

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A new β -octamolybdate(VI) salt based on 1,4-bis(2-methyl-1*H*-imidazol-1-yl)butane

Shun-Li Li^a* and Ke Tan^b

^aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, and ^bBiological Scientific and Technical College, Changchun University, Changchun 130022, People's Republic of China Correspondence e-mail: lishunli@yahoo.cn

Received 12 September 2008; accepted 28 October 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.032; wR factor = 0.079; data-to-parameter ratio = 16.7.

The title compound, bis[2,2'-dimethyl-3,3'-(butane-1,4-diyl)diimidazol-1-ium] β -octamolybdate(VI), (C₁₂H₂₀N₄)₂[Mo₈O₂₆], was produced by hydrothermal reaction of an acidified aqueous solution of Na₂MoO₄ and 1,4-bis(2-methyl-1*H*imidazol-1-yl)butane (hereafter *L*). The structure of the title compound consists of the β -octamolybdate anions having a center of symmetry, and protonated [H₂*L*]²⁺ cations, which link the β -octamolybdate anions, generating a supramolecular chain *via* hydrogen bonds.

Related literature

For the applications of polyoxometalates (POMs) chemistry, see: Kozhevnikov (1998); Rhule *et al.* (1998); Li *et al.* (2007). For the coordination ability of polyoxometalates with different transition-metal organic units, see: Hagrman *et al.* (1997); Li *et al.* (2008). For the introduction of POMs into coordination polymers for the construction of polymers with desired properties, see: Bu *et al.* (2001); Wu *et al.* (2002).

 $\gamma = 70.4000 \ (10)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 2.27 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.016$

refinement

 $\Delta \rho_{\text{max}} = 0.53 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.71$ e Å⁻³

Z = 1

 $V = 1116.29 (10) Å^3$

 $0.27 \times 0.26 \times 0.20 \text{ mm}$

6962 measured reflections 5123 independent reflections

3776 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of independent and constrained

Experimental

Crystal data

 $\begin{array}{l} (C_{12}H_{20}N_4)_2[Mo_8O_{26}]\\ M_r = 1624.16\\ \text{Triclinic, } P\overline{1}\\ a = 10.5680 (3) \text{ Å}\\ b = 11.4890 (5) \text{ Å}\\ c = 11.5600 (8) \text{ Å}\\ a = 60.7770 (10)^{\circ}\\ \beta = 68.1550 (10)^{\circ} \end{array}$

Data collection

Bruker APEX CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)

 $T_{\min} = 0.49, T_{\max} = 0.63$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	
$wR(F^2) = 0.079$	
S = 1.04	
5123 reflections	
306 parameters	
2 restraints	

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

$N2 - H2N \cdots O9^{i}$ $N2 - H2N \cdots O10^{i}$ $N4 - H4N \cdots O12^{ii}$ $N4 - H4N \cdots O4^{iii}$	0.87 (3)	2.37 (4)	3.031 (5)	134 (4)
	0.87 (3)	2.20 (2)	3.001 (5)	153 (5)
	0.86 (3)	2.39 (4)	3.052 (5)	134 (4)
	0.86 (3)	2.12 (3)	2.873 (4)	146 (5)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x - 1, y - 1, z + 1; (iii) -x, -y, -z + 2.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL-Plus* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2208).

References

- Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bu, W.-M., Ye, L., Yang, G.-Y., Gao, J.-S., Fan, Y.-G., Shao, M.-C. & Xu, J.-Q. (2001). *Inorg. Chem. Commun.* 4, 1–4.
- Hagrman, D., Zubieta, C., Rose, D. J., Zubieta, J. & Haushalter, R. C. (1997). Angew. Chem. Int. Ed. 36, 873–876.

Kozhevnikov, I. V. (1998). Chem. Rev. 98, 171-198.

- Li, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Liu, J., Fu, Y.-M. & Su, Z.-M. (2008). Dalton Trans. pp. 2015–2025.
- Li, S.-L., Lan, Y.-Q., Ma, J.-F., Yang, J., Wang, X.-H. & Su, Z.-M. (2007). *Inorg. Chem.* 46, 8283–8290.
- Rhule, J. T., Hill, C. L., Judd, D. A. & Schinazi, R. F. (1998). *Chem. Rev.* 98, 327–358.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wu, C.-D., Lu, C.-Z., Lin, X., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. Commun. 5, 664–666.

supporting information

Acta Cryst. (2008). E64, m1487 [doi:10.1107/S1600536808035022]

A new β -octamolybdate(VI) salt based on 1,4-bis(2-methyl-1*H*-imidazol-1-yl)butane

Shun-Li Li and Ke Tan

S1. Comment

Polyoxometalates (POMs), a unique class of metal-oxide clusters, have many properties that make them attractive for applications in catalysis, biology, magnetism, optics, medicine, *etc* (Kozhevnikov, 1998; Rhule *et al.*, 1998; Li *et al.*, 2007). In recent times a remarkable approach to the construction of multifunctional materials is being realized exploting the ability of polyoxometalates to coordinate to different transition-metal organic units (Hagrman *et al.*, 1997; Li *et al.*, 2008). The POMs, acting as unusual inorganic ligands are introduced into a variety of POM-based coordination polymers with desired properties (Bu *et al.*, 2001; Wu *et al.*, 2002). During our ongoing studies of related materials, we obtained the title compound, (I), and present its crystal structure here.

