

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Isopropyl 2-(5-iodo-7-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate

Hong Dae Choi,^a Pil Ja Seo,^a Byeng Wha Son^b and Uk Lee^b*

^aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and ^bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Received 13 November 2008; accepted 19 November 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.033; wR factor = 0.064; data-to-parameter ratio = 15.1.

In the title molecule, $C_{15}H_{17}IO_4S$, the O atom and the methyl group of the methylsulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. In the crystal structure, intermolecular I···O [2.994 (3) Å] halogen bonding links the molecules into centrosymmetric dimers, which are further packed into ribbons along the *c* axis by intermolecular sulfinyl–sulfinyl interactions [S···O 3.128 (3) Å].

Related literature

For the crystal structures of similar isopropyl 2-(3-methylsulfinyl-1-benzofuran-2-yl)acetate derivatives, see Choi *et al.* (2008*a*,*b*). For a review of halogen bonding, see Politzer *et al.* (2007). For a review of carbonyl–carbonyl interactions, see Allen *et al.* (1998).

6667 measured reflections

 $R_{\rm int} = 0.030$

2897 independent reflections

2172 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

N

C ₁₅ H ₁₇ IO ₄ S	$V = 3359.2 (5) \text{ Å}^3$
$A_r = 420.25$	Z = 8
Ionoclinic, C2/c	Mo $K\alpha$ radiation
= 17.615 (2) Å	$\mu = 2.04 \text{ mm}^{-1}$
= 10.0905 (7) Å	T = 298 (2) K
= 19.144 (1) Å	$0.40 \times 0.30 \times 0.20 \text{ mm}$
$B = 99.177 \ (2)^{\circ}$	

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1999) $T_{\rm min} = 0.480, T_{\rm max} = 0.667$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	192 parameters
$wR(F^2) = 0.064$	H-atom parameters constrained
S = 1.24	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
2897 reflections	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$

Table 1

Selected interatomic distances (Å).

$I \cdots O4^i$	2.994 (3)	$S{\cdots}O4^{ii}$	3.128 (3)
Symmetry codes: (i) _r	+ 1 - y + 1 - z (ii)	$-r \pm 1$ $v \frac{1}{2}$	

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, y, $-z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2478).

References

Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o2079. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2250. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.

Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o2431 [doi:10.1107/S1600536808038671]

Isopropyl 2-(5-iodo-7-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate

Hong Dae Choi, Pil Ja Seo, Byeng Wha Son and Uk Lee

S1. Comment

This work is related to our previous communications on the synthesis and structure of isopropyl 2-(3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, *viz.* isopropyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi *et al.*, 2008a) and isopropyl 2-(5-bromo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi *et al.*, 2008b). Here we report the crystal structure of the title compound, isopropyl 2-(5-iodo-7-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.030 (3) Å from the least-squares plane defined by the nine constituent atoms. The molecular packing (Fig. 2) is stabilized by intermolecular I···O halogen bonding (Politzer *et al.*, 2007) of 2.994 (3) Å and a nearly linear C—I···O angle of 168.51 (9)°, which link the molecules into centrosymmetric dimers (Table 1). These dimers are further packed into ribbons along the *c* axis by sulfinyl–sulfinyl interactions (Table 1) interpreted as similar to a type–II carbonyl–carbonyl interaction (Allen *et al.*, 1998).

S2. Experimental

77% 3-Chloroperoxybenzoic acid (123 mg, 0.55 mmol) was added in small portions to a stirred solution of isopropyl 2-(5-iodo-7-methyl-3-methylsulfanyl-1-benzofuran-2-yl)acetate (202 mg, 0.5 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 81%, m.p. 396-397 K; R_f = 0.74 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: ¹H NMR (CDCl₃, 400 MHz) δ 1.27 (d, J = 6.24 Hz, 6H), 2.46 (s, 3H), 3.06 (s, 3H), 4.00 (s, 2H), 5.03-5.09 (m, 1H), 7.49 (s, 1H), 8.10 (s, 1H); EI-MS 420 [M⁺].

S3. Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for the methylene, 0.98 Å for the methine, and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl, methine and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.

Figure 2

A portion of the crystal packing showing the I···O halogen bonding and S···O interactions by dotted lines [symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, y, -z+1/2; (iii) x, -y+1, z-1/2].

