_1 = 01W$	91 91 (8)	N_{2} C17 C16	120.1 121.0(3)
$\Omega_1 = Zn_1 = N_1$	91.35 (8)	N_{2} $-C_{17}$ $-C_{18}$	121.0(3) 1156(2)
O6-7n1-N1	93 69 (8)	C_{16} C_{17} C_{18}	1234(3)
$N_2 = 7n_1 = N_1$	77 50 (8)	N1-C18-C19	120.1(3) 120.8(3)
$\Omega W = 7n1 = N1$	168 82 (8)	N1-C18-C17	120.0(3) 1161(2)
$08-7n^2-04$	124 30 (8)	C19 - C18 - C17	123 0 (3)
0.0 - 2.12 - 0.1	94 47 (7)	$C_{10} = C_{10} = C_{17}$	123.0(3) 110.2(3)
00- <u></u> 02 W	י) יד.די (י)	020-019-010	119.2 (3)

O4—Zn2—O2W	89.84 (7)	С20—С19—Н19А	120.4
O8—Zn2—N3	114.43 (8)	C18—C19—H19A	120.4
O4—Zn2—N3	120.50 (8)	C21—C20—C19	119.6 (3)
O2W—Zn2—N3	94.63 (8)	C21—C20—H20A	120.2
O8—Zn2—N4	92.17 (8)	C19—C20—H20A	120.2
O4—Zn2—N4	91.54 (8)	C20—C21—C22	118.8 (3)
O2W—Zn2—N4	170.91 (8)	C20—C21—H21A	120.6
N3—Zn2—N4	76.94 (9)	C22—C21—H21A	120.6
C22—N1—C18	119.3 (2)	N1—C22—C21	122.2 (3)
C22—N1—Zn1	125.40 (19)	N1—C22—H22A	118.9
C18—N1—Zn1	115.17 (18)	C21—C22—H22A	118.9
C13—N2—C17	118.7 (2)	C32—C23—C24	121.3 (3)
C13—N2—Zn1	125.72 (19)	C32—C23—H23A	119.4
C17—N2—Zn1	115.56 (18)	C24—C23—H23A	119.4
C39—N3—C35	118.5 (2)	C25—C24—C23	119.5 (3)
C39—N3—Zn2	116.67 (18)	C25—C24—H24A	120.2
C35—N3—Zn2	124.75 (18)	C23—C24—H24A	120.2
C44—N4—C40	118.9 (2)	C24—C25—C26	121.2 (3)
C44—N4—Zn2	125.46 (19)	C24—C25—H25A	119.4
C40—N4—Zn2	115.66 (18)	C26—C25—H25A	119.4
C11—O1—Zn1	127.96 (16)	C25—C26—C27	120.3 (3)
Zn1—O1W—H1WA	102 (2)	C25—C26—C31	120.1 (3)
Zn1—O1W—H1WB	116 (2)	C27—C26—C31	119.6 (3)
H1WA—O1W—H1WB	113 (3)	C28—C27—C26	121.2 (3)
Zn2—O2W—H2WA	101 (2)	C28—C27—H27A	119.4
Zn2—O2W—H2WB	103 (2)	С26—С27—Н27А	119.4
H2WA—O2W—H2WB	110 (2)	C27—C28—C29	119.5 (3)
H3WA—O3W—H3WB	97 (8)	C27—C28—H28A	120.2
C12—O4—Zn2	131.02 (16)	C29—C28—H28A	120.2
H4WA—O4W—H4WB	97.3	C30—C29—C28	121.9 (3)
H5WA—O5W—H5WB	93.0	С30—С29—Н29А	119.0
C33—O6—Zn1	102.49 (16)	С28—С29—Н29А	119.0
H6WA—O6W—H6WB	110 (3)	C29—C30—C31	119.9 (3)
C34—O8—Zn2	133.57 (17)	C29—C30—C34	116.3 (2)
C10—C1—C2	121.6 (3)	C31—C30—C34	123.7 (2)
C10—C1—H1A	119.2	C26—C31—C30	117.9 (2)
C2—C1—H1A	119.2	C26—C31—C32	116.9 (2)
C3—C2—C1	119.8 (3)	C30—C31—C32	125.1 (2)
C3—C2—H2A	120.1	C23—C32—C31	120.6 (3)
C1—C2—H2A	120.1	C23—C32—C33	115.7 (2)
C2—C3—C4	121.5 (3)	C31—C32—C33	123.1 (2)
С2—С3—НЗА	119.2	O5—C33—O6	121.4 (3)
С4—С3—Н3А	119.2	O5—C33—C32	122.9 (2)
