metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[(μ_3 -5,6-dicarboxybicyclo[2.2.2]oct-7-ene-2,3-dicarboxylato)(1,10-phenanthroline)copper(II)] monohydrate]

Yun-Yu Liu,* Yu-Jiang Zhuo, Xing-Qi Li and Ji-Cheng Ma

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China Correspondence e-mail: yunyuliu888@yahoo.com.cn

Received 13 November 2008; accepted 15 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.026; wR factor = 0.065; data-to-parameter ratio = 13.7.

In the title compound, $\{[Cu(C_{12}H_{10}O_8)(C_{12}H_8N_2)]\cdot H_2O\}_n$, the Cu^{II} ion is five-coordinated by two N atoms from one phenanthroline ligand and three O atoms from three different H_2L^{2-} anions (H_4L is bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic acid) in a distorted square-pyramidal geometry. Each H_2L^{2-} ion bridges three Cu^{II} atoms to form a zigzag sheet parallel to the ab plane. The crystal structure is consolidated by O-H···O hydrogen bonds.

Related literature

For general background, see: Yang et al. (2008).

Experimental

Crystal data $[Cu(C_{12}H_{10}O_8)(C_{12}H_8N_2)] \cdot H_2O$ $M_r = 543.96$ Monoclinic, P2 a = 6.5900 (4) Å b = 15.1650 (8) Å c = 10.7490 (6) Å $\beta = 95.244 \ (9)^{\circ}$

$V = 1069.73 (10) \text{ A}^3$	
Z = 2	
Mo $K\alpha$ radiation	
$\mu = 1.08 \text{ mm}^{-1}$	
T = 293 (2) K	
$0.33 \times 0.21 \times 0.20$ mm	n

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	Ha
$wR(F^2) = 0.065$	i
S = 1.04	r
4555 reflections	$\Delta \rho$
333 parameters	$\Delta \rho$
2 restraints	Ab
	1

6580 measured reflections 4555 independent reflections 4343 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.022$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$
Absolute structure: Flack (1983),
1914 Friedel pairs
Flack parameter: 0.008 (8)

Table 1 Selected bond lengths (Å).

N1-Cu1	2.0072 (17)	Cu1-O3 ⁱ	1.9355 (15)
N2-Cu1	2.0119 (19)	Cu1-O7 ⁱⁱ	2.3398 (18)
O2-Cu1	1.9640 (15)		

Symmetry codes: (i) x - 1, y, z; (ii) $-x + 2, y - \frac{1}{2}, -z + 2$.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$05 - H5 \cdots O1W$ $08 - H8 \cdots O2^{iii}$ $01W - HW11 \cdots O4^{iv}$ $01W - HW12 \cdots O1^{v}$	0.82 0.82 0.82 (3) 0.82 (2)	1.84 1.79 1.97 (3) 2.05 (3)	2.567 (2) 2.594 (2) 2.777 (3) 2.763 (3)	148 166 167 (3) 145 (4)

Symmetry codes: (iii) -x + 2, $y + \frac{1}{2}$, -z + 2; (iv) x, y, z + 1; (v) x + 1, y, z + 1.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

The authors thank the Science Foundation for Young Teachers of Northeast Normal University (grant Nos. 20080305 and 20080304) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2718).

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235

supporting information

Acta Cryst. (2008). E64, m1590 [doi:10.1107/S1600536808037999]

Poly[[(µ₃-5,6-dicarboxybicyclo[2.2.2]oct-7-ene-2,3-dicarboxylato)(1,10-phenanthroline)copper(II)] monohydrate]

Yun-Yu Liu, Yu-Jiang Zhuo, Xing-Qi Li and Ji-Cheng Ma

S1. Comment

Coordination polymers based on poly(carboxylic acids) have been investigated in the area of solid state and material science (Yang *et al.*, 2008). We selected bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic acid (H₄L) as a poly(carboxylic acid) ligand and phenanthroline (phen) as a secondary ligand, generating a new coordination polymer, [Cu(phen) (H₂L)]·H₂O, which is reported here.

In the title compound, each Cu^{II} atom is five-coordinated by two N atoms from one phen ligand, and three O atoms from three different H_2L^{2-} anions in a distorted square-pyramidal geometry (Fig. 1 and Table 1). Each H_2L^{2-} bridges three Cu^{II} atoms to form a two-dimensional layer structure (Fig. 2). The O–H…O hydrogen bonds (Table 2) further consolidate the crystal structure.

