

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# 1,4-Diphenylbutane-1,4-dione

#### **Zhigang Wang**

School of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China Correspondence e-mail: chwangzhigang@yahoo.com.cn

Received 13 November 2008; accepted 19 November 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.054; wR factor = 0.129; data-to-parameter ratio = 9.2.

The asymmetric unit of the title compound,  $C_{16}H_{14}O_2$ , contains one half-molecule, located on a twofold rotation axis. In the molecule, the two benzene rings form a dihedral angle of 72.28 (2)°.

#### **Related literature**

For useful applications of 1,4-dicarbonyl compounds, see: Chiu & Sammes (1990); Greatrex *et al.* (2003); Nagarajan & Shechter (1984). For details of the synthesis, see Nevar *et al.* (2000).



#### Experimental

*Crystal data* C<sub>16</sub>H<sub>14</sub>O<sub>2</sub>

 $M_r = 238.27$ 

organic compounds

4063 measured reflections

762 independent reflections

640 reflections with  $I > 2\sigma(I)$ 

Z = 2

Mo  $K\alpha$  radiation

 $\mu = 0.08 \text{ mm}^{-1}$ 

T = 298 (2) K $0.20 \times 0.10 \times 0.10 \text{ mm}$ 

 $R_{\rm int} = 0.163$ 

Orthorhombic,  $P2_12_12$  a = 8.3781 (13) Å b = 14.161 (2) Å c = 5.3186 (8) Å V = 631.00 (17) Å<sup>3</sup>

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1997)  $T_{min} = 0.984, T_{max} = 0.992$ 

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.054 & 83 \text{ parameters} \\ wR(F^2) &= 0.129 & \text{H-atom parameters constrained} \\ S &= 1.05 & \Delta\rho_{\text{max}} &= 0.20 \text{ e} \text{ Å}^{-3} \\ 762 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.22 \text{ e} \text{ Å}^{-3} \end{split}$$

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The author is grateful to Ling Fan for a valuable discussion.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2479).

#### References

Bruker (1997). *SMART*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA. Chiu, P.-K. & Sammes, M. P. (1990). *Tetrahedron*, **46**, 3439–3456.

Greatrex, B. W., Kimber, M. C., Taylor, D. K. & Tiekink, E. R. T. (2003). J. Org. Chem. 68, 4239–4246.

Nagarajan, G. & Shechter, H. (1984). J. Org. Chem. 49, 62-74.

Nevar, N. M., Kel'in, A. V. & Kulinkovich, O. G. (2000). Synthesis, pp. 1259–1262.

Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

# supporting information

Acta Cryst. (2008). E64, o2423 [doi:10.1107/S1600536808038798]

## 1,4-Diphenylbutane-1,4-dione

## **Zhigang Wang**

### S1. Comment

1,4-Dicarbonyl compounds constitute key intermediates in various natural product syntheses, and they are important synthetic precursors of cyclopentenones, cyclopenta-1,3-diones, butenolides, and derivatives of furan and pyrrole (Chiu & Sammes, 1990; Greatrex *et al.*, 2003; Nagarajan & Shechter, 1984). Herewith we present the title compound (I) (Fig. 1). The asymmetric unit of (I) contains a half of the molecule located on a twofold rotational axis. Two benzene rings form a dihedral angle of 72.28 (2)°.

#### **S2. Experimental**

The title compound was synthesized as previously described by Nevar *et al.* (2000). Colourless crystals suitable for X-ray data collection were obtained by slow evaporation of a 1:3 ratio EtOAc:cyclohexane solution at room temperture.

#### **S3. Refinement**

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, allowing for free rotation of the methyl groups. The constraint  $U_{iso}(H) = 1.2 U_{eq}(C)$  or 1.5  $U_{eq}(C)$  (methyl C) was applied. In the absence of anomalous scatterers, no attempt was made to establish the absolute configuration of the title compound, and 488 Friedel pairs were merged before the final refinement.



### Figure 1

View of the title molecule showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 30% probability level [symmetry code: (a) -x, -y + 1, z].

