organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Chloro-4-iodoaniline

Yun-Hua Xu,^a* Can Wang^b and Fanqi Qu^b

^aSchool of Science, Beijing Jiaotong University, Beijing 100044, People's Republic of China, and ^bCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China Correspondence e-mail: yhxu@bjtu.edu.cn

Received 30 September 2008; accepted 3 November 2008

Key indicators: single-crystal X-ray study; T = 90 K; mean σ (C–C) = 0.005 Å; R factor = 0.024; wR factor = 0.046; data-to-parameter ratio = 19.1.

The title dihaloaniline, C_6H_5CIIN , shows no significant hydrogen bonds nor the commonly observed I····I interactions in the crystal structure, although an amino group and an I atom are available for such contacts. The crystal structure is stabilized by weak interactions involving the amine functionality as donor group and N or halogen atoms as acceptors.

Related literature

The title compound was first synthesized 90 years ago (Dains *et al.*, 1918). For structures of halogenated anilines, see: Cox (2001); Dey *et al.* (2003); Dou *et al.* (1993); Fukuyo *et al.* (1982); Goubitz *et al.* (2001); Parkin *et al.* (2005); Sakurai *et al.* (1963).

Experimental

Crystal data

 $\begin{array}{l} C_{6}H_{5}{\rm CIIN} \\ M_{r} = 253.46 \\ {\rm Orthorhombic}, \ P2_{1}2_{1}2_{1} \\ a = 5.6277 \ (2) \ {\rm \AA} \\ b = 8.7859 \ (3) \ {\rm \AA} \\ c = 14.9217 \ (5) \ {\rm \AA} \end{array}$

 $V = 737.79 (4) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 4.61 \text{ mm}^{-1}$ T = 90.0 (2) K $0.22 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{\rm min} = 0.424, T_{\rm max} = 0.630$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.046$ S = 1.141696 reflections 89 parameters 1 restraint 5635 measured reflections 1696 independent reflections 1587 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdot \cdot \cdot N1^{i}$	0.82 (3)	2.61 (3)	3.359 (4)	153 (4)
$N1 - H1N \cdot \cdot \cdot Cl1^{ii}$	0.82(3)	2.94 (4)	3.515 (4)	129 (4)
$N1 - H2N \cdot \cdot \cdot I1^{iii}$	0.81 (3)	3.16 (3)	3.807 (4)	139 (4)

Data collection: *COLLECT* (Nonius, 2002); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO–SMN* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* and local procedures.

Y-HX thanks Dr Sihui Long for helpful discussions and invaluable suggestions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2201).

References

- Cox, P. J. (2001). Acta Cryst. E57, o1203-o1205.
- Dains, F. B., Vaughan, T. H. & Janney, W. M. (1918). J. Am. Chem. Soc. 40, 930– 936.
- Dey, A., Jetti, R. K. R., Boese, R. & Desiraju, G. R. (2003). CrystEngComm, 5, 248–252.
- Dou, S. Q., Weiden, N. & Weiss, A. (1993). Acta Chim. Hung. 130, 497–522.
- Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.
- Fukuyo, M., Hirotsu, K. & Higuchi, T. (1982). Acta Cryst. B38, 640-643.
- Goubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 176–181.

Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Parkin, A., Spanswick, C. K., Pulham, C. R. & Wilson, C. C. (2005). *Acta Cryst.* E**61**, o1087–o1089.
- Sakurai, T., Sundaralingam, M. & Jeffrey, G. A. (1963). Acta Cryst. 16, 354–363.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o2300 [doi:10.1107/S1600536808036076]

2-Chloro-4-iodoaniline

Yun-Hua Xu, Can Wang and Fanqi Qu

S1. Comment

Although structurally simple and readily available, few crystal structures of dihaloanilines have been measured. A total of 10 structures were found in the 2007 CSD; the refcodes are CAJWEQ, CAJWEQ01 (Goubitz *et al.*, 2001), DCHLAN, DCHLAN01 (Sakurai *et al.*, 1963), KUMTER (Cox, 2001), WEMDAT, WEMDEX, WEMDIB, WEMDOH, WEMDUN (Dou *et al.*, 1993). 2-Chloro-4-iodoaniline, (I), an aniline with two different halogen substituents, was first synthesized 90 years ago (Dains *et al.*, 1918), yet its crystal structure is reported here for the first time.