Isopropyl 2-(5-iodo-7-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate

Crystal aata	
$C_{15}H_{17}IO_4S$ $b = 10.0$	0905 (7) Å
$M_r = 420.25$ $c = 19.1$	44 (1) Å
Monoclinic, $C2/c$ $\beta = 99.1$	177 (2)°
Hall symbol: -C 2yc $V = 335$	9.2 (5) Å ³
a = 17.615 (2) Å $Z = 8$	

F(000) = 1664 $D_x = 1.662 \text{ Mg m}^{-3}$ Melting point = 420–421 K Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 5394 reflections

Data collection

Bruker SMART CCD diffractometer	6667 measured reflections 2897 independent reflections
Radiation source: fine-focus sealed tube	2172 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.030$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}, \theta_{\rm min} = 2.5^{\circ}$
φ and ω scans	$h = -12 \rightarrow 21$
Absorption correction: multi-scan	$k = -12 \rightarrow 12$
(SADABS; Sheldrick, 1999)	$l = -23 \rightarrow 23$
$T_{\min} = 0.480, \ T_{\max} = 0.667$	
Refinement	
$\mathbf{D} = \mathbf{C}$	Duineame stane site la satione structure inco

 $\theta = 2.2 - 28.1^{\circ}$

 $\mu = 2.04 \text{ mm}^{-1}$

Block, colourless

 $0.40 \times 0.30 \times 0.20 \text{ mm}$

T = 298 K

Refinement on F ²	Primary atom site location: structure-invariant
Least-squares matrix: full	direct methods
$R[F^2 > 2\sigma(F^2)] = 0.033$	Secondary atom site location: difference Fourier
$wR(F^2) = 0.064$	map
S = 1.24	Hydrogen site location: difference Fourier map
2897 reflections	H-atom parameters constrained
192 parameters	$w = 1/[\sigma^2(F_o^2)]$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.49 \text{ e } \text{\AA}^{-3}$
	$\Delta ho_{ m min} = -0.37$ e Å ⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ι	0.513353 (18)	0.743648 (18)	-0.024404 (13)	0.04774 (10)	
S	0.60070 (6)	0.34161 (6)	0.23510 (5)	0.0450 (2)	
01	0.61238 (16)	0.71392 (18)	0.29955 (13)	0.0445 (7)	
O2	0.71791 (17)	0.4874 (2)	0.48324 (13)	0.0503 (7)	
03	0.7643 (2)	0.5249 (3)	0.38247 (15)	0.0783 (10)	
O4	0.53494 (17)	0.3086 (2)	0.17899 (13)	0.0554 (7)	
C1	0.6014 (2)	0.5163 (3)	0.24557 (19)	0.0408 (9)	
C2	0.5868 (2)	0.6160 (2)	0.19074 (19)	0.0382 (9)	
C3	0.5656 (2)	0.6170 (3)	0.11784 (18)	0.0389 (9)	
Н3	0.5604	0.5386	0.0920	0.047*	
C4	0.5524 (2)	0.7395 (2)	0.0848 (2)	0.0394 (8)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C5	0.5640 (2)	0.8584 (3)	0.12417 (19)	0.0430 (9)
Н5	0.5567	0.9388	0.1003	0.052*
C6	0.5853 (2)	0.8597 (3)	0.19600 (19)	0.0414 (9)
C7	0.5950(2)	0.7356 (2)	0.2277 (2)	0.0385 (8)
C8	0.6142 (2)	0.5781 (3)	0.30852 (19)	0.0409 (9)
C9	0.6276 (2)	0.5310 (3)	0.3828 (2)	0.0470 (10)
H9A	0.6021	0.4463	0.3851	0.056*
H9B	0.6042	0.5932	0.4116	0.056*
C10	0.7106 (3)	0.5155 (3)	0.4138 (2)	0.0452 (10)
C11	0.7939 (3)	0.4653 (4)	0.5226 (2)	0.0575 (11)
H11	0.8262	0.4217	0.4922	0.069*
C12	0.7830(3)	0.3742 (4)	0.5829(2)	0.0690 (13)
H12A	0.7593	0.2933	0.5642	0.083*
H12B	0.7507	0.4166	0.6121	0.083*
H12C	0.8321	0.3548	0.6106	0.083*
C13	0.8288 (3)	0.5958 (5)	0.5478 (3)	0.0918 (17)
H13A	0.7971	0.6382	0.5775	0.110*
H13B	0.8325	0.6513	0.5077	0.110*
H13C	0.8792	0.5813	0.5741	0.110*
C14	0.5999 (3)	0.9856 (3)	0.2391 (2)	0.0615 (12)
H14A	0.5901	0.9698	0.2863	0.092*
H14B	0.5664	1.0544	0.2176	0.092*
H14C	0.6525	1.0125	0.2407	0.092*
C15	0.6855 (3)	0.3293 (4)	0.1950 (3)	0.0887 (19)
H15A	0.6947	0.2381	0.1848	0.133*
H15B	0.7286	0.3636	0.2269	0.133*
H15C	0.6787	0.3796	0.1519	0.133*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ι	0.0565 (2)	0.04572 (12)	0.04033 (15)	-0.00107 (11)	0.00570 (13)	-0.00037 (10)
S	0.0481 (7)	0.0287 (3)	0.0571 (6)	-0.0014 (4)	0.0050 (5)	0.0060 (3)
01	0.056 (2)	0.0353 (10)	0.0405 (15)	-0.0035 (10)	0.0028 (14)	0.0011 (9)
O2	0.0467 (19)	0.0623 (14)	0.0407 (16)	0.0041 (13)	0.0029 (14)	0.0026 (12)
03	0.050 (2)	0.133 (2)	0.054 (2)	0.0157 (18)	0.0137 (18)	0.0208 (17)
04	0.073 (2)	0.0443 (11)	0.0475 (17)	-0.0087 (12)	0.0045 (16)	-0.0040 (11)
C1	0.042 (2)	0.0309 (13)	0.048 (2)	-0.0029 (14)	0.0013 (18)	0.0044 (13)
C2	0.036 (2)	0.0290 (13)	0.049 (2)	-0.0007 (13)	0.0047 (19)	0.0011 (13)
C3	0.041 (2)	0.0303 (13)	0.044 (2)	-0.0048 (13)	0.0030 (19)	-0.0053 (13)
C4	0.038 (2)	0.0395 (15)	0.040 (2)	-0.0008 (14)	0.0057 (18)	0.0016 (13)
C5	0.049 (3)	0.0282 (13)	0.051 (2)	-0.0017 (14)	0.007 (2)	0.0047 (14)
C6	0.049 (3)	0.0318 (14)	0.042 (2)	-0.0027 (14)	0.0035 (19)	-0.0004 (13)
C7	0.040 (2)	0.0319 (14)	0.041 (2)	-0.0033 (13)	0.0007 (18)	-0.0019 (13)
C8	0.038 (2)	0.0351 (14)	0.048 (2)	-0.0014 (14)	0.0022 (19)	0.0053 (14)
C9	0.046 (3)	0.0473 (16)	0.047 (2)	-0.0063 (17)	0.004 (2)	0.0062 (15)
C10	0.047 (3)	0.0417 (15)	0.047 (2)	0.0019 (16)	0.008 (2)	0.0035 (15)
C11	0.047 (3)	0.078 (2)	0.045 (3)	0.019 (2)	-0.002 (2)	0.0008 (19)