The asymmetric unit of compound (I) contains a complete $(C_{12}H_{20}N_4^{2+})$ cation (hereafter $[H_2L]^{2+}$) and half a $[Mo_8O_{26}]^4$ anion. The complete $[Mo_8O_{26}]^4$ -moiety is generated from the asymmetric unit atoms by a crystallographic inversion center (Fig. 1). It consists of eight edge-sharing MoO₆ octahedra and displays the characteristic β -octamolybdate arrangement. Each protonated $[H_2L]^{2+}$ cation donates two N—H···O hydrogen bonds to two terminal oxygen atoms from one $[Mo_8O_{26}]^4$ -anion and two ones to two bridging oxygen atoms from the other $[Mo_8O_{26}]^4$ -anion. So each $[Mo_8O_{26}]^4$ anion joins four protonated $[H_2L]^{2+}$ cations (see the hydrogen bonding table for numerical values) to generate a onedimensional supramolecular double-chain structure (Fig. 2).

S2. Experimental

A mixture of Na₂MoO₄.2H₂O (0.242 g, 1.0 mmol) and *L* (0.218 g, 1.0 mmol) in water (10 ml) was adjusted with HCl (2*M*) to pH = 3. Then the mixture was placed in a 23 ml Teflon-lined autoclave and kept under autogenous pressure at 150 °C for 2 days. After the mixture was cooled to room temperature at 10°C.h⁻¹, colorless crystals of the title compound were obtained.

S3. Refinement

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 - 0.97 Å, and $U_{iso}=1.2U_{eq}$ (C). The H atoms of N2 and N4 were located in a difference Fourier map and then refined isotropically, with restrained N-H (0.87 (3)Å) and $U_{iso}=1.5U_{eq}$ (N).

Figure 1

A view of the molecule of (I). Displacement ellipsoids are drawn at the 30% probability level. All crystallographic related oxygen atoms are unlabled for clarity. Symmetry code: (i) 1 - x, 1 - y, -z.

Figure 2

Ball-stick representation of the one-dimensional supramolecular structure of (I).

bis[2,2'-dimethyl-3,3'-(butane-1,4-diyl)diimidazol-1-ium] β -octamolybdate

Crystal data	
$(C_{12}H_{20}N_4)_2[Mo_8O_{26}]$	$\alpha = 60.777 (1)^{\circ}$
$M_r = 1624.16$	$\beta = 68.155 \ (1)^{\circ}$
Triclinic, $P\overline{1}$	$\gamma = 70.400 \ (1)^{\circ}$
Hall symbol: -p1	$V = 1116.29 (10) \text{ Å}^3$
a = 10.5680 (3) Å	Z = 1
b = 11.4890 (5) Å	F(000) = 784
c = 11.5600 (8) Å	$D_{\rm x} = 2.416 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71069$ Å Cell parameters from 879 reflections $\theta = 2.1-28.3^{\circ}$ $\mu = 2.27 \text{ mm}^{-1}$

Data collection

Bruker APEX CCD area-detector	6962 measured reflections
diffractometer	5123 independent reflections
Radiation source: fine-focus sealed tube	3776 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.016$
ω scans	$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(SADABS; Sheldrick, 1996)	$k = -8 \rightarrow 15$
$T_{\min} = 0.49, \ T_{\max} = 0.63$	$l = -12 \rightarrow 15$
Refinement	
Refinement on F^2	Secondary atom site location: differ
T anat a manage materian full	•

ence Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.032$ Hydrogen site location: inferred from $wR(F^2) = 0.079$ neighbouring sites S = 1.04H atoms treated by a mixture of independent and constrained refinement 5123 reflections 306 parameters $w = 1/[\sigma^2(F_o^2) + (0.0329P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ 2 restraints Primary atom site location: structure-invariant $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.53 \text{ e } \text{\AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.71 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

T = 293 K

Block, colorless

 $0.27 \times 0.26 \times 0.20$ mm

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.4508 (5)	0.2008 (5)	0.1689 (5)	0.0480 (13)	
H1	0.5040	0.1222	0.2199	0.058*	
C2	0.4674 (5)	0.2537 (5)	0.0338 (5)	0.0516 (14)	
H2	0.5345	0.2198	-0.0273	0.062*	
C3	0.2898 (5)	0.3852 (5)	0.1169 (5)	0.0398 (12)	
C4	0.1745 (7)	0.4991 (6)	0.1210 (6)	0.078 (2)	
H4A	0.0929	0.4647	0.1863	0.117*	
H4B	0.1566	0.5524	0.0320	0.117*	
H4C	0.1983	0.5547	0.1475	0.117*	
C5	0.2836 (5)	0.2607 (5)	0.3649 (4)	0.0455 (13)	
H5A	0.2434	0.3477	0.3706	0.055*	
H5B	0.3589	0.2175	0.4099	0.055*	

