Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Methylene bis(dithiobenzoate)

Yao-Ren Liang, ${ }^{\text {a }}$ Hung-Chun Tong, ${ }^{\text {a }}$ Yih-Hsing Lo, ${ }^{\text {a* }}$ Chia-Her Lin ${ }^{\text {b }}$ and Ting Shen Kuo ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemical Engineering, Tatung University, Taipei 104, Taiwan,
${ }^{\text {b }}$ Department of Chemistry, Chung-Yuan Christian University, Chung-Li 320, Taiwan, and ${ }^{\text {c }}$ Department of Chemistry, National Normal Taiwan University, Taipei 106, Taiwan
Correspondence e-mail: yhlo@ttu.edu.tw

Received 14 October 2008; accepted 11 November 2008
Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$; R factor $=0.056 ; w R$ factor $=0.157$; data-to-parameter ratio $=15.1$.

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~S}_{4}$, two phenyldithiocarboxylate units are linked through a methylene C atom on a twofold rotation axis. The central $\mathrm{S}-\mathrm{CH}_{2}-\mathrm{S}$ angle of 116.9 (5) ${ }^{\circ}$ is significantly larger than the ideal tetrahedral value. The dihedral angle formed by the two phenyl rings is $68.2(1)^{\circ}$. The refined Flack parameter of 0.2 (3) does not permit unambiguous determination of the absolute structure.

Related literature

For related structures, see: Shrivastav et al. (2002); GonzalezCastro et al. (2000); Quintanilla et al. (2005).

Experimental

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~S}_{4}$
$M_{r}=320.49$
Orthorhombic, $P 2_{1} 2_{1} 2$

$$
\begin{aligned}
& a=11.5800(3) \AA \\
& b=14.6440(11) \AA \\
& c=4.2710(7) \AA
\end{aligned}
$$

$V=724.27(13) \AA^{3}$	$\mu=0.64 \mathrm{~mm}^{-1}$
$Z=2$	$T=200(2) \mathrm{K}$
Mo $K \alpha$ radiation	$0.11 \times 0.08 \times 0.02 \mathrm{~mm}$
Data collection	
Nonius KappaCCD diffractometer	5256 measured reflections
Absorption correction: multi-scan	1317 independent reflections
$\quad(S O R T A V ;$ Blessing, 1995)	931 reflections with $I>2 \sigma(I)$
$\quad T_{\text {min }}=0.933, T_{\max }=0.987$	$R_{\text {int }}=0.096$
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$	$\Delta \rho_{\max }=0.37 \mathrm{e} \AA^{-3}$
$w R\left(F^{2}\right)=0.157$	$\Delta \rho_{\min }=-0.46 \mathrm{e}^{-3}$
$S=1.13$	Absolute structure: Flack (1983),
1317 reflections	505 Friedel pairs
87 parameters	Flack parameter: $0.2(3)$
H-atom parameters constrained	

Data collection: COLLECT (Nonius, 1999); cell refinement: $D E N Z O$ and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This research was supported by the National Science Council, Taiwan (NSC 97-2113-M-036-001-MY2) and in part by the project of specific research fields in Tatung University, Taiwan (B96-C07-081), and the project of specific research fields in Chung Yuan Christian University, Taiwan (CYCU-97-CR-CH).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2313).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gonzalez-Castro, A., Gutierrez-Perez, R., Penieres-Carrillo, G., Diaz-Torres, E., Toscano, R. A., Moya-Cabrera, M., Cabrera-Ortiz, C. \& AlvarezToledano, C. (2000). Heteroatom. Chem. 11, 120-128.
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Quintanilla, M. G., Guerra, E., Dotor, J., Maresova, J., Barba, F. \& Martin, A. (2005). Phosphorus Sulfur Silicon Relat. Elem. 180, 1691-1699.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shrivastav, A., Singh, N. K. \& Srivastava, G. (2002). Bioorg. Med. Chem. 10, 2693-2704.

supporting information

Acta Cryst. (2008). E64, o2366 [doi:10.1107/S1600536808037379]

Methylene bis(dithiobenzoate)