The asymmetric unit contains one molecule (Fig. 1). The N atom is not coplanar with the aromatic ring; H atoms of the amino group are also out of the halogenated benzene ring, but in the opposite direction to that of the N atom. So, the $C(Ar)NH_2$ group has a pyramidal shape. This is similar to the structure of aniline at 252 K (Fukuyo *et al.*, 1982), 2-iodo-aniline at 100 K (Parkin *et al.*, 2005) and 4-iodoaniline at 203 K (Dey *et al.*, 2003).

Despite the presence of amino, chloro and iodo groups, no classic interactions associated with them, such as hydrogen bonds, Cl···Cl, or I···I contacts were observed in the crystal structure of (I). Instead, weak interactions such as N—H···N, N—H···I, and N—H···Cl are found to provide stability to the crystal (Fig. 2).

S2. Experimental

The compound was purchased from TCI America Laboratory Chemicals as colorless block crystals suitable for singlecrystal X-ray diffraction measurement.

S3. Refinement

H atoms were found in a difference map and those on the aromatic ring subsequently placed in idealized positions with C —H distances of 0.95 Å and isotropic displacement parameters equal to $1.2U_{eq}$ of the carrier C atom. Amine H atoms H1N and H2N were refined freely but were restrained to converge to the same N—H bond lengths, with a standard deviation of 0.02 Å. Isotropic displacement parameters for H1N and H2N were computed as $1.5U_{eq}$ (N1)

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms).

Figure 2

A packing diagram of (I) down the *a* axis.

2-Chloro-4-iodoaniline

Crystal data C₆H₅CIIN $M_r = 253.46$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 5.6277 (2) Å b = 8.7859 (3) Å c = 14.9217 (5) Å V = 737.79 (4) Å³ Z = 4

F(000) = 472 $D_x = 2.282 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1019 reflections $\theta = 1.0-27.5^{\circ}$ $\mu = 4.61 \text{ mm}^{-1}$ T = 90 KRounded block, colourless $0.22 \times 0.15 \times 0.10 \text{ mm}$ Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 18 pixels mm ⁻¹ ω scans at fixed $\chi = 55^{\circ}$ Absorption correction: multi-scan (<i>SCALEPACK</i> ; Otwinowski & Minor, 1997) $T_{\min} = 0.424, T_{\max} = 0.630$	5635 measured reflections 1696 independent reflections 1587 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -7 \rightarrow 7$ $k = -11 \rightarrow 11$ $l = -19 \rightarrow 19$
Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.024$	$w = 1/[\sigma^2(F_r^2) + (0P)^2 + 0.4678P]$
$wR(F^2) = 0.046$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.14	$(\Delta/\sigma)_{\rm max} = 0.001$
1696 reflections	$\Delta \rho_{\rm max} = 1.18 \text{ e} \text{ Å}^{-3}$
89 parameters	$\Delta \rho_{\rm min} = -0.76 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: SHELXL97,
Primary atom site location: structure-invariant	$Fc^{*}=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4}$
direct methods	Extinction coefficient: 0.0021 (3)
Secondary atom site location: difference Fourier map	Absolute structure: Flack (1983), 681 Friedel pairs
Hydrogen site location: inferred from neighbouring sites	Absolute structure parameter: -0.03 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.48590 (4)	0.17882 (2)	0.730162 (15)	0.01928 (9)	
Cl1	0.46148 (17)	0.51349 (10)	0.40305 (6)	0.0194 (2)	
N1	0.9067 (6)	0.6647 (5)	0.4646 (2)	0.0188 (8)	
H1N	1.048 (5)	0.679 (5)	0.474 (3)	0.028*	
H2N	0.882 (7)	0.656 (5)	0.411 (2)	0.028*	
C1	0.6370 (6)	0.3328 (4)	0.6386 (2)	0.0133 (7)	
C2	0.5194 (7)	0.3639 (3)	0.5594 (2)	0.0138 (7)	
H2	0.3764	0.3121	0.5448	0.017*	
C3	0.6128 (6)	0.4711 (4)	0.5018 (2)	0.0145 (8)	
C4	0.8253 (6)	0.5480 (4)	0.5199 (3)	0.0152 (8)	
C5	0.9422 (6)	0.5117 (4)	0.5999 (2)	0.0166 (8)	
Н5	1.0875	0.5611	0.6142	0.020*	
C6	0.8494 (7)	0.4049 (4)	0.6588 (3)	0.0163 (8)	
H6	0.9312	0.3812	0.7127	0.020*	