C6	0.1756 (5)	0.1742 (5)	0.4387 (4)	0.0357 (11)
H6A	0.2156	0.0864	0.4349	0.043*
H6B	0.1002	0.2167	0.3940	0.043*
C7	0.1188 (5)	0.1543 (5)	0.5889 (5)	0.0454 (13)
H7A	0.1859	0.0893	0.6405	0.055*
H7B	0.1035	0.2398	0.5943	0.055*
C8	-0.0135 (5)	0.1044 (5)	0.6487 (4)	0.0380 (11)
H8A	-0.0808	0.1724	0.5989	0.046*
H8B	0.0018	0.0228	0.6362	0.046*
C9	-0.0909 (5)	0.1582 (4)	0.8570 (5)	0.0333 (10)
Н9	-0.0603	0.2401	0.8147	0.040*
C10	-0.1608 (5)	0.1011 (5)	0.9878 (5)	0.0375 (11)
H10	-0.1887	0.1351	1.0536	0.045*
C11	-0.1292 (4)	-0.0326 (4)	0.8885 (4)	0.0305 (10)
C12	-0.1334 (6)	-0.1486 (5)	0.8684 (5)	0.0504 (14)
H12A	-0.2059	-0.1234	0.8248	0.076*
H12B	-0.1511	-0.2244	0.9557	0.076*
H12C	-0.0458	-0.1735	0.8117	0.076*
01	0.8514 (3)	0.1866 (3)	0.4043 (3)	0.0368 (8)
02	0.7405 (3)	0.2236 (3)	0.2112 (3)	0.0440 (8)
O3	0.6495 (3)	0.1219 (3)	0.7129 (3)	0.0382 (8)
04	0.3883 (3)	0.1137 (3)	0.7404 (3)	0.0358 (7)
05	0.5723 (3)	0.1829 (3)	0.4809 (3)	0.0296 (7)
O6	0.3415 (3)	0.3836 (3)	0.5375 (3)	0.0242 (6)
07	0.6125 (3)	0.3992 (3)	0.4802 (3)	0.0224 (6)
08	0.2891 (3)	0.6211 (3)	0.3047 (3)	0.0350 (7)
09	0.5161 (3)	0.4268 (3)	0.2790 (3)	0.0280 (6)
O10	0.7738 (3)	0.4496 (3)	0.2258 (3)	0.0289 (7)
011	0.9029 (3)	0.4409 (3)	0.4018 (3)	0.0368 (8)
O12	0.8404 (3)	0.6795 (3)	0.1956 (3)	0.0368 (7)
013	0.5532 (3)	0.6534 (3)	0.2769 (3)	0.0228 (6)
Mol	0.71426 (4)	0.27605 (4)	0.33399 (4)	0.02625 (10)
Mo2	0.42574 (3)	0.52592 (3)	0.37192 (3)	0.02135 (9)
Mo3	0.51296 (4)	0.21069 (3)	0.64292 (4)	0.02435 (10)
Mo4	0.77331 (3)	0.54199 (3)	0.32507 (3)	0.02360 (10)
N1	0.3404 (4)	0.2840 (4)	0.2189 (4)	0.0347 (9)
N2	0.3664 (4)	0.3676 (4)	0.0030 (4)	0.0434 (10)
H2N	0.355 (5)	0.420 (4)	-0.079 (2)	0.064*
N3	-0.0723 (3)	0.0740 (3)	0.7959 (3)	0.0266 (8)
N4	-0.1830 (4)	-0.0186 (4)	1.0052 (4)	0.0362 (9)
H4N	-0.220 (5)	-0.079 (4)	1.082 (3)	0.054*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.042 (3)	0.046 (3)	0.040 (3)	-0.004 (2)	-0.010 (2)	-0.009 (2)
C2	0.042 (3)	0.059 (4)	0.039 (3)	-0.003 (3)	0.007 (2)	-0.025 (3)
C3	0.044 (3)	0.037 (3)	0.028 (2)	-0.013 (2)	0.003 (2)	-0.012 (2)

