organic compounds

Acta Crystallographica Section E Structure Reports Online

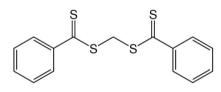
ISSN 1600-5368

Methylene bis(dithiobenzoate)

Yao-Ren Liang,^a Hung-Chun Tong,^a Yih-Hsing Lo,^a* Chia-Her Lin^b and Ting Shen Kuo^c

^aDepartment of Chemical Engineering, Tatung University, Taipei 104, Taiwan, ^bDepartment of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan, and ^cDepartment of Chemistry, National Normal Taiwan University, Taipei 106, Taiwan

Correspondence e-mail: yhlo@ttu.edu.tw


Received 14 October 2008; accepted 11 November 2008

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.009 Å; R factor = 0.056; wR factor = 0.157; data-to-parameter ratio = 15.1.

In the title compound, $C_{15}H_{12}S_4$, two phenyldithiocarboxylate units are linked through a methylene C atom on a twofold rotation axis. The central $S-CH_2-S$ angle of 116.9 (5)° is significantly larger than the ideal tetrahedral value. The dihedral angle formed by the two phenyl rings is 68.2 (1)°. The refined Flack parameter of 0.2 (3) does not permit unambiguous determination of the absolute structure.

Related literature

For related structures, see: Shrivastav *et al.* (2002); Gonzalez-Castro *et al.* (2000); Quintanilla *et al.* (2005).

Experimental

Crystal data

 $C_{15}H_{12}S_4$ $M_r = 320.49$ Orthorhombic, $P2_12_12$ a = 11.5800 (3) Åb = 14.6440 (11) Åc = 4.2710 (7) Å $V = 724.27 (13) \text{ Å}^3$ Z = 2Mo *K*\alpha radiation

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1995) $T_{min} = 0.933, T_{max} = 0.987$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.056\\ wR(F^2) &= 0.157\\ S &= 1.13\\ 1317 \text{ reflections}\\ 87 \text{ parameters}\\ \text{H-atom parameters constrained} \end{split}$$

 $\mu = 0.64 \text{ mm}^{-1}$ T = 200 (2) K $0.11 \times 0.08 \times 0.02 \text{ mm}$

5256 measured reflections 1317 independent reflections 931 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.096$

 $\begin{array}{l} \Delta \rho_{max} = 0.37 \mbox{ e } {\rm \AA}^{-3} \\ \Delta \rho_{min} = -0.46 \mbox{ e } {\rm \AA}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ 505 \mbox{ Friedel pairs} \\ \mbox{Flack parameter: } 0.2 \mbox{ (3)} \end{array}$

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This research was supported by the National Science Council, Taiwan (NSC 97–2113-M-036–001-MY2) and in part by the project of specific research fields in Tatung University, Taiwan (B96-C07-081), and the project of specific research fields in Chung Yuan Christian University, Taiwan (CYCU-97-CR-CH).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2313).

References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gonzalez-Castro, A., Gutierrez-Perez, R., Penieres-Carrillo, G., Diaz-Torres, E., Toscano, R. A., Moya-Cabrera, M., Cabrera-Ortiz, C. & Alvarez-Toledano, C. (2000). *Heteroatom. Chem.* 11, 120–128.
- Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Quintanilla, M. G., Guerra, E., Dotor, J., Maresova, J., Barba, F. & Martin, A. (2005). *Phosphorus Sulfur Silicon Relat. Elem.* 180, 1691–1699.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shrivastav, A., Singh, N. K. & Srivastava, G. (2002). Bioorg. Med. Chem. 10, 2693–2704.

supporting information

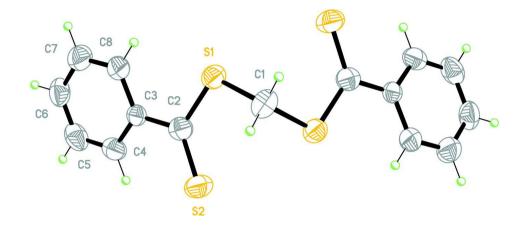
Acta Cryst. (2008). E64, o2366 [doi:10.1107/S1600536808037379]

Methylene bis(dithiobenzoate)