S2. Experimental

A mixture of H_4L (0.5 mmol), phen (0.5 mmol), NaOH (1 mmol) and $CuCl_2 2H_2O$ (0.5 mmol) was suspended in deionized water (12 ml) and sealed in a 20-ml Teflon-lined autoclave. The mixture was heated at 373 K for 7 d and then the autoclave was slowly cooled to room temperature. The grown single crystals were collected, washed with deionized water and dried.

S3. Refinement

H atoms on C atoms were generated geometrically and refined as riding atoms with C—H = 0.93–0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms of the water molecules were located in a difference Fourier map and refined with an O—H distance restraint of 0.85 (1) Å and with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figure 1

Part of the polymeric structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) x - 1, y, z; (ii) 2 - x, y - 1/2, 2 - z.

Figure 2

View of a zigzag sheet structure in the title compound.

Poly[[(µ₃-5,6-dicarboxybicyclo[2.2.2]oct-7-ene-2,3-dicarboxylato)(1,10- phenanthroline)copper(II)]

monohydrate]

Crystal data	
$[Cu(C_{12}H_{10}O_8)(C_{12}H_8N_2)]\cdot H_2O$	F(000) = 558
$M_r = 543.96$	$D_{\rm x} = 1.689 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1$	Mo <i>K</i> α radiation, $\lambda = 0.71069$ Å
Hall symbol: P 2yb	Cell parameters from 4555 reflections
a = 6.5900 (4) Å	$\theta = 1.1 - 28.4^{\circ}$
b = 15.1650 (8) Å	$\mu = 1.08 \text{ mm}^{-1}$
c = 10.7490 (6) Å	T = 293 K
$\beta = 95.244 \ (9)^{\circ}$	Block, blue
$V = 1069.73 (10) \text{ Å}^3$	$0.33 \times 0.21 \times 0.20 \text{ mm}$
Z = 2	

Data collection

Bruker APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.696, T_{\max} = 0.803$ <i>Refinement</i>	6580 measured reflections 4555 independent reflections 4343 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 28.4^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -8 \rightarrow 8$ $k = -19 \rightarrow 17$ $l = -6 \rightarrow 14$
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.026$	H atoms treated by a mixture of independent
$wR(F^2) = 0.065$	and constrained refinement
S = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0256P)^2]$
4555 reflections	where $P = (F_o^2 + 2F_c^2)/3$
333 parameters	$(\Delta/\sigma)_{max} = 0.001$
2 restraints	$\Delta\rho_{max} = 0.31$ e Å ⁻³
Primary atom site location: structure-invariant	$\Delta\rho_{min} = -0.37$ e Å ⁻³
direct methods	Absolute structure: Flack (1983), 1914 Friedel
Secondary atom site location: difference Fourier	pairs
map	Absolute structure parameter: 0.008 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