Acta Cryst. (2008). E64, m1487

C4	0.091 (5)	0.053 (4)	0.048 (4)	0.012 (3)	-0.003 (3)	-0.018 (3)
C5	0.056 (3)	0.065 (4)	0.022 (2)	-0.035 (3)	-0.003 (2)	-0.013 (2)
C6	0.039 (3)	0.045 (3)	0.024 (2)	-0.016 (2)	0.002 (2)	-0.016 (2)
C7	0.047 (3)	0.063 (4)	0.028 (3)	-0.028 (3)	0.004 (2)	-0.018 (2)
C8	0.043 (3)	0.050 (3)	0.023 (2)	-0.020 (2)	0.000 (2)	-0.017 (2)
C9	0.036 (3)	0.028 (2)	0.034 (3)	-0.0015 (19)	-0.010 (2)	-0.013 (2)
C10	0.038 (3)	0.048 (3)	0.030 (3)	-0.001 (2)	-0.008 (2)	-0.024 (2)
C11	0.029 (2)	0.035 (3)	0.027 (2)	-0.0091 (19)	-0.0080 (19)	-0.011 (2)
C12	0.064 (4)	0.051 (3)	0.043 (3)	-0.025 (3)	-0.012 (3)	-0.017 (3)
01	0.0320 (17)	0.0321 (18)	0.0421 (19)	0.0006 (14)	-0.0092 (15)	-0.0167 (15)
O2	0.054 (2)	0.050(2)	0.0372 (19)	-0.0100 (17)	-0.0053 (16)	-0.0287 (17)
03	0.0367 (18)	0.0301 (17)	0.0383 (18)	0.0010 (14)	-0.0130 (15)	-0.0093 (14)
O4	0.0330 (17)	0.0286 (17)	0.0356 (18)	-0.0082 (13)	-0.0006 (14)	-0.0100 (14)
05	0.0331 (16)	0.0244 (15)	0.0319 (16)	-0.0076 (13)	-0.0042 (13)	-0.0139 (13)
O6	0.0260 (15)	0.0217 (14)	0.0251 (15)	-0.0066 (12)	-0.0046 (12)	-0.0100 (12)
O7	0.0222 (14)	0.0224 (14)	0.0195 (14)	-0.0035 (11)	-0.0025 (11)	-0.0087 (12)
08	0.0335 (17)	0.0356 (18)	0.0318 (17)	-0.0043 (14)	-0.0144 (14)	-0.0081 (14)
09	0.0282 (16)	0.0340 (17)	0.0226 (15)	-0.0049 (13)	-0.0037 (12)	-0.0149 (13)
O10	0.0288 (16)	0.0342 (17)	0.0223 (15)	-0.0055 (13)	0.0011 (12)	-0.0164 (13)
011	0.0273 (16)	0.0384 (19)	0.0373 (18)	-0.0035 (14)	-0.0056 (14)	-0.0139 (15)
O12	0.0338 (17)	0.0374 (18)	0.0343 (18)	-0.0156 (14)	-0.0015 (14)	-0.0109 (14)
O13	0.0231 (14)	0.0254 (15)	0.0178 (14)	-0.0056 (12)	-0.0043 (11)	-0.0074 (12)
Mo1	0.0270 (2)	0.0275 (2)	0.02393 (19)	-0.00334 (15)	-0.00188 (15)	-0.01489 (16)
Mo2	0.02117 (18)	0.02459 (19)	0.01723 (18)	-0.00511 (14)	-0.00434 (13)	-0.00779 (14)
Mo3	0.02464 (19)	0.02039 (19)	0.02227 (19)	-0.00412 (14)	-0.00317 (15)	-0.00671 (15)
Mo4	0.01997 (18)	0.0257 (2)	0.02189 (19)	-0.00583 (14)	-0.00081 (14)	-0.00971 (15)
N1	0.041 (2)	0.040 (2)	0.025 (2)	-0.0187 (18)	-0.0054 (17)	-0.0099 (17)
N2	0.047 (2)	0.041 (3)	0.022 (2)	-0.008 (2)	0.0007 (19)	-0.0061 (18)
N3	0.0265 (18)	0.033 (2)	0.0194 (17)	-0.0074 (15)	-0.0018 (14)	-0.0118 (15)
N4	0.035 (2)	0.046 (3)	0.0212 (19)	-0.0169 (19)	0.0011 (17)	-0.0095 (18)

Geometric parameters (Å, °)

C1—C2	1.334 (7)	C11—C12	1.477 (6)
C1—N1	1.378 (6)	C12—H12A	0.9600
C1—H1	0.9300	C12—H12B	0.9600
C2—N2	1.367 (6)	C12—H12C	0.9600
С2—Н2	0.9300	O1—Mo1	1.697 (3)
C3—N1	1.319 (6)	O2—Mo1	1.699 (3)
C3—N2	1.337 (6)	O3—Mo3	1.688 (3)
C3—C4	1.465 (7)	O4—Mo3	1.703 (3)
C4—H4A	0.9600	O5—Mo3	1.892 (3)
C4—H4B	0.9600	O5—Mo1	1.920 (3)
C4—H4C	0.9600	O6—Mo2	1.945 (3)
C5—N1	1.481 (5)	O6—Mo3	2.362 (3)
C5—C6	1.492 (6)	O7—Mo3	2.327 (2)
С5—Н5А	0.9700	O7—Mo4	2.350 (3)
C5—H5B	0.9700	O7—Mo2	2.390 (3)

C6—C7	1.535 (6)	O7—Mo1	2.444 (3)
С6—Н6А	0.9700	O8—Mo2	1.682 (3)
С6—Н6В	0.9700	O9—Mo2	1.750 (3)
C7—C8	1.480 (6)	O9—Mo1	2.296 (3)
С7—Н7А	0.9700	O10—Mo4	1.904 (3)
С7—Н7В	0.9700	O10—Mo1	1.938 (3)
C8—N3	1.478 (5)	O11—Mo4	1.686 (3)
C8—H8A	0.9700	O12—Mo4	1.700 (3)
C8—H8B	0.9700	O13—Mo2	1.954 (3)
C9—C10	1.337 (6)	O13—Mo4	2.373 (3)
C9—N3	1.382 (5)	Mo2—Mo4 ⁱ	3.2019 (5)
С9—Н9	0.9300	Mo2—Mo3 ⁱ	3.2144 (5)
C10—N4	1.377 (6)	Mo4—O6 ⁱ	1.981 (3)
C10—H10	0.9300	N2—H2N	0.87 (3)
C11—N3	1.320 (5)	N4—H4N	0.86 (3)
C11—N4	1.322 (5)		(-)
C2—C1—N1	107.4 (4)	O5—Mo1—O7	73.80 (10)
C2—C1—H1	126.3	O10—Mo1—O7	74.23 (10)
N1—C1—H1	126.3	O9—Mo1—O7	69.81 (9)
C1—C2—N2	106.5 (4)	O8—Mo2—O9	104.33 (14)
C1—C2—H2	126.8	O8—Mo2—O6	101.53 (13)
N2—C2—H2	126.8	O9—Mo2—O6	96.72 (12)
N1—C3—N2	106.9 (4)	O8—Mo2—O13	101.33 (13)
N1—C3—C4	128.6 (5)	O9—Mo2—O13	95.61 (12)
N2—C3—C4	124.6 (5)	O6—Mo2—O13	150.39 (11)
C3—C4—H4A	109.5	08—Mo2—O7 ⁱ	99.39 (13)
C3—C4—H4B	109.5	O9-Mo2-O7 ⁱ	156.26 (12)
H4A—C4—H4B	109.5	O6—Mo2—O7 ⁱ	79.18 (10)
C3—C4—H4C	109.5	O13—Mo2—O7 ⁱ	78.73 (10)
H4A—C4—H4C	109.5	O8—Mo2—O7	175.33 (12)
H4B—C4—H4C	109.5	O9—Mo2—O7	80.34 (11)
N1—C5—C6	112.8 (4)	O6—Mo2—O7	77.54 (10)
N1—C5—H5A	109.0	O13—Mo2—O7	78.15 (10)
С6—С5—Н5А	109.0	O7 ⁱ —Mo2—O7	75.94 (10)
N1—C5—H5B	109.0	O8—Mo2—Mo4 ⁱ	90.41 (10)
C6—C5—H5B	109.0	O9—Mo2—Mo4 ⁱ	132.43 (9)
H5A—C5—H5B	107.8	O6—Mo2—Mo4 ⁱ	35.72 (8)
C5—C6—C7	110.9 (4)	O13—Mo2—Mo4 ⁱ	125.92 (8)
С5—С6—Н6А	109.5	O7 ⁱ —Mo2—Mo4 ⁱ	47.21 (7)
С7—С6—Н6А	109.5	O7—Mo2—Mo4 ⁱ	86.22 (6)
С5—С6—Н6В	109.5	O8—Mo2—Mo3 ⁱ	90.58 (10)
С7—С6—Н6В	109.5	O9—Mo2—Mo3 ⁱ	131.56 (9)
Н6А—С6—Н6В	108.1	O6—Mo2—Mo3 ⁱ	125.49 (8)
C8—C7—C6	109.9 (4)	O13—Mo2—Mo3 ⁱ	35.96 (8)
С8—С7—Н7А	109.7	O7 ⁱ —Mo2—Mo3 ⁱ	46.33 (7)
С6—С7—Н7А	109.7	O7—Mo2—Mo3 ⁱ	86.33 (6)
С8—С7—Н7В	109.7	Mo4 ⁱ —Mo2—Mo3 ⁱ	92.286 (13)