supporting information

C12	0.084 (4)	0.068 (2)	0.051 (3)	0.014 (2)	-0.002 (3)	0.0033 (19)	
C13	0.077 (4)	0.117 (4)	0.076 (4)	-0.037 (3)	-0.004 (3)	0.007 (3)	
C14	0.086 (4)	0.0306 (14)	0.064 (3)	-0.0021 (17)	-0.002 (2)	-0.0057 (15)	
C15	0.073 (4)	0.052 (2)	0.151 (6)	0.006 (2)	0.049 (4)	-0.001 (2)	

Geometric parameters (Å, °)

I—C4	2.095 (4)	C6—C14	1.514 (4)	
I—O4 ⁱ	2.994 (3)	C8—C9	1.483 (5)	
S-04	1.486 (3)	C9—C10	1.496 (5)	
S—O4 ⁱⁱ	3.128 (3)	С9—Н9А	0.9700	
S—C1	1.773 (3)	С9—Н9В	0.9700	
S-C15	1.789 (4)	C11—C13	1.500 (6)	
O1—C7	1.378 (4)	C11—C12	1.511 (5)	
O1—C8	1.381 (3)	C11—H11	0.9800	
O2—C10	1.346 (4)	C12—H12A	0.9600	
O2—C11	1.445 (6)	C12—H12B	0.9600	
O3—C10	1.201 (4)	C12—H12C	0.9600	
C1—C8	1.344 (5)	C13—H13A	0.9600	
C1—C2	1.447 (5)	C13—H13B	0.9600	
C2—C3	1.386 (5)	C13—H13C	0.9600	
C2—C7	1.395 (4)	C14—H14A	0.9600	
C3—C4	1.392 (4)	C14—H14B	0.9600	
С3—Н3	0.9300	C14—H14C	0.9600	
C4—C5	1.414 (4)	C15—H15A	0.9600	
C5—C6	1.367 (5)	C15—H15B	0.9600	
С5—Н5	0.9300	C15—H15C	0.9600	
C6—C7	1.390 (4)			
I…O4 ⁱ	2.994 (3)	S…O4 ⁱⁱ	3.128 (3)	
O4—S—C1	107.19 (17)	Н9А—С9—Н9В	107.6	
$C4$ —I— $O4^{i}$	168.51 (9)	O3—C10—O2	123.5 (4)	
O4—S—C15	106.4 (2)	O3—C10—C9	126.3 (4)	
C1—S—C15	97.22 (16)	O2—C10—C9	110.3 (3)	
C7—O1—C8	106.2 (2)	O2—C11—C13	109.3 (3)	
C10—O2—C11	118.8 (3)	O2—C11—C12	105.8 (4)	
C8—C1—C2	108.2 (3)	C13—C11—C12	112.6 (4)	
C8—C1—S	124.1 (3)	O2-C11-H11	109.7	
C2—C1—S	127.7 (3)	C13—C11—H11	109.7	
C3—C2—C7	119.6 (3)	C12—C11—H11	109.7	
C3—C2—C1	136.4 (3)	C11—C12—H12A	109.5	
C7—C2—C1	104.0 (3)	C11—C12—H12B	109.5	
C2—C3—C4	117.6 (3)	H12A—C12—H12B	109.5	
С2—С3—Н3	121.2	C11—C12—H12C	109.5	
С4—С3—Н3	121.2	H12A—C12—H12C	109.5	
C3—C4—C5	120.8 (4)	H12B—C12—H12C	109.5	
C3—C4—I	118.4 (2)	C11—C13—H13A	109.5	