X	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
0.8692 (4)	0.81993 (17)	0.5050(2)	0.0327 (5)	
0.9536	0.8445	0.5700	0.039*	
0.9222 (4)	0.82867 (19)	0.3826 (2)	0.0382 (6)	
1.0408	0.8583	0.3669	0.046*	
0.7992 (4)	0.79351 (17)	0.2862 (2)	0.0362 (6)	
0.8341	0.7990	0.2047	0.043*	
0.6199 (3)	0.74901 (17)	0.31010 (18)	0.0285 (5)	
0.4749 (4)	0.71054 (18)	0.2161 (2)	0.0352 (6)	
0.4972	0.7156	0.1322	0.042*	
0.3084 (4)	0.66765 (18)	0.2479 (2)	0.0361 (6)	
0.2186	0.6434	0.1853	0.043*	
0.2660 (4)	0.65841 (16)	0.3763 (2)	0.0291 (5)	
0.1009 (4)	0.61105 (18)	0.4178 (2)	0.0364 (6)	
0.0083	0.5828	0.3606	0.044*	
0.0779 (4)	0.60707 (19)	0.5428 (2)	0.0377 (6)	
	x 0.8692 (4) 0.9536 0.9222 (4) 1.0408 0.7992 (4) 0.8341 0.6199 (3) 0.4749 (4) 0.4972 0.3084 (4) 0.2186 0.2660 (4) 0.1009 (4) 0.0083 0.0779 (4)	xy $0.8692 (4)$ $0.81993 (17)$ 0.9536 0.8445 $0.9222 (4)$ $0.82867 (19)$ 1.0408 0.8583 $0.7992 (4)$ $0.79351 (17)$ 0.8341 0.7990 $0.6199 (3)$ $0.74901 (17)$ $0.4749 (4)$ $0.71054 (18)$ 0.4972 0.7156 $0.3084 (4)$ $0.66765 (18)$ 0.2186 0.6434 $0.2660 (4)$ $0.65841 (16)$ $0.1009 (4)$ $0.51105 (18)$ 0.0083 0.5828 $0.0779 (4)$ $0.60707 (19)$	xyz $0.8692 (4)$ $0.81993 (17)$ $0.5050 (2)$ 0.9536 0.8445 0.5700 $0.9222 (4)$ $0.82867 (19)$ $0.3826 (2)$ 1.0408 0.8583 0.3669 $0.7992 (4)$ $0.79351 (17)$ $0.2862 (2)$ 0.8341 0.7990 0.2047 $0.6199 (3)$ $0.74901 (17)$ $0.31010 (18)$ $0.4749 (4)$ $0.71054 (18)$ $0.2161 (2)$ 0.4972 0.7156 0.1322 $0.3084 (4)$ $0.66765 (18)$ $0.2479 (2)$ 0.2186 0.6434 0.1853 $0.2660 (4)$ $0.65841 (16)$ $0.3763 (2)$ $0.1009 (4)$ $0.61105 (18)$ $0.4178 (2)$ 0.0083 0.5828 0.3606 $0.0779 (4)$ $0.60707 (19)$ $0.5428 (2)$	xyz $U_{iso}*/U_{eq}$ 0.8692 (4)0.81993 (17)0.5050 (2)0.0327 (5)0.95360.84450.57000.039*0.9222 (4)0.82867 (19)0.3826 (2)0.0382 (6)1.04080.85830.36690.046*0.7992 (4)0.79351 (17)0.2862 (2)0.0362 (6)0.83410.79900.20470.043*0.6199 (3)0.74901 (17)0.31010 (18)0.0285 (5)0.4749 (4)0.71054 (18)0.2161 (2)0.0352 (6)0.49720.71560.13220.042*0.3084 (4)0.66765 (18)0.2479 (2)0.0361 (6)0.21860.64340.18530.043*0.2660 (4)0.65841 (16)0.3763 (2)0.0291 (5)0.1009 (4)0.61105 (18)0.4178 (2)0.0364 (6)0.00830.58280.36060.044*0.0779 (4)0.60707 (19)0.5428 (2)0.0377 (6)