Atomic displacement parameters	$(Å^2)$)
--------------------------------	---------	---

supporting information

C2	0.0142 (18)	0.0107 (15)	0.0165 (17)	0.0005 (16)	0.003 (2)	-0.0046 (13)	
C3	0.0134 (18)	0.0133 (17)	0.0169 (19)	0.0020 (16)	-0.0006 (16)	-0.0017 (16)	
C4	0.0121 (18)	0.0129 (18)	0.020 (2)	0.0043 (15)	0.0034 (16)	-0.0031 (17)	
C5	0.0096 (18)	0.0154 (17)	0.025 (2)	0.0007 (14)	0.0002 (16)	-0.0053 (15)	
C6	0.0172 (19)	0.0182 (19)	0.0133 (18)	0.0019 (16)	-0.0003 (16)	-0.0034 (16)	

Geometric parameters (Å, °)

I1—C1	2.103 (4)	C2—C3	1.379 (5)
Cl1—C3	1.742 (4)	С2—Н2	0.9500
N1C4	1.394 (5)	C3—C4	1.400 (5)
N1—H1N	0.82 (3)	C4—C5	1.400 (5)
N1—H2N	0.81 (3)	C5—C6	1.387 (5)
C1—C2	1.382 (5)	С5—Н5	0.9500
C1—C6	1.386 (5)	С6—Н6	0.9500
C4—N1—H1N	110 (3)	C4—C3—Cl1	118.6 (3)
C4—N1—H2N	117 (3)	N1—C4—C5	121.2 (3)
H1N—N1—H2N	110 (5)	N1—C4—C3	121.4 (3)
C2—C1—C6	120.6 (3)	C5—C4—C3	117.2 (3)
C2—C1—I1	119.3 (3)	C6—C5—C4	121.1 (3)
C6—C1—I1	120.1 (3)	C6—C5—H5	119.4
C3—C2—C1	119.0 (3)	C4—C5—H5	119.4
С3—С2—Н2	120.5	C1—C6—C5	119.7 (3)
C1—C2—H2	120.5	С1—С6—Н6	120.1
C2—C3—C4	122.3 (3)	С5—С6—Н6	120.1
C2—C3—Cl1	119.1 (3)		
C6—C1—C2—C3	-1.9 (5)	Cl1—C3—C4—C5	179.8 (3)
I1—C1—C2—C3	176.5 (2)	N1-C4-C5-C6	174.2 (3)
C1—C2—C3—C4	1.2 (5)	C3—C4—C5—C6	-0.5 (5)
C1—C2—C3—Cl1	-178.6 (3)	C2—C1—C6—C5	1.5 (5)
C2-C3-C4-N1	-174.7 (3)	I1—C1—C6—C5	-176.9 (2)
Cl1—C3—C4—N1	5.1 (5)	C4—C5—C6—C1	-0.3 (5)
C2—C3—C4—C5	0.0 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1 <i>N</i> ···N1 ⁱ	0.82 (3)	2.61 (3)	3.359 (4)	153 (4)
N1—H1 <i>N</i> ···Cl1 ⁱⁱ	0.82 (3)	2.94 (4)	3.515 (4)	129 (4)
N1—H2 <i>N</i> ···I1 ⁱⁱⁱ	0.81 (3)	3.16 (3)	3.807 (4)	139 (4)

Symmetry codes: (i) x+1/2, -y+3/2, -z+1; (ii) x+1, y, z; (iii) -x+3/2, -y+1, z-1/2.