C5—C4—I	120.7 (2)	C11—C13—H13B	109.5
C6—C5—C4	122.5 (3)	H13A—C13—H13B	109.5
С6—С5—Н5	118.7	C11—C13—H13C	109.5
С4—С5—Н5	118.7	H13A—C13—H13C	109.5
C5—C6—C7	115.2 (3)	H13B—C13—H13C	109.5
C5—C6—C14	123.5 (3)	C6—C14—H14A	109.5
C7—C6—C14	121.3 (3)	C6—C14—H14B	109.5
O1—C7—C6	124.8 (3)	H14A—C14—H14B	109.5
O1—C7—C2	110.9 (2)	C6—C14—H14C	109.5
C6—C7—C2	124.2 (4)	H14A—C14—H14C	109.5
C1—C8—O1	110.6 (3)	H14B—C14—H14C	109.5
C1—C8—C9	133.6 (3)	S-C15-H15A	109.5
O1—C8—C9	115.8 (3)	S—C15—H15B	109.5
C8—C9—C10	114.2 (3)	H15A—C15—H15B	109.5
С8—С9—Н9А	108.7	S—C15—H15C	109.5
С10—С9—Н9А	108.7	H15A—C15—H15C	109.5
С8—С9—Н9В	108.7	H15B—C15—H15C	109.5
С10—С9—Н9В	108.7		
O4—S—C1—C8	137.8 (3)	C5—C6—C7—C2	2.3 (6)
C15—S—C1—C8	-112.5 (4)	C14—C6—C7—C2	-176.2 (4)
O4—S—C1—C2	-40.3 (4)	C3—C2—C7—O1	176.9 (3)
C15—S—C1—C2	69.4 (4)	C1—C2—C7—O1	-0.6 (4)
C8—C1—C2—C3	-175.0 (4)	C3—C2—C7—C6	-1.9 (6)
S-C1-C2-C3	3.4 (7)	C1—C2—C7—C6	-179.4 (4)
C8—C1—C2—C7	1.9 (4)	C2-C1-C8-O1	-2.5 (4)
S-C1-C2-C7	-179.8 (3)	S-C1-C8-O1	179.1 (3)
C7—C2—C3—C4	-0.8 (5)	C2-C1-C8-C9	175.8 (4)
C1—C2—C3—C4	175.7 (4)	S-C1-C8-C9	-2.6 (6)
C2—C3—C4—C5	3.0 (5)	C7—O1—C8—C1	2.1 (4)
C2—C3—C4—I	-176.1 (2)	C7—O1—C8—C9	-176.6 (3)
C3—C4—C5—C6	-2.7 (6)	C1—C8—C9—C10	93.3 (5)
I—C4—C5—C6	176.4 (3)	O1—C8—C9—C10	-88.4 (4)
C4—C5—C6—C7	0.1 (5)	C11—O2—C10—O3	-0.9 (5)
C4—C5—C6—C14	178.5 (4)	C11—O2—C10—C9	178.4 (3)
C8—O1—C7—C6	178.0 (4)	C8—C9—C10—O3	-7.7 (5)
C8—O1—C7—C2	-0.8 (4)	C8—C9—C10—O2	172.9 (2)
C5—C6—C7—O1	-176.4 (3)	C10—O2—C11—C13	86.0 (4)
C14—C6—C7—O1	5.1 (6)	C10-O2-C11-C12	-152.5 (3)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, *y*, -*z*+1/2.