Yao-Ren Liang, Hung-Chun Tong, Yih-Hsing Lo, Chia-Her Lin and Ting Shen Kuo

S1. Comment

During studies on the reactivity of the RuS₂ complex {Ru(Tp)(PPh₃)[S₂CC₆H₅]}, (hydridotripyrazol-1-ylborato- $\kappa^3 N^2$, $N^{2'}$, $N^{2''}$)(phenyldithiocarboxylato- $\kappa^2 S$, S')(triphenylphosphine- κP)ruthenium, with CH₃CN in dichloromethane, we unexpectedly obtained crystals of the title compound. It consists of two phenyldithiocarboxylate units bridged by a methylene group. The ¹H NMR spectrum in CDCl₃ shows one singlet at 5.31 ppm, assignable to SCH₂S. The EI mass spectrum shows the molecular ion [C₁₅H₁₂S₄]⁺ with the characteristic isotopic distribution patterns. In the crystal, the C2 —S2 bond length of 1.643 (6) Å is slightly longer than expected for a C=S double bond (*ca* 1.61 Å), while the C2—S1 and C1—S1 distances of 1.743 (6) and 1.794 (5) Å, respectively, are clearly single bonds. The S—C—S angle of 116.9 (5)° is larger than the ideal tetrahedral value, probably due to repulsion between the CS₂ groups.


S2. Experimental

The title compound was obtained unexpectedly during studies on the reactivity of $\{Ru(Tp)(PPh_3)[S_2CC_6H_5]\}$ with CH₃CN in dichloromethane. To a solution of $\{Ru(Tp)(PPh_3)[S_2CC_6H_5]\}$ (2.00 g, 2.73 mmol) in CH₂Cl₂ (20 ml), an excess of CH₃CN (2 ml) was added. The resulting yellow solution was heated to reflux for 3 h and the yellow precipitate obtained was filtered and washed with methanol and water to remove excess reagents. The compound was then dried under vacuum to give 0.83 g (91% yield). Crystals for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane–hexane.

Elemental analysis calculated: C, 56.21; H, 3.77%; found: C, 56.19; H, 3.69%. ¹H NMR (CDCl₃,303 K, ppm): δ 7.98–7.35 (m, 10H, Ph), 5.31 (s, 2H, CH₂). MS (*m/z*): 320.5 (*M*⁺).

S3. Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The refined Flack parameter of 0.2 (3) does not permit unambiguous determination of the absolute structure.

Figure 1

Molecular structure of the title compound showing displacement ellipsoids at the 50% probability level for non-H atoms. Non-labelled atoms are related to labelled atoms by the symmetry code 1-x, 2-y, z.

Methylene bis(dithiobenzoate)

Crystal data

 $C_{15}H_{12}S_4$ $M_r = 320.49$ Orthorhombic, $P2_12_12$ Hall symbol: P 2 2ab a = 11.5800 (3) Åb = 14.6440 (11) Åc = 4.2710(7) Å $V = 724.27 (13) Å^3$ Z = 2

Data collection

Nonius KappaCCD	5256 measured reflections
diffractometer	1317 independent reflections
Radiation source: fine-focus sealed tube	931 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.096$
φ scans	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 13$
(SORTAV; Blessing, 1995)	$k = -17 \rightarrow 17$
$T_{\min} = 0.933, \ T_{\max} = 0.987$	$l = -5 \rightarrow 4$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.157$ *S* = 1.13 1317 reflections 87 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