С6—С7—Н7В	109.7	O3—Mo3—O4	104.79 (15)
H7A—C7—H7B	108.2	O3—Mo3—O5	101.97 (14)
N3—C8—C7	114.0 (4)	O4—Mo3—O5	101.64 (14)
N3—C8—H8A	108.8	O3—Mo3—O13 ⁱ	97.07 (13)
С7—С8—Н8А	108.8	O4—Mo3—O13 ⁱ	100.09 (13)
N3—C8—H8B	108.8	O5—Mo3—O13 ⁱ	146.22 (11)
С7—С8—Н8В	108.8	O3—Mo3—O7	96.22 (12)
H8A—C8—H8B	107.6	O4—Mo3—O7	158.65 (12)
C10—C9—N3	107.8 (4)	O5—Mo3—O7	77.19 (10)
C10—C9—H9	126.1	O13 ⁱ —Mo3—O7	73.19 (10)
N3—C9—H9	126.1	O3—Mo3—O6	165.01 (12)
C9—C10—N4	106.0 (4)	O4—Mo3—O6	87.24 (12)
C9—C10—H10	127.0	O5—Mo3—O6	83.90 (11)
N4—C10—H10	127.0	013^{i} Mo3 -06	71.63 (10)
N3—C11—N4	108.0 (4)	07—Mo3—O6	71.41 (9)
N3-C11-C12	127.0 (4)	$O_3 - M_0 3 - M_0 2^i$	86.46 (11)
N4-C11-C12	1250(4)	O4—Mo3—Mo2 ⁱ	135 19 (10)
C11—C12—H12A	109.5	$05-Mo3-Mo2^{i}$	118.52 (8)
C11—C12—H12B	109.5	013^{i} Mo3 Mo2 ⁱ	35 10 (7)
H12A—C12—H12B	109.5	$07-Mo3-Mo2^{i}$	41 34 (6)
C11—C12—H12C	109.5	$O6-Mo3-Mo2^{i}$	78.65 (6)
H12A— $C12$ — $H12C$	109.5	$011 - M_0 4 - 012$	104.90(15)
H12B-C12-H12C	109.5	$011 - M_0 4 - 010$	101.89 (14)
Mo3-O5-Mo1	117 70 (14)	$012 - M_04 - 010$	101.07(14)
$Mo2-O6-Mo4^{i}$	109.31 (12)	$011 - Mo4 - O6^{i}$	98.62 (13)
$M_0^2 = O_0^2 = M_0^3$	110.72(12)	$012 - M_0 4 - 06^i$	100.79(13)
$Mo4^{i}$ $O6$ $Mo3$	104.16(11)	$010 - M04 - 06^{i}$	144 88 (11)
$Mo2^{i}$ $O7$ $Mo3$	92 33 (9)	$011 - M_0 4 - 07$	94 31 (12)
$Mo2^{i}$ $O7$ $Mo3$	91.22 (10)	$012 - M_0 4 - 07$	$160\ 60\ (12)$
Mo2 = 07 = Mo1 Mo3 = 07 = Mo4	163 12 (12)	010 - Mo4 - 07	77 14 (10)
$Mo2^{i}$ $O7$ $Mo2$	103.12(12) 104.06(10)	$06^{i} - Mo4 - 07$	73 14 (10)
Mo2 = O7 = Mo2 Mo3 = O7 = Mo2	97 67 (9)	$011 - M_0 4 - 013$	$164\ 42\ (12)$
Mo4 - 07 - Mo2	97.46 (9)	012 - Mo4 - 013	89 13 (12)
$Mo2^{i}$ $O7$ $Mo2$	163 93 (13)	010 - Mo4 - 013	81 58 (11)
Mo2Mo1	86 24 (8)	$06^{i} - Mo4 - 013$	71.62 (10)
Mo3-07-Mo1	85.80 (8)	$07 - M_0 4 - 013$	71.02 (10)
$Mo^2 - 0^7 - Mo^1$	91 98 (9)	011—Mo4—Mo2 ⁱ	86 16 (10)
Mo2 = O9 = Mo1	117.87(14)	012 Mo4 Mo2 ⁱ	13573(11)
Mo2Mo1	116 36 (13)	$010 - Mo4 - Mo2^{i}$	118 71 (8)
$M_0^2 = 013 = M_0^3^i$	108.94(12)	O_{10}^{i} Mo4 Mo2	34.97 (7)
Mo2 013 Mo4	100.94(12) 110.49(11)	$O7 Mo4 Mo2^{i}$	<i>4</i> 1 57 (6)
Mo2 = 013 = Mo4	103.79(11) 103.28(11)	$O_1^{-1}MO_4^{-1}MO_2^{i}$	78.96 (6)
$M_{00} = 0.13 - M_{00}$	103.28(11) 104.71(15)	$C_3 = N_1 = C_1$	1093(4)
01 - Mo1 - 02	99.04 (13)	$C_3 N_1 C_5$	125 2 (4)
02 - Mo1 - 05	103 61 (14)	$C_1 = N_1 = C_5$	125.2(7)
01 - Mo1 - 010	98.14(13)	$C_1 = 101 = C_2$	123.4 (4)
$02 - M_01 - 010$	101.72(14)	$C_{3} = N_{2} = C_{2}$	109.9 (4)
02 - M01 - 010	101.72(14) 1/1/8(11)	$C_{2} = 112 IN$	120(3) 125(3)
03-W01-010	144.40 (11)	U_2 —IN2—IN2IN	123 (3)

