

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di- $\mu_{1,1}$ -azido-bis[azido(5,5'-dimethyl-2,2'-bipyridine)nickel(II)]

Jin Hou

Department of Chemistry and Chemical Engineering, South-East University, Nanjing 211189, and Nantong Entry–Exit Inspection and Quarantine Bureau, Nantong 226005, People's Republic of China

Correspondence e-mail: jinhou_jinhou@yahoo.com.cn

Received 7 November 2008; accepted 14 November 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.056; wR factor = 0.149; data-to-parameter ratio = 15.9.

In the title azide-bridged dinuclear centrosymmetric nickel(II) complex, $[Ni_2(N_3)_4(C_{12}H_{12}N_2)_2]$, the Ni^{II} atom is five-coordinated by two N atoms of the 5,5'-dimethyl-2,2'-bipyridine ligand and three N atoms from three azide ligands in a distorted trigonal-bipyramidal geometry. The Ni···Ni distance is 3.2398 (12) Å.

Related literature

For general background, see: Abramo *et al.* (2002); Dey *et al.* (2007); Jiang *et al.* (2005). For related structures, see: Fu *et al.* (2005); Song *et al.* (2007).

V = 1405.3 (5) Å³

Mo $K\alpha$ radiation

 $0.13 \times 0.10 \times 0.08 \text{ mm}$

11588 measured reflections

3060 independent reflections

2165 reflections with $I > 2\sigma(I)$

 $\mu = 1.39 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.063$

Z = 2

Experimental

Crystal data

 $\begin{bmatrix} Ni_{2}(N_{3})_{4}(C_{12}H_{12}N_{2})_{2} \end{bmatrix}$ $M_{r} = 654.01$ Monoclinic, $P2_{1}/n$ a = 7.938 (2) Å b = 15.067 (3) Å c = 11.755 (2) Å $\beta = 91.650$ (2)°

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) T_{min} = 0.840, T_{max} = 0.897

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	14 restraints
$wR(F^2) = 0.149$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.67 \ {\rm e} \ {\rm \AA}^{-3}$
3060 reflections	$\Delta \rho_{\rm min} = -0.77 \text{ e } \text{\AA}^{-3}$
192 parameters	

Table 1

```
Selected bond lengths (Å).
```

Ni1-N1	2.145 (4)	Ni1-N6	2.041 (4)
Ni1-N2	2.081 (4)	Ni1-N6 ⁱ	2.175 (4)
Ni1-N3	2.064 (5)		

Symmetry code: (i) -x, -y + 1, -z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2712).

References

- Abramo, G. P., Li, L. & Marks, T. J. (2002). J. Am. Chem. Soc. 124, 13966– 13967.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dey, S. K., Abedin, T. S. M., Dawe, L. N., Tandon, S. S., Collins, J. L., Thompson, L. K., Postnikov, A. V., Alam, M. S. & Muller, P. (2007). *Inorg. Chem.* 46, 7767–7781.
- Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1897– m1899.
- Jiang, Y.-B., Kou, H.-Z., Wang, R.-J., Cui, A.-L. & Ribas, J. (2005). Inorg. Chem. 44, 709–715.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Song, W.-C., Zhang, M.-J., Tao, Y. & Li, J.-R. (2007). Acta Cryst. E63, m3062.

supporting information

Acta Cryst. (2008). E64, m1571 [doi:10.1107/S1600536808037902]

$Di-\mu_{1,1}$ -azido-bis[azido(5,5'-dimethyl-2,2'-bipyridine)nickel(II)]

Jin Hou

S1. Comment

Polynuclear complexes play an important role in many fields, such as catalysis and magnetism (Dey *et al.*, 2007; Jiang *et al.*, 2005; Abramo *et al.*, 2002). The main strategy for the design of the polynuclear complexes is to use suitable bridging ligands. In this paper, we report the synthesis and molecular structure of the title azide-bridged dinuclear nickel(II) complex derived from 5,5'-dimethyl-[2,2']bipyridine.