Н9	-0.0301	0.5758	0.5711	0.045*
C10	0.2174 (4)	0.65023 (17)	0.6279 (2)	0.0329 (5)
H10	0.1995	0.6473	0.7127	0.039*
C11	0.4003 (3)	0.69806 (15)	0.46831 (19)	0.0240 (4)
C12	0.5789 (3)	0.74318 (14)	0.43543 (18)	0.0237 (5)
C13	1.0048 (3)	0.90548 (13)	0.94151 (18)	0.0192 (4)
H13	0.9289	0.8814	1.0080	0.023*
C14	1.0387 (3)	1.00356 (15)	0.97408 (18)	0.0223 (4)
H14	0.9159	1.0382	0.9497	0.027*
C15	1.0971 (3)	1.00950 (14)	1.11723 (18)	0.0220 (4)
H15	0.9782	0.9919	1.1598	0.026*
C16	1.2682 (3)	0.94109 (14)	1.14952 (18)	0.0211 (4)
H16	1.1993	0.8873	1.1736	0.025*
C17	1.3679 (3)	0.91758 (15)	1.02845 (19)	0.0229 (4)
H17	1.4990	0.8879	1.0479	0.027*
C18	1.2122 (3)	0.85576 (14)	0.95247 (18)	0.0203 (4)
H18	1.1978	0.8014	1.0002	0.024*
C19	1.3913 (3)	0.99816 (16)	0.94838 (19)	0.0288 (5)
H19	1.5166	1.0168	0.9246	0.035*
C20	1.2195 (4)	1.03987 (15)	0.91496 (19)	0.0268 (5)
H20	1.2108	1.0873	0.8600	0.032*
C21	0.8703 (3)	0.88961 (15)	0.82048 (19)	0.0208 (4)
C22	1.2984 (3)	0.83259 (15)	0.82983 (19)	0.0237 (4)
C23	1.4200 (4)	0.96369 (15)	1.2593 (2)	0.0265 (5)
C24	1.1515 (3)	1.10347 (15)	1.1550 (2)	0.0240 (5)
N1	0.7020 (3)	0.77771 (12)	0.53121 (15)	0.0253 (4)
N2	0.3738 (3)	0.69509 (13)	0.59172 (16)	0.0251 (4)
01	0.7941 (3)	0.95074 (11)	0.75885 (15)	0.0331 (4)
O2	0.8349 (2)	0.80701 (10)	0.79532 (13)	0.0256 (3)
O1W	1.4570 (4)	0.98510 (18)	1.59374 (17)	0.0537 (6)
O3	1.4401 (2)	0.77476 (12)	0.84210 (14)	0.0323 (4)
O4	1.2381 (2)	0.86940 (12)	0.73066 (14)	0.0323 (4)
05	1.3290 (3)	0.95633 (14)	1.36461 (15)	0.0406 (4)
Н5	1.4105	0.9685	1.4244	0.061*
O6	1.5975 (3)	0.97879 (13)	1.25429 (17)	0.0402 (4)
07	1.2819 (3)	1.12253 (12)	1.23587 (16)	0.0358 (4)
08	1.0345 (3)	1.16299 (13)	1.09436 (17)	0.0443 (5)
H8	1.0703	1.2125	1.1181	0.066*
Cu1	0.59195 (3)	0.760541 (17)	0.697564 (19)	0.02264 (7)
HW11	1.378 (5)	0.952 (2)	1.625 (3)	0.050 (10)*
HW12	1.575 (4)	0.969 (3)	1.613 (4)	0.078 (14)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0300 (12)	0.0339 (14)	0.0336 (12)	-0.0050 (11)	0.0001 (10)	0.0004 (10)
C2	0.0364 (14)	0.0379 (15)	0.0413 (13)	-0.0056 (12)	0.0101 (11)	0.0070 (11)
C3	0.0433 (15)	0.0387 (14)	0.0276 (11)	0.0050 (11)	0.0095 (10)	0.0068 (9)