O1—Mo1—O9	163.59 (12)	C11—N3—C9	108.5 (4)
O2—Mo1—O9	91.61 (13)	C11—N3—C8	125.1 (4)
O5—Mo1—O9	78.38 (11)	C9—N3—C8	126.1 (4)
O10-Mo1-O9	76.43 (11)	C11—N4—C10	109.8 (4)
O1—Mo1—O7	93.85 (12)	C11—N4—H4N	125 (4)
O2—Mo1—O7	161.41 (13)	C10—N4—H4N	125 (4)
N1-C1-C2-N2	-0.6 (6)	Mo1-05-Mo3-06	93.10 (15)
N1—C5—C6—C7	-179.3 (4)	Mo1—O5—Mo3—Mo2 ⁱ	19.56 (18)
C5—C6—C7—C8	163.4 (4)	Mo2 ⁱ O7Mo3O3	-77.41 (13)
C6—C7—C8—N3	176.4 (4)	Mo4—O7—Mo3—O3	24.5 (5)
N3—C9—C10—N4	0.5 (5)	Mo2—O7—Mo3—O3	178.06 (13)
Mo3—O5—Mo1—O1	71.31 (18)	Mo1	86.56 (12)
Mo3—O5—Mo1—O2	178.95 (16)	Mo2 ⁱ O7Mo3O4	92.4 (3)
Mo3-O5-Mo1-O10	-46.7 (3)	Mo4	-165.6 (4)
Mo3—O5—Mo1—O9	-92.21 (16)	Mo2	-12.1 (4)
Mo3—O5—Mo1—O7	-20.10 (14)	Mo1	-103.6 (3)
Mo4-010-Mo1-01	-69.16 (17)	Mo2 ⁱ	-178.32 (12)
Mo4-010-Mo1-02	-176.11 (16)	Mo4—O7—Mo3—O5	-76.4 (4)
Mo4—O10—Mo1—O5	49.1 (3)	Mo2—O7—Mo3—O5	77.15 (11)
Mo4-010-Mo1-09	95.07 (15)	Mo1	-14.35 (10)
Mo4-010-Mo1-07	22.57 (13)	Mo2 ⁱ O7Mo3O13 ⁱ	18.11 (10)
Mo2—O9—Mo1—O1	-5.8 (5)	Mo4-07-Mo3-013 ⁱ	120.1 (4)
Mo2—O9—Mo1—O2	-179.75 (17)	Mo2-07-Mo3-013 ⁱ	-86.41 (10)
Mo2—O9—Mo1—O5	76.68 (16)	Mo1-07-Mo3-013 ⁱ	-177.91 (10)
Mo2—O9—Mo1—O10	-78.08 (16)	Mo2 ⁱ O7Mo3O6	93.89 (10)
Mo2—O9—Mo1—O7	-0.15 (13)	Mo4—O7—Mo3—O6	-164.2 (5)
Mo2 ⁱ —O7—Mo1—O1	1.4 (5)	Mo2—O7—Mo3—O6	-10.64 (8)
Mo3—O7—Mo1—O1	-83.95 (12)	Mo1—O7—Mo3—O6	-102.14 (10)
Mo4—O7—Mo1—O1	81.15 (12)	Mo4—O7—Mo3—Mo2 ⁱ	102.0 (5)
Mo2—O7—Mo1—O1	178.50 (11)	Mo2—O7—Mo3—Mo2 ⁱ	-104.53 (11)
Mo2 ⁱ —O7—Mo1—O2	-175.8 (4)	Mo1—O7—Mo3—Mo2 ⁱ	163.97 (13)
Mo3—O7—Mo1—O2	98.9 (4)	Mo2—O6—Mo3—O3	49.4 (5)
Mo4—O7—Mo1—O2	-96.0 (4)	Mo4 ⁱ O6Mo3O3	-68.0 (5)
Mo2—O7—Mo1—O2	1.3 (4)	Mo2—O6—Mo3—O4	-166.62 (16)
Mo2 ⁱ —O7—Mo1—O5	99.7 (5)	Mo4 ⁱ O6Mo3O4	75.99 (14)
Mo3—O7—Mo1—O5	14.36 (10)	Mo2—O6—Mo3—O5	-64.60 (14)
Mo4—O7—Mo1—O5	179.46 (11)	Mo4 ⁱ —O6—Mo3—O5	178.01 (13)
Mo2—O7—Mo1—O5	-83.20 (11)	Mo2-06-Mo3-013 ⁱ	91.79 (13)
Mo2 ⁱ —O7—Mo1—O10	-96.0 (5)	Mo4 ⁱ O6Mo3O13 ⁱ	-25.60 (11)
Mo3-07-Mo1-010	178.68 (11)	Mo2—O6—Mo3—O7	13.91 (11)
Mo4—O7—Mo1—O10	-16.22 (10)	Mo4 ⁱ O6Mo3O7	-103.48 (12)
Mo2-07-Mo1-010	81.12 (11)	Mo2—O6—Mo3—Mo2 ⁱ	56.15 (10)
Mo2 ⁱ —O7—Mo1—O9	-177.0 (5)	Mo4 ⁱ —O6—Mo3—Mo2 ⁱ	-61.24 (9)
Mo3—O7—Mo1—O9	97.65 (10)	Mo1-010-Mo4-011	68.55 (18)
Mo4—O7—Mo1—O9	-97.25 (10)	Mo1-010-Mo4-012	176.55 (15)
Mo2—O7—Mo1—O9	0.09 (8)	Mo1-010-Mo4-06 ⁱ	-55.9 (3)
Mo1-09-Mo2-08	-179.70 (14)	Mo1-010-Mo4-07	-23.21 (14)