### 1,4-Diphenylbutane-1,4-dione

| Crystal data             |                         |
|--------------------------|-------------------------|
| $C_{16}H_{14}O_2$        | Hall symbol: P 2 2ab    |
| $M_r = 238.27$           | a = 8.3781 (13)  Å      |
| Orthorhombic, $P2_12_12$ | <i>b</i> = 14.161 (2) Å |

c = 5.3186 (8) Å V = 631.00 (17) Å<sup>3</sup> Z = 2 F(000) = 252  $D_x = 1.254$  Mg m<sup>-3</sup> Mo K $\alpha$  radiation,  $\lambda = 0.71073$  Å

#### Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1997)  $T_{\min} = 0.984, T_{\max} = 0.992$ 

Primary atom site location: structure-invariant

#### Refinement

Refinement on  $F^2$ 

 $wR(F^2) = 0.129$ 

762 reflections

83 parameters

0 restraints

S = 1.05

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.054$ 

Cell parameters from 1423 reflections  $\theta = 2.8-22.3^{\circ}$   $\mu = 0.08 \text{ mm}^{-1}$  T = 298 KBlock, colourless  $0.20 \times 0.10 \times 0.10 \text{ mm}$ 

4063 measured reflections 762 independent reflections 640 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.163$  $\theta_{max} = 26.0^\circ, \ \theta_{min} = 2.8^\circ$  $h = -10 \rightarrow 9$  $k = -16 \rightarrow 17$  $l = -6 \rightarrow 6$ 

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0734P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.012$  $\Delta\rho_{max} = 0.20$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.22$  e Å<sup>-3</sup>

### Special details

direct methods

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x          | У            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|------------|--------------|-------------|-----------------------------|--|
| C1  | 0.1095 (3) | 0.30567 (15) | 0.2151 (4)  | 0.0508 (6)                  |  |
| C7  | 0.1070 (3) | 0.40988 (16) | 0.1653 (5)  | 0.0574 (7)                  |  |
| C4  | 0.1208 (3) | 0.11385 (19) | 0.3179 (6)  | 0.0699 (7)                  |  |
| H4  | 0.1241     | 0.0496       | 0.3532      | 0.084*                      |  |
| C8  | 0.0072 (4) | 0.44647 (16) | -0.0468 (5) | 0.0670 (7)                  |  |
| H8A | -0.0986    | 0.4191       | -0.0354     | 0.080*                      |  |
| H8B | 0.0540     | 0.4263       | -0.2047     | 0.080*                      |  |
| C3  | 0.2031 (3) | 0.17678 (17) | 0.4670 (5)  | 0.0704 (8)                  |  |
| H3  | 0.2625     | 0.1548       | 0.6026      | 0.085*                      |  |
| C6  | 0.0283 (3) | 0.24197 (17) | 0.0654 (5)  | 0.0608 (7)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| -0.0307    | 0.2634                                                                 | -0.0713                                                                                                  | 0.073*                                                                                                                                                    |
|------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.1980 (3) | 0.27214 (16)                                                           | 0.4163 (5)                                                                                               | 0.0608 (7)                                                                                                                                                |
| 0.2541     | 0.3142                                                                 | 0.5176                                                                                                   | 0.073*                                                                                                                                                    |
| 0.1843 (3) | 0.46221 (13)                                                           | 0.2966 (5)                                                                                               | 0.0984 (8)                                                                                                                                                |
| 0.0345 (3) | 0.14619 (18)                                                           | 0.1188 (6)                                                                                               | 0.0712 (8)                                                                                                                                                |
| -0.0206    | 0.1037                                                                 | 0.0177                                                                                                   | 0.085*                                                                                                                                                    |
|            | -0.0307<br>0.1980 (3)<br>0.2541<br>0.1843 (3)<br>0.0345 (3)<br>-0.0206 | -0.03070.26340.1980 (3)0.27214 (16)0.25410.31420.1843 (3)0.46221 (13)0.0345 (3)0.14619 (18)-0.02060.1037 | -0.03070.2634-0.07130.1980 (3)0.27214 (16)0.4163 (5)0.25410.31420.51760.1843 (3)0.46221 (13)0.2966 (5)0.0345 (3)0.14619 (18)0.1188 (6)-0.02060.10370.0177 |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | <i>U</i> <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|----|-------------|------------------------|-----------------|--------------|--------------|--------------|
| C1 | 0.0464 (11) | 0.0571 (13)            | 0.0490 (11)     | 0.0054 (10)  | 0.0025 (10)  | -0.0053 (10) |
| C7 | 0.0558 (13) | 0.0561 (13)            | 0.0603 (14)     | 0.0011 (11)  | -0.0034 (12) | -0.0105 (11) |
| C4 | 0.0636 (15) | 0.0595 (13)            | 0.0867 (18)     | 0.0061 (13)  | 0.0053 (15)  | 0.0043 (15)  |
| C8 | 0.0839 (17) | 0.0614 (14)            | 0.0555 (13)     | 0.0048 (13)  | -0.0040 (14) | -0.0074 (11) |
| C3 | 0.0658 (16) | 0.0769 (17)            | 0.0686 (16)     | 0.0155 (14)  | -0.0023 (15) | 0.0091 (15)  |
| C6 | 0.0613 (14) | 0.0604 (13)            | 0.0607 (13)     | -0.0011 (11) | -0.0092 (13) | -0.0065 (12) |
| C2 | 0.0560 (14) | 0.0676 (14)            | 0.0589 (14)     | 0.0046 (12)  | -0.0060 (12) | -0.0094 (12) |
| 01 | 0.1149 (17) | 0.0632 (11)            | 0.1172 (17)     | -0.0067 (11) | -0.0544 (16) | -0.0120 (12) |
| C5 | 0.0696 (17) | 0.0597 (14)            | 0.0843 (17)     | -0.0059 (13) | -0.0060 (16) | -0.0117 (14) |