supporting information

C4	0.0351 (11)	0.0263 (13)	0.0238 (9)	0.0057 (11)	0.0014 (8)	0.0009 (9)
C5	0.0486 (16)	0.0344 (15)	0.0218 (10)	0.0106 (11)	-0.0018 (10)	-0.0044 (9)
C6	0.0425 (15)	0.0343 (14)	0.0292 (11)	0.0029 (12)	-0.0098 (10)	-0.0086 (10)
C7	0.0311 (12)	0.0253 (12)	0.0300 (11)	0.0023 (10)	-0.0023 (9)	-0.0075 (9)
C8	0.0286 (12)	0.0344 (14)	0.0446 (14)	-0.0020 (11)	-0.0059 (10)	-0.0113 (10)
C9	0.0314 (13)	0.0350 (15)	0.0465 (14)	-0.0084 (11)	0.0030 (11)	-0.0058 (11)
C10	0.0318 (13)	0.0335 (14)	0.0339 (12)	-0.0055 (11)	0.0066 (10)	-0.0044 (10)
C11	0.0260 (11)	0.0210 (11)	0.0244 (10)	0.0044 (9)	-0.0014 (8)	-0.0037 (8)
C12	0.0270 (10)	0.0196 (13)	0.0240 (9)	0.0042 (8)	-0.0003 (8)	-0.0017 (7)
C13	0.0199 (10)	0.0184 (11)	0.0194 (9)	-0.0018 (8)	0.0014 (8)	-0.0009 (7)
C14	0.0236 (11)	0.0192 (10)	0.0229 (10)	0.0006 (9)	-0.0049 (8)	-0.0024 (8)
C15	0.0198 (10)	0.0224 (11)	0.0236 (10)	-0.0003 (8)	-0.0002 (8)	-0.0015 (8)
C16	0.0233 (10)	0.0187 (10)	0.0208 (9)	-0.0020 (8)	-0.0007 (8)	-0.0015 (7)
C17	0.0175 (10)	0.0259 (12)	0.0247 (10)	0.0002 (9)	-0.0007 (8)	-0.0037 (8)
C18	0.0199 (10)	0.0215 (11)	0.0190 (9)	0.0006 (8)	-0.0004 (7)	-0.0012 (7)
C19	0.0284 (12)	0.0312 (13)	0.0276 (11)	-0.0119 (10)	0.0062 (9)	-0.0042 (9)
C20	0.0357 (12)	0.0215 (11)	0.0223 (10)	-0.0076 (10)	-0.0026 (9)	0.0017 (8)
C21	0.0182 (10)	0.0220 (12)	0.0216 (10)	-0.0008 (9)	-0.0006 (8)	-0.0013 (8)
C22	0.0212 (10)	0.0254 (12)	0.0248 (10)	-0.0034 (8)	0.0036 (8)	-0.0029 (8)
C23	0.0330 (13)	0.0197 (11)	0.0256 (10)	0.0030 (9)	-0.0043 (9)	0.0010 (8)
C24	0.0238 (11)	0.0221 (12)	0.0262 (11)	0.0028 (9)	0.0031 (9)	-0.0032 (8)
N1	0.0252 (9)	0.0254 (12)	0.0251 (8)	-0.0010 (8)	0.0008 (7)	-0.0022 (7)
N2	0.0242 (9)	0.0245 (10)	0.0264 (9)	0.0010 (8)	0.0006 (7)	-0.0030 (7)
01	0.0381 (10)	0.0263 (9)	0.0323 (9)	0.0023 (8)	-0.0117 (7)	0.0020 (7)
O2	0.0265 (8)	0.0205 (8)	0.0283 (7)	-0.0040 (7)	-0.0051 (6)	-0.0019 (6)
O1W	0.0514 (14)	0.0778 (17)	0.0291 (9)	-0.0253 (13)	-0.0121 (9)	0.0156 (10)
O3	0.0290 (8)	0.0397 (12)	0.0282 (7)	0.0106 (8)	0.0033 (6)	-0.0084 (7)
O4	0.0349 (9)	0.0392 (10)	0.0225 (7)	0.0009 (8)	0.0016 (6)	0.0024 (7)
05	0.0447 (10)	0.0543 (13)	0.0211 (7)	-0.0153 (9)	-0.0054 (7)	-0.0004 (7)
O6	0.0254 (9)	0.0509 (13)	0.0424 (10)	0.0001 (8)	-0.0069 (7)	-0.0105 (8)
07	0.0387 (10)	0.0224 (9)	0.0427 (10)	0.0004 (7)	-0.0164 (8)	-0.0049 (7)
08	0.0502 (11)	0.0249 (10)	0.0528 (11)	0.0103 (9)	-0.0222 (9)	-0.0094 (8)
Cu1	0.02218 (12)	0.02490 (13)	0.02043 (10)	-0.00053 (12)	-0.00032 (8)	-0.00387 (11)

Geometric parameters (Å, °)

C1—N1	1.326 (3)	C15—C16	1.548 (3)
C1—C2	1.398 (3)	C15—H15	0.98
C1—H1	0.93	C16—C23	1.515 (3)
C2—C3	1.364 (4)	C16—C17	1.552 (3)
С2—Н2	0.93	C16—H16	0.98
C3—C4	1.405 (4)	C17—C19	1.511 (3)
С3—Н3	0.93	C17—C18	1.564 (3)
C4—C12	1.401 (3)	C17—H17	0.98
C4—C5	1.448 (3)	C18—C22	1.523 (3)
C5—C6	1.346 (4)	C18—H18	0.98
С5—Н5А	0.93	C19—C20	1.318 (3)
C6—C7	1.440 (3)	C19—H19	0.93