C3—C4—C5	121.1 (3)	O6—C33—C32	115.6 (2)
C3—C4—C9	119.5 (3)	O7—C34—O8	122.8 (3)
C5—C4—C9	119.4 (3)	O7—C34—C30	118.4 (2)
C6—C5—C4	122.0 (3)	O8—C34—C30	118.7 (2)
C6—C5—H5A	119.0	N3—C35—C36	122.7 (3)

С4—С5—Н5А	119.0	N3—C35—H35A	118.6
C5—C6—C7	119.3 (3)	С36—С35—Н35А	118.6
С5—С6—Н6А	120.3	C35—C36—C37	119.1 (3)
С7—С6—Н6А	120.3	С35—С36—Н36А	120.4
C8—C7—C6	121.5 (3)	С37—С36—Н36А	120.4
С8—С7—Н7А	119.2	C38—C37—C36	119.3 (3)
С6—С7—Н7А	119.2	С38—С37—Н37А	120.3
C7—C8—C9	120.4 (2)	С36—С37—Н37А	120.3
C7—C8—C12	115.7 (3)	C37—C38—C39	119.6 (3)
C9—C8—C12	123.7 (2)	С37—С38—Н38А	120.2
C8—C9—C10	125.4 (2)	С39—С38—Н38А	120.2
C8—C9—C4	117.1 (2)	N3—C39—C38	120.7 (3)
C10—C9—C4	117.4 (3)	N3—C39—C40	115.5 (2)
C1—C10—C9	120.0 (3)	C38—C39—C40	123.8 (2)
C1—C10—C11	115.1 (2)	N4—C40—C41	120.9 (3)
C9—C10—C11	124.2 (2)	N4—C40—C39	115.2 (2)
O2—C11—O1	124.6 (2)	C41—C40—C39	123.9 (3)
O2—C11—C10	118.8 (2)	C42—C41—C40	119.7 (3)
O1—C11—C10	116.3 (2)	C42—C41—H41A	120.2
03—C12—O4	125.6 (2)	C40—C41—H41A	120.2
03-C12-C8	117.1 (2)	C41—C42—C43	119.1 (3)
O4—C12—C8	117.1 (2)	C41—C42—H42A	120.5
N2—C13—C14	122.8 (3)	C43—C42—H42A	120.5
N2-C13-H13A	118.6	C42-C43-C44	118.8 (3)
C14—C13—H13A	118.6	C42—C43—H43A	120.6
C15-C14-C13	118.5 (3)	C44—C43—H43A	120.6
C15—C14—H14A	120.8	N4—C44—C43	122.7 (3)
C13—C14—H14A	120.8	N4—C44—H44A	118.7
C14-C15-C16	119.8 (3)	C43—C44—H44A	118.7
O1—Zn1—N1—C22	67.5 (2)	C13—C14—C15—C16	-0.4(5)
06-2n1-N1-C22	-37.5(2)	C14—C15—C16—C17	0.7 (5)
N2— $Zn1$ — $N1$ — $C22$	176.9 (2)	C13 - N2 - C17 - C16	-0.7(4)
O1W— $Zn1$ — $N1$ — $C22$	-164.2(4)	Zn1-N2-C17-C16	177.1 (2)
O1— $Zn1$ — $N1$ — $C18$	-109.18(19)	C13 - N2 - C17 - C18	179.1 (2)
06-2n1-N1-C18	145.83 (18)	Zn1-N2-C17-C18	-3.1(3)
N2— $Zn1$ — $N1$ — $C18$	0.16 (18)	C15-C16-C17-N2	-0.1(5)
O1W— $Zn1$ — $N1$ — $C18$	19.1 (5)	C15—C16—C17—C18	-180.0(3)
01-7n1-N2-C13	-93.7(2)	C_{22} N1-C18-C19	-0.1(4)
06-7n1-N2-C13	100.9 (2)	Zn1-N1-C18-C19	176.8 (2)
O1W—Zn1—N2—C13	2.9 (2)	C_{22} N1-C18-C17	-178.7(2)
N1 - Zn1 - N2 - C13	179 3 (2)	Zn1-N1-C18-C17	-1.8(3)
01-2n1-N2-C17	88.69 (19)	N_{2} C17 C18 N1	3.3 (3)
06-7n1-N2-C17	-76.8(2)	C_{16} C_{17} C_{18} N_{1}	-1769(3)
O1W = Zn1 = N2 = C17	-174.74 (18)	N2-C17-C18-C19	-175.3(3)
N1 - Zn1 - N2 - C17	1.65 (18)	C_{16} C_{17} C_{18} C_{19}	4.5 (4)