F(000) = 332 $D_{\rm x} = 1.470 {\rm ~Mg} {\rm ~m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 5256 reflections $\theta = 2.0 - 25.4^{\circ}$ $\mu = 0.64 \text{ mm}^{-1}$ T = 200 KPlate, yellow $0.11 \times 0.08 \times 0.02 \text{ mm}$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0733P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\text{max}} = 0.37 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.46 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 505 Friedel pairs Absolute structure parameter: 0.2(3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.47264 (14)	0.89784 (9)	0.5726 (3)	0.0446 (5)	
S2	0.72612 (15)	0.92562 (10)	0.5091 (5)	0.0613 (6)	
C1	0.5000	1.0000	0.792 (2)	0.049 (2)	
H1A	0.4346	1.0109	0.9253	0.058*	
C2	0.6098 (5)	0.8635 (4)	0.4525 (14)	0.0437 (15)	
C3	0.6104 (5)	0.7734 (4)	0.2900 (15)	0.0381 (14)	
C4	0.7071 (5)	0.7447 (4)	0.1238 (15)	0.0480 (17)	
H4A	0.7733	0.7828	0.1147	0.058*	
C 5	0.7082 (6)	0.6617 (4)	-0.0279 (16)	0.0572 (18)	
H5A	0.7749	0.6428	-0.1397	0.069*	
26	0.6127 (6)	0.6064 (4)	-0.0173 (15)	0.0562 (18)	
H6A	0.6136	0.5491	-0.1211	0.067*	
C 7	0.5161 (6)	0.6336 (4)	0.1422 (16)	0.0600 (19)	
H7A	0.4503	0.5949	0.1492	0.072*	
28	0.5140 (6)	0.7159 (4)	0.2913 (15)	0.0499 (17)	
H8A	0.4459	0.7345	0.3977	0.060*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	Atomic displacement parameter	's (Å ²)
--	-------------------------------	----------------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0456 (9)	0.0410 (8)	0.0472 (9)	-0.0042 (7)	0.0029 (7)	0.0005 (7)
S2	0.0472 (10)	0.0568 (9)	0.0800 (14)	-0.0132 (7)	-0.0145 (9)	0.0109 (10)
C1	0.063 (7)	0.043 (5)	0.039 (5)	-0.008(4)	0.000	0.000
C2	0.042 (4)	0.048 (3)	0.041 (3)	-0.003 (2)	-0.012 (3)	0.017 (3)
C3	0.035 (3)	0.035 (3)	0.044 (4)	0.001 (3)	0.000 (3)	0.016 (3)
C4	0.038 (4)	0.058 (4)	0.048 (4)	0.002 (3)	0.002 (3)	0.018 (3)
C5	0.055 (4)	0.062 (4)	0.054 (4)	0.019 (3)	0.016 (4)	0.011 (4)
C6	0.068 (5)	0.039 (3)	0.062 (4)	0.013 (3)	0.012 (4)	-0.001 (4)
C7	0.057 (5)	0.046 (3)	0.077 (5)	-0.001 (3)	0.017 (4)	-0.005 (3)
C8	0.044 (4)	0.042 (3)	0.064 (4)	0.003 (3)	0.008 (4)	0.001 (3)

Geometric parameters (Å, °)

S1—C2	1.743 (6)	C4—H4A	0.950
S1—C1	1.794 (5)	C5—C6	1.370 (9)
S2—C2	1.643 (6)	C5—H5A	0.950

C1—S1 ⁱ C1—H1A C2—C3 C3—C4	1.794 (5) 0.960 1.491 (8) 1.391 (8)	C6—C7 C6—H6A C7—C8 C7—H7A	1.369 (8) 0.950 1.364 (8) 0.950
C3—C8 C4—C5	1.399 (8) 1.377 (9)	C8—H8A	0.950
	1.577 (5)		
C2—S1—C1	103.5 (2)	C6—C5—C4	119.9 (6)
$S1 - C1 - S1^i$	116.9 (5)	С6—С5—Н5А	120.1
S1—C1—H1A	108.0	C4—C5—H5A	120.1
S1 ⁱ —C1—H1A	108.0	C7—C6—C5	120.3 (6)
C3—C2—S2	123.6 (4)	С7—С6—Н6А	119.9
C3—C2—S1	113.4 (4)	С5—С6—Н6А	119.9
S2—C2—S1	123.0 (4)	C8—C7—C6	120.2 (7)
C4—C3—C8	117.5 (6)	С8—С7—Н7А	119.9
C4—C3—C2	120.6 (5)	С6—С7—Н7А	119.9
C8—C3—C2	121.8 (5)	C7—C8—C3	121.1 (6)
C5—C4—C3	121.0 (6)	С7—С8—Н8А	119.5
C5—C4—H4A	119.5	С3—С8—Н8А	119.5
C3—C4—H4A	119.5		
$C2 - S1 - C1 - S1^{i}$	78.0 (2)	C2—C3—C4—C5	-179.7 (5)
C1—S1—C2—C3	174.1 (4)	C3—C4—C5—C6	0.3 (9)
C1—S1—C2—S2	-6.7 (5)	C4—C5—C6—C7	0.3 (10)
S2—C2—C3—C4	-12.4 (8)	C5—C6—C7—C8	0.2 (10)
S1—C2—C3—C4	166.7 (5)	C6—C7—C8—C3	-1.3 (10)
S2—C2—C3—C8	169.3 (5)	C4—C3—C8—C7	1.8 (9)
S1—C2—C3—C8	-11.6 (7)	C2—C3—C8—C7	-179.8 (6)
C8—C3—C4—C5	-1.4 (9)		

Symmetry code: (i) -x+1, -y+2, z.