С6—Н6	0.93	C20—H20	0.93
C7-C11	1 401 (3)	$C_{21} = 01$	1 220 (3)
C7	1.401(3)	$C_{21} = 0_{1}$	1.220(3) 1.298(3)
C^{*}	1.410(3) 1.267(3)	$\begin{array}{c} c_{21} \\ c_{22} \\ c_{23} \\ c_{24} \\ c_{24} \\ c_{25} \\ c_{24} \\ c_{25} \\ c_{25$	1.276(3)
$C_0 = U_0 D$	1.307 (3)	$C_{22} = 04$	1.230(3)
	0.95	$C_{22} = 0.5$	1.279 (3)
C9—C10	1.399 (3)	C23—06	1.198 (3)
С9—Н9	0.93	C23—O5	1.334 (3)
C10—N2	1.323 (3)	C24—O7	1.200 (3)
C10—H10	0.93	C24—O8	1.320 (3)
C11—N2	1.354 (3)	N1—Cu1	2.0072 (17)
C11—C12	1.434 (3)	N2—Cul	2.0119 (19)
C12—N1	1.356 (3)	O2—Cu1	1.9640 (15)
C13—C21	1.525 (3)	O1W—HW11	0.82 (3)
C13—C14	1.540 (3)	O1W—HW12	0.822 (19)
C13—C18	1.556 (3)	O3—Cul ⁱ	1.9355 (15)
С13—Н13	0.98	O5—H5	0.82
C14—C20	1.505 (3)	O7—Cu1 ⁱⁱ	2.3398 (18)
C14—C15	1.554 (3)	O8—H8	0.82
C14—H14	0.98	$Cu1 - O3^{iii}$	1 9355 (15)
C15-C24	1 516 (3)	$Cu1 - 07^{iv}$	2 3398 (18)
015 024	1.510 (5)	Cui Of	2.5576 (10)
N1—C1—C2	122.0 (2)	C15—C16—C17	108.75 (16)
N1-C1-H1	119.0	C23—C16—H16	105.8
C2-C1-H1	119.0	C_{15} C_{16} H_{16}	105.8
$C_3 - C_2 - C_1$	119.0 119.7(2)	C_{17} C_{16} H_{16}	105.8
C_{3} C_{2} H_{2}	120.2	C19 - C17 - C16	111 41 (18)
C_{1} C_{2} H_{2}	120.2	$C_{10} = C_{17} = C_{10}$	106.48(17)
$C_1 = C_2 = C_1$	120.2	$C_{1} = C_{1} = C_{1} = C_{1}$	100.48(17) 105.52(16)
$C_2 = C_3 = C_4$	120.0 (2)	C10 - C17 - C18	103.33 (10)
$C_2 = C_3 = H_2$	120.0	С19—С17—Н17	111.1
C4—C3—H3	120.0	C10-C1/-H1/	111.1
C12 - C4 - C3	116.4 (2)	C18—C17—H17	
C12—C4—C5	118.2 (2)	C22—C18—C13	116.14 (16)
C3—C4—C5	125.3 (2)	C22—C18—C17	108.15 (17)
C6—C5—C4	121.3 (2)	C13—C18—C17	106.20 (16)
С6—С5—Н5А	119.4	C22—C18—H18	108.7
C4—C5—H5A	119.4	C13—C18—H18	108.7
C5—C6—C7	121.6 (2)	C17—C18—H18	108.7
С5—С6—Н6	119.2	C20—C19—C17	114.4 (2)
С7—С6—Н6	119.2	С20—С19—Н19	122.8
C11—C7—C8	116.8 (2)	C17—C19—H19	122.8
C11—C7—C6	118.0 (2)	C19—C20—C14	113.8 (2)
C8—C7—C6	125.2 (2)	С19—С20—Н20	123.1
C9—C8—C7	119.4 (2)	C14—C20—H20	123.1
C9—C8—H8B	120.3	01-02	124.26 (19)
C7—C8—H8B	120.3	01 - C21 - C13	1214(2)
C_{8} C_{9} C_{10}	119.8 (2)	02-021-013	114 15 (18)
C8-C9-H9	120.1	$04 - C^{22} - 03$	124 92 (10)
С10—С9—Н9	120.1	$04-C^{2}-C^{18}$	121.92(19) 121.8(2)
UIV U/ 11/	1-0,1	01022 010	141.0 (4)