The molecule of the title complex is located on a crystallographic centre of inversion (Fig. 1). The complex contains two NiL (L is 5,5'-dimethyl-[2,2']bipyridine) units connected to each other by two bridging azide ligands. The Ni^{II} atom in the complex is five-coordinated by two N atoms of 5,5'-dimethyl-[2,2']bipyridine ligand and by three N atoms from three azide ligands in a trigonal-bipyramidal geometry. The bond lengths subtended at the metal center are within normal ranges (Song *et al.*, 2007; Fu *et al.*, 2005). The Ni…Ni distance is 3.2398 (12) Å.

S2. Experimental

5,5'-Dimethyl-[2,2']bipyridine (2 mmol, 368.3 mg), sodium azide (4 mmol, 261.2 mg) and nickel acetate tetrahydrate (2 mmol, 497.8 mg) were dissolved in methanol (100 ml). The mixture was stirred for 30 min at room temperature to give a green solution. The solution was kept still in air for a week, green block-shaped crystals of the title complex were formed.

S3. Refinement

H atoms were positioned geometrically (C–H = 0.93-0.96 Å) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(C_{methyl})$. The displacement ellipsoids of atoms N4 and N5 are extremely elongated and hence the U^{ij} parameters of these atoms were restrained to an approximate isotropic behaviour. The distance between atoms N3 and N4 was restrained to 1.23 (1) Å and that between atoms N4 and N5 was restrained to 1.13 (1) Å.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Di-µ1,1-azido-bis[azido(5,5'-dimethyl-2,2'-bipyridine)nickel(II)]

Crystal data	
$[Ni_{2}(N_{3})_{4}(C_{12}H_{12}N_{2})_{2}]$	F(000) = 672
$M_{r} = 654.01$	$D_x = 1.546 \text{ Mg m}^{-3}$
Monoclinic, $P2_{1}/n$	Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A}
Hall symbol: -P 2yn	Cell parameters from 1576 reflections
a = 7.938 (2) Å	$\theta = 2.3-25.1^{\circ}$
b = 15.067 (3) Å	$\mu = 1.39 \text{ mm}^{-1}$
c = 11.755 (2) Å	T = 298 K
$\beta = 91.650 (2)^{\circ}$ $V = 1405.3 (5) Å^{3}$ Z = 2 Data collection	Block, green $0.13 \times 0.10 \times 0.08 \text{ mm}$
Bruker SMART CCD area-detector	11588 measured reflections
diffractometer	3060 independent reflections
Radiation source: fine-focus sealed tube	2165 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.063$
φ and ω scan	$\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(<i>SADABS</i> ; Bruker, 2001)	$k = -19 \rightarrow 19$
$T_{\min} = 0.840, T_{\max} = 0.897$	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from
$wR(F^2) = 0.149$	neighbouring sites
S = 1.03	H-atom parameters constrained
3060 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0643P)^2 + 1.1062P]$
192 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
14 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.67 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.77 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	0.03235 (7)	0.44079 (4)	0.11356 (5)	0.0386 (2)	
N1	0.2280 (5)	0.3549 (3)	0.1785 (4)	0.0491 (10)	
N2	-0.0777 (5)	0.3158 (3)	0.0994 (3)	0.0416 (9)	
N3	0.0029 (5)	0.5108 (3)	0.2626 (4)	0.0459 (11)	
N4	0.0958 (8)	0.5106 (4)	0.3252 (5)	0.0857 (18)	
N5	0.1983 (12)	0.5160 (6)	0.4040 (7)	0.144 (3)	
N6	0.1668 (5)	0.4913 (3)	-0.0170 (4)	0.0583 (12)	
N7	0.2901 (6)	0.4579 (3)	-0.0571 (4)	0.0594 (12)	
N8	0.4096 (8)	0.4282 (4)	-0.0950 (6)	0.094 (2)	
C1	0.1794 (6)	0.2706 (3)	0.1926 (4)	0.0445 (11)	
C2	0.2820 (7)	0.2113 (4)	0.2525 (5)	0.0573 (14)	
H2	0.2475	0.1529	0.2628	0.069*	
C3	0.4356 (7)	0.2398 (4)	0.2967 (5)	0.0632 (16)	
H3	0.5057	0.2000	0.3357	0.076*	
C4	0.4857 (6)	0.3259 (4)	0.2836 (5)	0.0575 (14)	
C5	0.3771 (6)	0.3811 (4)	0.2219 (5)	0.0570 (14)	
Н5	0.4100	0.4396	0.2102	0.068*	
C6	0.6485 (7)	0.3623 (5)	0.3348 (5)	0.085 (2)	
H6A	0.6289	0.3847	0.4097	0.128*	
H6B	0.6886	0.4095	0.2878	0.128*	
H6C	0.7312	0.3159	0.3393	0.128*	
C7	0.0139 (6)	0.2474 (3)	0.1428 (4)	0.0442 (12)	
C8	-0.0506 (7)	0.1625 (4)	0.1383 (5)	0.0626 (15)	
H8	0.0127	0.1155	0.1680	0.075*	
C9	-0.2070 (8)	0.1468 (4)	0.0904 (5)	0.0652 (16)	