$08-7n^2-N^3-C^{39}$	-86 63 (18)	N1-C18-C19-C20	0.3(4)
$04 - 7n^2 - N^3 - C^{39}$	83 77 (18)	C_{17} C_{18} C_{19} C_{20}	178 8 (3)
$\bigcirc \neg -2 \square 2 \square 2 \square 1 \bigcirc J \bigcirc J \bigcirc$	03.17 (10)	017 - 010 - 019 - 020	1/0.0 (3)

O2W—Zn2—N3—C39	176.33 (17)	C18—C19—C20—C21	-0.2 (5)
N4—Zn2—N3—C39	-0.22 (16)	C19—C20—C21—C22	-0.2 (5)
O8—Zn2—N3—C35	91.0 (2)	C18—N1—C22—C21	-0.3 (4)
O4—Zn2—N3—C35	-98.6 (2)	Zn1—N1—C22—C21	-176.8 (2)
O2W—Zn2—N3—C35	-6.1 (2)	C20-C21-C22-N1	0.4 (5)
N4—Zn2—N3—C35	177.4 (2)	C32—C23—C24—C25	-0.7 (4)
O8—Zn2—N4—C44	-66.1 (2)	C23—C24—C25—C26	4.5 (4)
O4—Zn2—N4—C44	58.3 (2)	C24—C25—C26—C27	176.1 (3)
N3—Zn2—N4—C44	179.3 (2)	C24—C25—C26—C31	-2.6(4)
O8—Zn2—N4—C40	114.95 (18)	C25—C26—C27—C28	-178.3 (3)
O4—Zn2—N4—C40	-120.64 (17)	C31—C26—C27—C28	0.4 (4)
N3—Zn2—N4—C40	0.36 (17)	C26—C27—C28—C29	0.6 (5)
O6—Zn1—O1—C11	-97.8 (2)	C27—C28—C29—C30	-0.9 (5)
N2—Zn1—O1—C11	90.8 (2)	C28—C29—C30—C31	0.3 (4)
O1W—Zn1—O1—C11	-3.2 (2)	C28—C29—C30—C34	176.1 (2)
N1—Zn1—O1—C11	168.0 (2)	C25—C26—C31—C30	177.7 (2)
O8—Zn2—O4—C12	-97.7 (2)	C27—C26—C31—C30	-0.9(3)
O2W—Zn2—O4—C12	-2.4 (2)	C25—C26—C31—C32	-3.1(3)
N3—Zn2—O4—C12	92.9 (2)	C27—C26—C31—C32	178.3 (2)
N4—Zn2—O4—C12	168.6 (2)	C29—C30—C31—C26	0.6 (3)
O1—Zn1—O6—C33	179.91 (15)	C34—C30—C31—C26	-174.9 (2)
N2—Zn1—O6—C33	-14.3 (2)	C29—C30—C31—C32	-178.5 (2)
O1W—Zn1—O6—C33	83.34 (16)	C34—C30—C31—C32	6.0 (4)
N1—Zn1—O6—C33	-87.71 (16)	C24—C23—C32—C31	-5.2 (4)
O4—Zn2—O8—C34	106.8 (2)	C24—C23—C32—C33	166.7 (3)
O2W—Zn2—O8—C34	13.9 (2)	C26—C31—C32—C23	6.9 (3)
N3—Zn2—O8—C34	-83.2 (2)	C30—C31—C32—C23	-174.0(2)
N4—Zn2—O8—C34	-159.9 (2)	C26—C31—C32—C33	-164.3 (2)
C10—C1—C2—C3	1.5 (5)	C30—C31—C32—C33	14.8 (4)
C1—C2—C3—C4	-2.5 (5)	Zn1—O6—C33—O5	1.8 (3)
C2—C3—C4—C5	178.2 (3)	Zn1—O6—C33—C32	177.63 (17)
C2—C3—C4—C9	-0.3 (5)	C23—C32—C33—O5	50.6 (4)
C3—C4—C5—C6	-178.8 (3)	C31—C32—C33—O5	-137.8 (3)
C9—C4—C5—C6	-0.2 (4)	C23—C32—C33—O6	-125.2 (3)
C4—C5—C6—C7	-2.4 (5)	C31—C32—C33—O6	46.4 (3)
C5—C6—C7—C8	1.3 (4)	Zn2-08-C34-07	-150.56 (19)
C6—C7—C8—C9	2.4 (4)	Zn2-08-C34-C30	33.3 (3)
C6—C7—C8—C12	-172.8 (2)	C29—C30—C34—O7	-122.4(3)
C7—C8—C9—C10	173.3 (2)	C31—C30—C34—O7	53.3 (3)
C12—C8—C9—C10	-11.9 (4)	C29—C30—C34—O8	53.9 (3)