N2—C10—C9	122.1 (2)	O3—C22—C18	113.28 (18)
N2—C10—H10	119.0	O6—C23—O5	124.8 (2)
С9—С10—Н10	119.0	O6—C23—C16	125.9 (2)
N2—C11—C7	123.2 (2)	O5—C23—C16	109.01 (19)
N2—C11—C12	116.08 (19)	O7—C24—O8	122.7 (2)
C7—C11—C12	120.70 (19)	O7—C24—C15	123.8 (2)
N1—C12—C4	123.4 (2)	O8—C24—C15	113.40 (19)
N1—C12—C11	116.42 (17)	C1—N1—C12	118.41 (18)
C4—C12—C11	120.14 (19)	C1—N1—Cu1	128.81 (15)
C21—C13—C14	114.04 (17)	C12—N1—Cu1	112.72 (14)
C21—C13—C18	115.24 (16)	C10—N2—C11	118.6 (2)
C14—C13—C18	110.05 (17)	C10—N2—Cu1	128.54 (16)
C21—C13—H13	105.5	C11 - N2 - Cu1	112.83 (15)
C14—C13—H13	105.5	$C_{21} = C_{21}$	125.43 (14)
C18—C13—H13	105.5	HW11—O1W—HW12	109 (4)
C_{20} C_{14} C_{13}	111.19(17)	$C_{22} = 0_{3} = C_{11}^{i}$	114.82 (14)
C_{20} C_{14} C_{15}	105 24 (17)	C23-05-H5	109 5
C_{13} C_{14} C_{15}	107.38(17)	$C_{24} O_{7} C_{11}$	130 37 (16)
C_{20} C_{14} H_{14}	110.9	$C_{24} = 08 = H8$	109 5
C_{13} C_{14} H_{14}	110.9	03^{iii} —Cu1—O2	89 24 (7)
C15 - C14 - H14	110.9	03^{iii} —Cu1—N1	162.98(7)
C_{24} C_{15} C_{16}	114 85 (17)	Ω^2 — $Cu1$ — $N1$	94 97 (7)
C_{24} C_{15} C_{14}	110.54(18)	$O3^{iii}$ —Cu1—N2	96 53 (7)
C_{16} C_{15} C_{14}	107.01 (16)	$\Omega^2 - Cu1 - N^2$	170 11 (7)
$C_{10} = C_{15} = C_{14}$	108.1	N1 - Cu1 - N2	81 84 (7)
C16_C15_H15	108.1	$03^{iii} - Cu1 - 07^{iv}$	97.84(7)
$C_{10} = C_{15} = H_{15}$	108.1	$02 - Cu1 - 07^{iv}$	84 71 (6)
$C_{14} = C_{15} = 115$	116.02 (18)	$N_1 = Cu_1 = O^{iv}$	103.96(7)
C_{23} C_{16} C_{17}	113.89 (18)	$N2 - Cu1 - O7^{iv}$	86 97 (7)
225 - 210 - 217	115.67 (16)	112 Cui 07	00.97 (7)
N1—C1—C2—C3	0.4 (4)	C15—C14—C20—C19	57.3 (2)
C1—C2—C3—C4	0.2 (4)	C14—C13—C21—O1	-1.8(3)
C2—C3—C4—C12	-0.3 (4)	C18—C13—C21—O1	-130.5 (2)
C2—C3—C4—C5	178.6 (2)	C14—C13—C21—O2	-177.45 (17)
C12—C4—C5—C6	-2.2 (4)	C18—C13—C21—O2	53.9 (2)
C3—C4—C5—C6	178.8 (3)	C13—C18—C22—O4	17.8 (3)
C4—C5—C6—C7	0.4 (4)	C17—C18—C22—O4	-101.4(2)
C5—C6—C7—C11	2.0 (4)	C13—C18—C22—O3	-164.32 (18)
C5—C6—C7—C8	-176.8 (3)	C17—C18—C22—O3	76.5 (2)
C11—C7—C8—C9	0.9 (4)	C15—C16—C23—O6	-114.2(3)
C6—C7—C8—C9	179.8 (2)	C17—C16—C23—O6	13.2 (3)
C7—C8—C9—C10	0.3 (4)	C15—C16—C23—O5	71.4 (2)
C8—C9—C10—N2	-0.4 (4)	C17—C16—C23—O5	-161.24 (19)
C8—C7—C11—N2	-2.3 (3)	C16—C15—C24—O7	-23.1 (3)
C6—C7—C11—N2	178.8 (2)	C14—C15—C24—O7	-144.3 (2)
C8—C7—C11—C12	176.3 (2)	C16—C15—C24—O8	160.03 (19)
C6-C7-C11-C12	-2.6 (3)	C14—C15—C24—O8	38.8 (2)
C3—C4—C12—N1	-0.1 (3)	C2-C1-N1-C12	-0.8(4)
		· ··· ··· ···	(-)