supporting information

H9	-0.2501	0.0894	0.0893	0.078*	
C10	-0.3023 (6)	0.2160 (4)	0.0433 (5)	0.0530 (13)	
C11	-0.2308 (6)	0.2993 (3)	0.0520 (4)	0.0477 (12)	
H11	-0.2925	0.3472	0.0233	0.057*	
C12	-0.4711 (7)	0.2026 (4)	-0.0126 (5)	0.0657 (16)	
H12A	-0.5490	0.1824	0.0427	0.098*	
H12B	-0.4629	0.1591	-0.0719	0.098*	
H12C	-0.5103	0.2577	-0.0448	0.098*	

Atomic displacement	parameters (Å ²)
---------------------	------------------------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Ni1	0.0339 (3)	0.0328 (3)	0.0487 (4)	-0.0009 (3)	-0.0026 (2)	0.0057 (3)
N1	0.039 (2)	0.048 (3)	0.060 (3)	0.0018 (19)	-0.003 (2)	0.004 (2)
N2	0.039 (2)	0.040 (2)	0.046 (2)	0.0000 (17)	-0.0016 (18)	-0.0013 (17)
N3	0.035 (2)	0.036 (2)	0.067 (3)	0.0025 (18)	-0.006 (2)	-0.012 (2)
N4	0.119 (5)	0.043 (3)	0.097 (5)	0.001 (4)	0.045 (4)	-0.006 (3)
N5	0.165 (7)	0.149 (6)	0.115 (6)	-0.004 (6)	-0.029 (5)	0.002 (5)
N6	0.038 (2)	0.066 (3)	0.072 (3)	0.010 (2)	0.005 (2)	0.021 (2)
N7	0.051 (3)	0.056 (3)	0.070 (3)	0.005 (2)	-0.002 (2)	0.016 (2)
N8	0.071 (4)	0.105 (5)	0.108 (5)	0.037 (3)	0.020 (3)	0.011 (4)
C1	0.048 (3)	0.043 (3)	0.043 (3)	0.009 (2)	0.004 (2)	0.001 (2)
C2	0.065 (4)	0.048 (3)	0.058 (3)	0.010 (3)	0.002 (3)	0.002 (3)
C3	0.058 (4)	0.084 (4)	0.047 (3)	0.025 (3)	-0.009 (3)	0.004 (3)
C4	0.041 (3)	0.080 (4)	0.051 (3)	0.008 (3)	0.001 (2)	-0.001 (3)
C5	0.044 (3)	0.064 (4)	0.063 (4)	-0.003 (3)	-0.001 (3)	0.002 (3)
C6	0.049 (3)	0.131 (7)	0.074 (4)	-0.001 (4)	-0.014 (3)	0.003 (4)
C7	0.049 (3)	0.038 (3)	0.046 (3)	0.003 (2)	0.004 (2)	0.001 (2)
C8	0.060 (4)	0.047 (3)	0.080 (4)	0.003 (3)	-0.002 (3)	0.013 (3)
C9	0.067 (4)	0.047 (3)	0.081 (4)	-0.016 (3)	-0.001 (3)	0.004 (3)
C10	0.049 (3)	0.056 (3)	0.054 (3)	-0.008 (3)	0.006 (2)	-0.004 (3)
C11	0.045 (3)	0.047 (3)	0.050 (3)	0.001 (2)	0.001 (2)	0.002 (2)
C12	0.054 (3)	0.075 (4)	0.068 (4)	-0.020 (3)	-0.002 (3)	-0.009 (3)