Yao-Ren Liang, Hung-Chun Tong, Yih-Hsing Lo, Chia-Her Lin and Ting Shen Kuo

S1. Comment

During studies on the reactivity of the RuS_{2} complex $\left\{\mathrm{Ru}(\mathrm{Tp})\left(\mathrm{PPh}_{3}\right)\left[\mathrm{S}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}\right]\right\}$, (hydridotripyrazol-1-ylborato$\left.\kappa^{3} N^{2}, N^{2^{\prime \prime}}, N^{2 \prime \prime}\right)\left(\right.$ phenyldithiocarboxylato- $\left.\kappa^{2} S, S^{\prime}\right)$ (triphenylphosphine- κP)ruthenium, with $\mathrm{CH}_{3} \mathrm{CN}$ in dichloromethane, we unexpectedly obtained crystals of the title compound. It consists of two phenyldithiocarboxylate units bridged by a methylene group. The ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} shows one singlet at 5.31 ppm , assignable to $\mathrm{SCH}_{2} \mathrm{~S}$. The EI mass spectrum shows the molecular ion $\left[\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~S}_{4}\right]^{+}$with the characteristic isotopic distribution patterns. In the crystal, the C 2 —S2 bond length of 1.643 (6) \AA is slightly longer than expected for a $\mathrm{C}=\mathrm{S}$ double bond (ca $1.61 \AA$), while the $\mathrm{C} 2 — \mathrm{~S} 1$ and $\mathrm{C} 1 —$ S1 distances of 1.743 (6) and 1.794 (5) \AA, respectively, are clearly single bonds. The $\mathrm{S}-\mathrm{C}-\mathrm{S}$ angle of $116.9(5)^{\circ}$ is larger than the ideal tetrahedral value, probably due to repulsion between the CS_{2} groups.

S2. Experimental

The title compound was obtained unexpectedly during studies on the reactivity of $\left\{\mathrm{Ru}(\mathrm{Tp})\left(\mathrm{PPh}_{3}\right)\left[\mathrm{S}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}\right]\right\}$ with $\mathrm{CH}_{3} \mathrm{CN}$ in dichloromethane. To a solution of $\left\{\mathrm{Ru}(\mathrm{Tp})\left(\mathrm{PPh}_{3}\right)\left[\mathrm{S}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}\right]\right\}(2.00 \mathrm{~g}, 2.73 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$, an excess of $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{ml})$ was added. The resulting yellow solution was heated to reflux for 3 h and the yellow precipitate obtained was filtered and washed with methanol and water to remove excess reagents. The compound was then dried under vacuum to give $0.83 \mathrm{~g}(91 \%$ yield $)$. Crystals for X-ray structure analysis were obtained by recrystallization of the crude product from dichloromethane-hexane.
Elemental analysis calculated: C, 56.21 ; $\mathrm{H}, 3.77 \%$; found: C, 56.19 ; $\mathrm{H}, 3.69 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 303 \mathrm{~K}, \mathrm{ppm}\right): \delta 7.98-$ $7.35(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 5.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{m} / \mathrm{z}): 320.5\left(M^{+}\right)$.

S3. Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.95-0.96 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. The refined Flack parameter of $0.2(3)$ does not permit unambiguous determination of the absolute structure.

Figure 1

Molecular structure of the title compound showing displacement ellipsoids at the 50% probability level for non-H atoms.
Non-labelled atoms are related to labelled atoms by the symmetry code 1-x, 2-y,z.

Methylene bis(dithiobenzoate)

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~S}_{4}$
$M_{r}=320.49$
Orthorhombic, $P 2_{1} 2_{1} 2$
Hall symbol: P 2 2ab
$a=11.5800$ (3) \AA
$b=14.6440$ (11) \AA
$c=4.2710(7) \AA$
$V=724.27(13) \AA^{3}$
$Z=2$

Data collection

Nonius KappaCCD diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.933, T_{\text {max }}=0.987$
$F(000)=332$
$D_{\mathrm{x}}=1.470 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5256 reflections
$\theta=2.0-25.4^{\circ}$
$\mu=0.64 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Plate, yellow
$0.11 \times 0.08 \times 0.02 \mathrm{~mm}$