C5-C4-C12-N1	-179.1 (2)	C2-C1-N1-Cu1	-177.84 (18)
C3—C4—C12—C11	-179.3 (2)	C4—C12—N1—C1	0.6 (3)
C5—C4—C12—C11	1.6 (3)	C11—C12—N1—C1	179.9 (2)
N2-C11-C12-N1	0.2 (3)	C4—C12—N1—Cu1	178.13 (18)
C7-C11-C12-N1	-178.5 (2)	C11—C12—N1—Cu1	-2.6 (2)
N2-C11-C12-C4	179.5 (2)	C9-C10-N2-C11	-0.9 (4)
C7—C11—C12—C4	0.8 (3)	C9—C10—N2—Cu1	-179.39 (19)
C21—C13—C14—C20	-88.1 (2)	C7—C11—N2—C10	2.3 (3)
C18—C13—C14—C20	43.2 (2)	C12-C11-N2-C10	-176.4 (2)
C21—C13—C14—C15	157.29 (17)	C7—C11—N2—Cu1	-179.00 (18)
C18—C13—C14—C15	-71.42 (19)	C12-C11-N2-Cu1	2.3 (2)
C20—C14—C15—C24	56.4 (2)	O1—C21—O2—Cu1	-23.2 (3)
C13—C14—C15—C24	174.93 (17)	C13—C21—O2—Cu1	152.23 (14)
C20-C14-C15-C16	-69.3 (2)	O4—C22—O3—Cu1 ⁱ	9.8 (3)
C13—C14—C15—C16	49.2 (2)	C18—C22—O3—Cu1 ⁱ	-167.97 (14)
C24—C15—C16—C23	26.6 (3)	O8—C24—O7—Cu1 ⁱⁱ	-7.8 (4)
C14—C15—C16—C23	149.70 (18)	C15—C24—O7—Cu1 ⁱⁱ	175.59 (14)
C24—C15—C16—C17	-103.3 (2)	C21—O2—Cu1—O3 ⁱⁱⁱ	-77.88 (17)
C14—C15—C16—C17	19.8 (2)	C21—O2—Cu1—N1	85.60 (17)
C23—C16—C17—C19	-91.2 (2)	C21—O2—Cu1—O7 ^{iv}	-170.81 (17)
C15—C16—C17—C19	39.8 (2)	C1—N1—Cu1—O3 ⁱⁱⁱ	94.5 (3)
C23—C16—C17—C18	153.60 (18)	C12—N1—Cu1—O3 ⁱⁱⁱ	-82.7 (3)
C15—C16—C17—C18	-75.3 (2)	C1—N1—Cu1—O2	-9.3 (2)
C21—C13—C18—C22	26.2 (3)	C12—N1—Cu1—O2	173.52 (15)
C14—C13—C18—C22	-104.5 (2)	C1—N1—Cu1—N2	-179.9 (2)
C21—C13—C18—C17	146.43 (17)	C12—N1—Cu1—N2	2.94 (15)
C14—C13—C18—C17	15.8 (2)	$C1$ — $N1$ — $Cu1$ — $O7^{iv}$	-95.1 (2)
C19—C17—C18—C22	59.7 (2)	C12—N1—Cu1—O7 ^{iv}	87.74 (15)
C16—C17—C18—C22	178.16 (17)	C10—N2—Cu1—O3 ⁱⁱⁱ	-21.4 (2)
C19—C17—C18—C13	-65.7 (2)	C11—N2—Cu1—O3 ⁱⁱⁱ	160.06 (15)
C16—C17—C18—C13	52.9 (2)	C10—N2—Cu1—N1	175.7 (2)
C16—C17—C19—C20	-57.8 (2)	C11—N2—Cu1—N1	-2.86 (15)
C18—C17—C19—C20	56.8 (2)	C10—N2—Cu1—O7 ^{iv}	71.1 (2)
C17—C19—C20—C14	5.7 (3)	C11—N2—Cu1—O7 ^{iv}	-107.43 (15)
C13—C14—C20—C19	-58.6 (2)		

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+2, *y*+1/2, -*z*+2; (iii) *x*-1, *y*, *z*; (iv) -*x*+2, *y*-1/2, -*z*+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H…A
O5—H5…O1W	0.82	1.84	2.567 (2)	148
O8—H8····O2 ⁱⁱ	0.82	1.79	2.594 (2)	166
O1 <i>W</i> —H <i>W</i> 11····O4 ^v	0.82 (3)	1.97 (3)	2.777 (3)	167 (3)
O1 <i>W</i> —H <i>W</i> 12···O1 ^{vi}	0.82 (2)	2.05 (3)	2.763 (3)	145 (4)

Symmetry codes: (ii) -x+2, y+1/2, -z+2; (v) x, y, z+1; (vi) x+1, y, z+1.