Geometric parameters (Å, °)

Ni1—N1	2.145 (4)	С3—Н3	0.93
Ni1—N2	2.081 (4)	C4—C5	1.387 (7)
Ni1—N3	2.064 (5)	C4—C6	1.512 (8)
Ni1—N6	2.041 (4)	С5—Н5	0.93
Ni1—N6 ⁱ	2.175 (4)	C6—H6A	0.96
N1—C5	1.336 (6)	C6—H6B	0.96
N1-C1	1.339 (6)	C6—H6C	0.96
N2-C11	1.345 (6)	C7—C8	1.379 (7)
N2—C7	1.352 (6)	C8—C9	1.369 (8)
N3—N4	1.027 (6)	C8—H8	0.93
N4—N5	1.217 (7)	C9—C10	1.394 (8)
N6—N7	1.209 (6)	С9—Н9	0.93

N6—Ni1 ⁱ	2.175 (4)	C10—C11	1.380 (7)
N7—N8	1.149 (7)	C10—C12	1.489 (7)
C1—C2	1.387 (7)	C11—H11	0.93
C1—C7	1.465 (7)	C12—H12A	0.96
C2—C3	1.380 (8)	C12—H12B	0.96
С2—Н2	0.93	C12—H12C	0.96
C3—C4	1.367 (8)		
N6—Ni1—N3	121.5 (2)	C3—C4—C6	123.2 (5)
N6—Ni1—N2	120.32 (18)	C5—C4—C6	120.1 (6)
N3—Ni1—N2	118.23 (17)	N1—C5—C4	123.5 (5)
N6—Ni1—N1	95.97 (17)	N1—C5—H5	118.2
N3—Ni1—N1	96.02 (17)	С4—С5—Н5	118.2
N2—Ni1—N1	77.30 (15)	С4—С6—Н6А	109.5
N6—Ni1—N6 ⁱ	79.63 (18)	C4—C6—H6B	109.5
N3—Ni1—N6 ⁱ	95.99 (18)	H6A—C6—H6B	109.5
N2—Ni1—N6 ⁱ	94.98 (16)	С4—С6—Н6С	109.5
N1—Ni1—N6 ⁱ	167.78 (18)	H6A—C6—H6C	109.5
C5—N1—C1	119.3 (5)	H6B—C6—H6C	109.5
C5—N1—Ni1	125.6 (4)	N2—C7—C8	119.8 (5)
C1—N1—Ni1	114.1 (3)	N2—C7—C1	115.8 (4)
C11—N2—C7	119.0 (4)	C8—C7—C1	124.3 (5)
C11—N2—Ni1	124.9 (3)	C9—C8—C7	120.5 (5)
C7—N2—Ni1	116.1 (3)	С9—С8—Н8	119.8
N4—N3—Ni1	120.7 (5)	С7—С8—Н8	119.8
N3—N4—N5	174.4 (8)	C8—C9—C10	120.6 (5)
N7—N6—Ni1	125.8 (4)	С8—С9—Н9	119.7
N7—N6—Ni1 ⁱ	125.2 (4)	С10—С9—Н9	119.7
Ni1—N6—Ni1 ⁱ	100.37 (18)	C11—C10—C9	115.7 (5)
N8—N7—N6	178.1 (6)	C11—C10—C12	121.3 (5)
N1—C1—C2	120.5 (5)	C9—C10—C12	123.0 (5)
N1—C1—C7	115.8 (4)	N2-C11-C10	124.3 (5)
C2—C1—C7	123.8 (5)	N2—C11—H11	117.8
C3—C2—C1	119.3 (5)	C10-C11-H11	117.8
С3—С2—Н2	120.3	C10—C12—H12A	109.5
C1—C2—H2	120.3	C10—C12—H12B	109.5
C4—C3—C2	120.7 (5)	H12A—C12—H12B	109.5
С4—С3—Н3	119.7	C10-C12-H12C	109.5
С2—С3—Н3	119.7	H12A—C12—H12C	109.5
C3—C4—C5	116.7 (5)	H12B—C12—H12C	109.5

Symmetry code: (i) -x, -y+1, -z.