Mo1-09-Mo2-06	-75.94 (15)	Mo1-010-Mo4-013	-96.01 (15)
Mo1-09-Mo2-013	77.08 (15)	Mo1-O10-Mo4-Mo2 ⁱ	-23.58 (18)
Mo1-09-Mo2-07 ⁱ	2.4 (4)	Mo2 ⁱ O7Mo4O11	79.27 (13)
Mo1-09-Mo2-07	0.14 (12)	Mo3—O7—Mo4—O11	-22.9 (4)
Mo1-O9-Mo2-Mo4 ⁱ	-75.60 (17)	Mo2-07-Mo4-011	-176.38 (13)
Mo1-O9-Mo2-Mo3 ⁱ	76.39 (16)	Mo1-07-Mo4-011	-84.92 (12)
Mo4 ⁱ —O6—Mo2—O8	-74.26 (16)	Mo2 ⁱ O7Mo4O12	-92.7 (4)
Mo3—O6—Mo2—O8	171.55 (14)	Mo3-07-Mo4-012	165.2 (4)
Mo4 ⁱ —O6—Mo2—O9	179.57 (13)	Mo2-07-Mo4-012	11.7 (4)
Mo3—O6—Mo2—O9	65.39 (14)	Mo1-07-Mo4-012	103.1 (4)
Mo4 ⁱ —O6—Mo2—O13	65.6 (3)	Mo2 ⁱ —O7—Mo4—O10	-179.50 (12)
Mo3—O6—Mo2—O13	-48.6 (3)	Mo3—O7—Mo4—O10	78.4 (4)
Mo4 ⁱ	23.24 (12)	Mo2-07-Mo4-010	-75.15 (11)
Mo3—O6—Mo2—O7 ⁱ	-90.94 (12)	Mo1—O7—Mo4—O10	16.30 (10)
Mo4 ⁱ —O6—Mo2—O7	101.06 (13)	Mo2 ⁱ	-18.44 (10)
Mo3—O6—Mo2—O7	-13.13 (10)	Mo3—O7—Mo4—O6 ⁱ	-120.6 (4)
Mo3—O6—Mo2—Mo4 ⁱ	-114.19 (18)	Mo2—O7—Mo4—O6 ⁱ	85.91 (11)
Mo4 ⁱ —O6—Mo2—Mo3 ⁱ	24.83 (16)	Mo1—O7—Mo4—O6 ⁱ	177.37 (11)
Mo3—O6—Mo2—Mo3 ⁱ	-89.36 (11)	Mo2 ⁱ	-94.20 (10)
Mo3 ⁱ —O13—Mo2—O8	75.02 (15)	Mo3-07-Mo4-013	163.7 (5)
Mo4—O13—Mo2—O8	-172.19(13)	Mo2-07-Mo4-013	10.15 (8)
Mo3 ⁱ —O13—Mo2—O9	-179.12(13)	Mo1-07-Mo4-013	101.60 (9)
Mo4-013-Mo2-09	-66.32(14)	Mo3-07-Mo4-Mo2 ⁱ	-102.1(5)
$Mo3^{i}$ —O13—Mo2—O6	-64.9(3)	$Mo2-O7-Mo4-Mo2^{i}$	104.35 (11)
Mo4-013-Mo2-06	47.9 (3)	$Mo1-O7-Mo4-Mo2^{i}$	-164.19(12)
$Mo3^{i}$ —O13—Mo2—O7^{i}	-22.44(12)	Mo2-013-Mo4-011	-38.2 (5)
M_{04} — O_{13} — M_{02} — $O_{7^{i}}$	90.36 (12)	Mo ³ⁱ —O13—Mo4—O11	78.2 (5)
$M_03^i - 013 - M_02 - 07$	-100.24(12)	Mo2-013-Mo4-012	167.31 (15)
Mo4-013-Mo2-07	12.55 (10)	$Mo3^{i}$ —O13—Mo4—O12	-76.32(14)
$M_{0}3^{i}-013-M_{0}2-M_{0}4^{i}$	-23.85(15)	Mo2-013-Mo4-010	65.99 (13)
$Mo4-O13-Mo2-Mo4^{i}$	88.95 (11)	$Mo3^{i}$ — $O13$ — $Mo4$ — $O10$	-177.64(12)
$Mo4-O13-Mo2-Mo3^{i}$	112.80 (16)	$Mo2-O13-Mo4-O6^{i}$	-91.00(13)
$M_02^i - 07 - M_02 - 09$	179.05 (13)	$M_03^i - 013 - M_04 - 06^i$	25.37 (11)
Mo3-07-Mo2-09	-86.59(12)	Mo2-013-Mo4-07	-13.19(11)
$M_{04} - 07 - M_{02} - 09$	85.91 (12)	$M_03^i - 013 - M_04 - 07$	103 18 (11)
Mo1-07-Mo2-09	-0.12(10)	$Mo2-O13-Mo4-Mo2^{i}$	-55.58(10)
$M_02^i - 07 - M_02 - 06$	-81.79(12)	$Mo3^{i}$ — $O13$ — $Mo4$ — $Mo2^{i}$	60.79 (8)
Mo3-07-Mo2-06	12.57(10)	N2-C3-N1-C1	0.0 (6)
Mo4-07-Mo2-06	-174.94(12)	C4-C3-N1-C1	-178.8(6)
Mo1-07-Mo2-06	99.04 (10)	N2-C3-N1-C5	-177.8(4)
$M_02^i - 07 - M_02 - 013$	81.18 (12)	C4-C3-N1-C5	3.4 (8)
$M_{03} = 07 = M_{02} = 013$	175 54 (12)	$C_2 - C_1 - N_1 - C_3$	0.4(6)
$M_{04} = 07 = M_{02} = 013$	-11.97(10)	C_{2} C_{1} N_{1} C_{5}	178.2(4)
$M_01 - 07 - M_02 - 013$	-97.99 (10)	C6-C5-N1-C3	89.7 (6)
M_02^{i} 07 M_02 07	0.0	C6-C5-N1-C1	-87.7(6)
$M_{03} = 07 = M_{02} = 07^{i}$	94.36 (11)	N1-C3-N2-C2	-0.4(6)
$M_{04} = 07 = M_{02} = 07^{i}$	-93 14 (11)	C4-C3-N2-C2	178 5 (6)
$M_01 = 07 = M_02 = 07^i$	-179 17 (14)	C1 - C2 - N2 - C3	0.6.(6)
WI01 -0/ -WI02-0/	1/2.1/(14)	$01 \ 02 \ 112 \ 03$	0.0 (0)