5256 measured reflections
1317 independent reflections
931 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.096$
$\theta_{\text {max }}=25.5^{\circ}, \theta_{\text {min }}=2.2^{\circ}$
$h=-13 \rightarrow 13$
$k=-17 \rightarrow 17$
$l=-5 \rightarrow 4$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.157$
$S=1.13$
1317 reflections
87 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0733 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.37$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.46$ e \AA^{-3}
Absolute structure: Flack (1983), 505 Friedel pairs
Absolute structure parameter: 0.2 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.47264(14)$	$0.89784(9)$	$0.5726(3)$	$0.0446(5)$
S2	$0.72612(15)$	$0.92562(10)$	$0.5091(5)$	$0.0613(6)$
C1	0.5000	1.0000	$0.792(2)$	$0.049(2)$
H1A	0.4346	1.0109	0.9253	0.058^{*}
C2	$0.6098(5)$	$0.8635(4)$	$0.4525(14)$	$0.0437(15)$
C3	$0.6104(5)$	$0.7734(4)$	$0.2900(15)$	$0.0381(14)$
C4	$0.7071(5)$	$0.7447(4)$	$0.1238(15)$	$0.0480(17)$
H4A	0.7733	0.7828	0.1147	0.058^{*}
C5	$0.7082(6)$	$0.6617(4)$	$-0.0279(16)$	$0.0572(18)$
H5A	0.7749	0.6428	-0.1397	0.069^{*}
C6	$0.6127(6)$	$0.6064(4)$	$-0.0173(15)$	$0.0562(18)$
H6A	0.6136	0.5491	-0.1211	0.067^{*}
C7	$0.5161(6)$	$0.6336(4)$	$0.1422(16)$	$0.0600(19)$
H7A	0.4503	0.5949	0.1492	0.072^{*}
C8	$0.5140(6)$	$0.7159(4)$	$0.2913(15)$	$0.0499(17)$
H8A	0.4459	0.7345	0.3977	0.060^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0456(9)$	$0.0410(8)$	$0.0472(9)$	$-0.0042(7)$	$0.0029(7)$	$0.0005(7)$
S2	$0.0472(10)$	$0.0568(9)$	$0.0800(14)$	$-0.0132(7)$	$-0.0145(9)$	$0.0109(10)$
C1	$0.063(7)$	$0.043(5)$	$0.039(5)$	$-0.008(4)$	0.000	0.000
C2	$0.042(4)$	$0.048(3)$	$0.041(3)$	$-0.003(2)$	$-0.012(3)$	$0.017(3)$
C3	$0.035(3)$	$0.035(3)$	$0.044(4)$	$0.001(3)$	$0.000(3)$	$0.016(3)$
C4	$0.038(4)$	$0.058(4)$	$0.048(4)$	$0.002(3)$	$0.002(3)$	$0.018(3)$
C5	$0.055(4)$	$0.062(4)$	$0.054(4)$	$0.019(3)$	$0.016(4)$	$0.011(4)$
C6	$0.068(5)$	$0.039(3)$	$0.062(4)$	$0.013(3)$	$0.012(4)$	$-0.001(4)$
C7	$0.057(5)$	$0.046(3)$	$0.077(5)$	$-0.001(3)$	$0.017(4)$	$-0.005(3)$
C8	$0.044(4)$	$0.042(3)$	$0.064(4)$	$0.003(3)$	$0.008(4)$	$0.001(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{S} 1-\mathrm{C} 2$	$1.743(6)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.950
$\mathrm{~S} 1-\mathrm{C} 1$	$1.794(5)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.370(9)$
$\mathrm{S} 2-\mathrm{C} 2$	$1.643(6)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.950

$\mathrm{C} 1-\mathrm{Sl}^{\text {i }}$	1.794 (5)	C6-C7	1.369 (8)
C1-H1A	0.960	C6-H6A	0.950
C2-C3	1.491 (8)	C7-C8	1.364 (8)
C3-C4	1.391 (8)	C7-H7A	0.950
C3-C8	1.399 (8)	C8-H8A	0.950
C4-C5	1.377 (9)		
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1$	103.5 (2)	C6-C5-C4	119.9 (6)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 1^{\mathrm{i}}$	116.9 (5)	C6-C5-H5A	120.1
S1-C1-H1A	108.0	C4-C5-H5A	120.1
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.0	C7-C6-C5	120.3 (6)
C3-C2-S2	123.6 (4)	C7-C6-H6A	119.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{S} 1$	113.4 (4)	C5-C6-H6A	119.9
S2-C2-S1	123.0 (4)	C8-C7-C6	120.2 (7)
C4-C3-C8	117.5 (6)	C8-C7-H7A	119.9
C4-C3-C2	120.6 (5)	C6-C7-H7A	119.9
C8-C3-C2	121.8 (5)	C7-C8-C3	121.1 (6)
C5-C4-C3	121.0 (6)	C7-C8-H8A	119.5
C5-C4-H4A	119.5	C3-C8-H8A	119.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.5		
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 1^{\mathrm{i}}$	78.0 (2)	C2-C3-C4-C5	-179.7 (5)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 3$	174.1 (4)	C3-C4-C5-C6	0.3 (9)
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2-\mathrm{S} 2$	-6.7 (5)	C4-C5-C6-C7	0.3 (10)
$\mathrm{S} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-12.4 (8)	C5-C6-C7-C8	0.2 (10)
S1-C2-C3-C4	166.7 (5)	C6-C7-C8-C3	-1.3 (10)
$\mathrm{S} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	169.3 (5)	C4-C3-C8-C7	1.8 (9)
S1-C2-C3-C8	-11.6 (7)	C2-C3-C8-C7	-179.8 (6)
C8-C3-C4-C5	-1.4 (9)		

Symmetry code: (i) $-x+1,-y+2, z$.