C7—C8—C9—C4	-4.8 (4)	C31—C30—C34—O8	-130.5 (2)
C12—C8—C9—C4	170.0 (2)	C39—N3—C35—C36	0.6 (4)
C3—C4—C9—C8	-177.6 (3)	Zn2—N3—C35—C36	-177.0 (2)
C5—C4—C9—C8	3.8 (4)	N3—C35—C36—C37	-2.0(5)
C3—C4—C9—C10	4.1 (4)	C35—C36—C37—C38	1.5 (5)
C5—C4—C9—C10	-174.5 (2)	C36—C37—C38—C39	0.3 (5)
C2-C1-C10-C9	2.4 (4)	C35—N3—C39—C38	1.2 (4)
C2-C1-C10-C11	-168.1 (3)	Zn2—N3—C39—C38	179.0 (2)

C8—C9—C10—C1	176.8 (3)	C35—N3—C39—C40	-177.7 (2)
C4—C9—C10—C1	-5.0 (4)	Zn2—N3—C39—C40	0.1 (3)
C8—C9—C10—C11	-13.7 (4)	C37—C38—C39—N3	-1.7 (4)
C4—C9—C10—C11	164.5 (2)	C37—C38—C39—C40	177.2 (3)
Zn1—O1—C11—O2	8.2 (4)	C44—N4—C40—C41	1.1 (4)
Zn1—O1—C11—C10	-165.51 (17)	Zn2—N4—C40—C41	-179.89 (19)
C1—C10—C11—O2	-51.0 (3)	C44—N4—C40—C39	-179.4 (2)
C9—C10—C11—O2	139.0 (3)	Zn2—N4—C40—C39	-0.4 (3)
C1-C10-C11-O1	123.1 (3)	N3—C39—C40—N4	0.2 (3)
C9—C10—C11—O1	-46.9 (4)	C38—C39—C40—N4	-178.7 (2)
Zn2—O4—C12—O3	-3.4 (4)	N3—C39—C40—C41	179.7 (2)
Zn2—O4—C12—C8	-177.67 (16)	C38—C39—C40—C41	0.8 (4)
C7—C8—C12—O3	-41.7 (3)	N4—C40—C41—C42	-1.3 (4)
C9—C8—C12—O3	143.2 (3)	C39—C40—C41—C42	179.3 (3)
C7—C8—C12—O4	133.0 (3)	C40—C41—C42—C43	0.6 (4)
C9—C8—C12—O4	-42.0 (3)	C41—C42—C43—C44	0.3 (5)
C17—N2—C13—C14	1.0 (4)	C40—N4—C44—C43	-0.2 (4)
Zn1—N2—C13—C14	-176.5 (2)	Zn2—N4—C44—C43	-179.1 (2)
N2-C13-C14-C15	-0.5 (5)	C42—C43—C44—N4	-0.5 (5)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	Н…А	D····A	D—H···A
01 <i>W</i> —H1 <i>WA</i> ···O2	0.82 (2)	1.86 (2)	2.644 (3)	158 (3)
O1 <i>W</i> —H1 <i>WB</i> ···O7	0.83 (2)	1.97 (2)	2.763 (3)	162 (3)
O2 <i>W</i> —H2 <i>W</i> A···O3	0.85 (2)	1.74 (2)	2.570 (3)	164 (3)
O2 <i>W</i> —H2 <i>WB</i> ···O6	0.81 (2)	2.05 (2)	2.778 (3)	150 (3)
$O3W - H3WA - O5W^{\dagger}$	0.93 (9)	2.26 (7)	2.807 (7)	117 (6)
O3 <i>W</i> —H3 <i>WB</i> ···O4 <i>W</i>	0.91 (6)	1.97 (5)	2.785 (6)	149 (7)
O4 <i>W</i> —H4 <i>WA</i> ···O5 <i>W</i>	0.85	2.16	2.721 (5)	123
O4 <i>W</i> —H4 <i>WB</i> ···O5 ⁱⁱ	0.85	1.96	2.798 (4)	167
$O5W$ — $H5WA$ ···O $3W^{i}$	0.85	2.30	2.807 (7)	119
O5 <i>W</i> —H5 <i>WB</i> ···O2	0.85	1.88	2.719 (3)	170
O6 <i>W</i> —H6 <i>W</i> A···O7	0.83 (2)	2.08 (2)	2.902 (3)	171 (4)
O6 <i>W</i> —H6 <i>WB</i> ···O3 ⁱⁱⁱ	0.85 (2)	2.12 (2)	2.949 (3)	167 (4)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*, *y*-1, *z*; (iii) *x*+1, *y*, *z*.