Mo2 ⁱ —O7—Mo2—Mo4 ⁱ Mo3—O7—Mo2—Mo4 ⁱ	-46.75(8)	N4—C11—N3—C9	0.1(5)
Mos 07 Mo2 Mo4 Mo4—07—Mo2—Mo4 ⁱ	-139.89(7)	N4-C11-N3-C8	-173.5(4)
Mo1-07-Mo2-Mo3 ⁱ	45.79 (8)	C12—C11—N3—C8 C10—C9—N3—C11	-0.4 (5)
Mo3	140.15 (7) -47.35 (7)	C10—C9—N3—C8 C7—C8—N3—C11	173.1 (4) -138.3 (5)
Mo1—O7—Mo2—Mo3 ⁱ Mo1—O5—Mo3—O3	-133.38 (6) -72.93 (18)	C7—C8—N3—C9 N3—C11—N4—C10	49.2 (6) 0.2 (5)
Mo1—O5—Mo3—O4 Mo1—O5—Mo3—O13 ⁱ	179.01 (15) 50.0 (3)	C12—C11—N4—C10 C9—C10—N4—C11	-179.9 (4) -0.4 (5)
Mo1	20.83 (14)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	<i>D</i> —H··· <i>A</i>
N2—H2 <i>N</i> ···O9 ⁱⁱ	0.87 (3)	2.37 (4)	3.031 (5)	134 (4)
N2—H2 <i>N</i> ···O10 ⁱⁱ	0.87 (3)	2.20 (2)	3.001 (5)	153 (5)
N4—H4 <i>N</i> ···O12 ⁱⁱⁱ	0.86 (3)	2.39 (4)	3.052 (5)	134 (4)
N4—H4 N ···O4 ^{iv}	0.86 (3)	2.12 (3)	2.873 (4)	146 (5)

Symmetry codes: (ii) -*x*+1, -*y*+1, -*z*; (iii) *x*-1, *y*-1, *z*+1; (iv) -*x*, -*y*, -*z*+2.