Geometric parameters (Å, °)

| C1—C6                   | 1.382 (3)   | С8—Н8А      | 0.9700    |
|-------------------------|-------------|-------------|-----------|
| C1—C2                   | 1.386 (3)   | C8—H8B      | 0.9700    |
| C1—C7                   | 1.499 (3)   | C3—C2       | 1.378 (3) |
| C7—O1                   | 1.207 (3)   | С3—Н3       | 0.9300    |
| С7—С8                   | 1.496 (3)   | C6—C5       | 1.387 (4) |
| C4—C5                   | 1.361 (4)   | С6—Н6       | 0.9300    |
| C4—C3                   | 1.378 (3)   | С2—Н2       | 0.9300    |
| C4—H4                   | 0.9300      | С5—Н5       | 0.9300    |
| C8—C8 <sup>i</sup>      | 1.521 (4)   |             |           |
| C6—C1—C2                | 119.0 (2)   | H8A—C8—H8B  | 107.8     |
| C6—C1—C7                | 122.3 (2)   | C4—C3—C2    | 120.4 (2) |
| C2—C1—C7                | 118.74 (19) | С4—С3—Н3    | 119.8     |
| O1—C7—C8                | 121.5 (2)   | С2—С3—Н3    | 119.8     |
| O1—C7—C1                | 119.7 (2)   | C1—C6—C5    | 120.1 (2) |
| C8—C7—C1                | 118.8 (2)   | C1—C6—H6    | 119.9     |
| C5—C4—C3                | 119.7 (2)   | С5—С6—Н6    | 119.9     |
| С5—С4—Н4                | 120.1       | C3—C2—C1    | 120.2 (2) |
| С3—С4—Н4                | 120.1       | С3—С2—Н2    | 119.9     |
| C7—C8—C8 <sup>i</sup>   | 112.9 (2)   | C1—C2—H2    | 119.9     |
| С7—С8—Н8А               | 109.0       | C4—C5—C6    | 120.6 (2) |
| C8 <sup>i</sup> —C8—H8A | 109.0       | С4—С5—Н5    | 119.7     |
| С7—С8—Н8В               | 109.0       | С6—С5—Н5    | 119.7     |
| C8 <sup>i</sup> —C8—H8B | 109.0       |             |           |
| C6—C1—C7—O1             | -177.5 (3)  | C2—C1—C6—C5 | 0.7 (3)   |

| C2-C1-C7-O1           | 1.7 (4)    | C7—C1—C6—C5 | 179.8 (3)  |
|-----------------------|------------|-------------|------------|
| C6—C1—C7—C8           | 2.8 (3)    | C4—C3—C2—C1 | 0.2 (4)    |
| C2-C1-C7-C8           | -178.0 (2) | C6—C1—C2—C3 | -0.6 (4)   |
| O1C7C8C8 <sup>i</sup> | -9.8 (4)   | C7—C1—C2—C3 | -179.9 (2) |
| C1C7C8C8 <sup>i</sup> | 169.9 (3)  | C3—C4—C5—C6 | -0.3 (4)   |
| C5—C4—C3—C2           | 0.3 (4)    | C1—C6—C5—C4 | -0.2 (4)   |

Symmetry code: (i) -x, -y+1, z.