

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(4-Methylbenzoyl)-3-[5-(4-pyridyl)-1,3,4-thiadiazol-2-yl]urea

Xiu-Huan Zhan,^{a,b} Zi-Yun Wang,^a Xiao-Hong Tan,^c Zhi-Wei Tan^c and Xin-Jian Song^{a,b*}

^aDepartment of Chemistry, Zhoukou Normal University, Zhoukou 466000, People's Republic of China, ^bKey Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, Hubei 445000, People's Republic of China, and ^cSchool of Chemical and Environmental Engineering, Hubei University for Nationalities, Enshi, Hubei 445000, People's Republic of China

Correspondence e-mail: whxjsong@yahoo.com.cn

Received 14 October 2008; accepted 28 October 2008

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.062; wR factor = 0.195; data-to-parameter ratio = 13.9.

In the title compound, $C_{16}H_{13}N_5O_2S$, the five non-H atoms of the urea linkage adopt a planar configuration owing to the presence of an intramolecular $N-H\cdots O$ hydrogen bond. The maximum deviation from planarity is 0.022 (2) Å. The thiadiazole and pyridine heterocyclic rings are close to being coplanar, with a dihedral angle of 6.7 (2)° between their mean planes. Intermolecular $N-H\cdots O$ hydrogen bonds link two neighbouring molecules into centrosymmetric $R_2^2(8)$ dimers. Four C atoms and the attached H atoms of the benzene ring are disordered over two positions of equal occupancy.

Related literature

For general background, see: Chen *et al.* (2005); Foroumadi *et al.* (2002); Song *et al.* (2007); Song *et al.* (2008). For related structures, see: Song & Tan *et al.* (2005). For the synthesis, see: Song & Feng *et al.* (2005).

Experimental

Crystal data $C_{16}H_{13}N_5O_2S$ $M_r = 339.37$

Triclinic, $P\overline{1}$ a = 5.0563 (5) Å

•		
organic	compounds	5
o guine	compoands	'

b = 11.8561 (11) Å	Z = 2
c = 13.2506 (12) Å	Mo $K\alpha$ radiation
$\alpha = 88.892 \ (2)^{\circ}$	$\mu = 0.23 \text{ mm}^{-1}$
$\beta = 80.849 \ (2)^{\circ}$	T = 297 (2) K
$\gamma = 77.989 \ (2)^{\circ}$	$0.20 \times 0.10 \times 0.04 \text{ mm}$
$V = 766.99 (13) \text{ Å}^3$	

Data collection

Bruker SMART CCD area-detector	2978 independent reflections
diffractometer	2120 reflections with $I > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.096$
6171 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.062$	214 parameters
$wR(F^2) = 0.195$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$
2978 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H2 \cdots O1$	0.86	1.90	2.583 (3)	135
$N1 - H1 \cdots O2^{1}$	0.86	2.10	2.935 (3)	165

Symmetry code: (i) -x + 2, -y + 2, -z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from the Scientific Research Fund for Distinguished Young and Middle-aged Talent of Hubei Provincial Department of Education (grant No. Q200729001) and the Natural Science Foundation of Hubei Province, China (grant No. 2007ABA001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2164).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, L., Wang, Q. M., Huang, R. Q., Mao, C. H., Shang, J. & Bi, F. C. (2005). J. Agric. Food Chem. 53, 38–41.
- Foroumadi, A., Asadipour, A., Mirzaei, M., Karimi, J. & Emami, S. (2002). Farmaco, 57, 765–769.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, X. J., Feng, G. R., Chen, C. B., Zhang, Z. W. & Wang, Y. G. (2005). Chin. J. Org. Chem. 25, 1587–1590.
- Song, X.-J., Tan, X.-H., Li, Y.-H., Zhang, Z.-W. & Wang, Y.-G. (2005). *Acta Cryst.* E**61**, 03066–03068.
- Song, X. J., Tan, X. H. & Wang, Y. G. (2007). Phosphorus Sulfur Silicon, 182, 1907–1913.
- Song, X. J., Tan, X. H. & Wang, Y. G. (2008). J. Chem. Crystallogr. 38, 479–482.

supporting information

Acta Cryst. (2008). E64, o2255 [doi:10.1107/S1600536808035149]

1-(4-Methylbenzoyl)-3-[5-(4-pyridyl)-1,3,4-thiadiazol-2-yl]urea

Xiu-Huan Zhan, Zi-Yun Wang, Xiao-Hong Tan, Zhi-Wei Tan and Xin-Jian Song

S1. Comment

1,3,4-Thiadiazole derivatives have been reported to possess broad spectrum bioactivities (Foroumadi *et al.*, 2002; Song *et al.*, 2007). Urea derivatives, especially aroylurea derivatives, have attracted many chemist's interest owing to their diverse biological effects, such as insecticidal, fungicidal, herbicidal and plant-growth regulating activities (Chen *et al.*, 2005; Song *et al.*, 2008). Furthermore, pyridine derivatives have become one of research hotspots in modern agrochemistry and medicinal chemistry. In our continuing search for new plant-growth regulators, we would like to investigate aroyl ureas incorporating both 1,3,4-thiadiazole and pyridine rings, including the title compound.

The crystal structure (Fig.1) revealed that the urea linkage unit O1—C8—N1—C9—N2—H2 adopts the stable conformation due to the the formation of a strong intramolecular N—H···O hydrogen bond to give a planar six-membered ring, as reported (Song and Tan *et al.*, 2005), which is essentially coplanar with a maximum deviation from planarity of 0.022 (2)Å for atom O1. The thiadiazole and pyridine heterocyclic fragments also lie essentially in the same plane, the maximum deviation from that plane being 0.059 (3)Å for atom C15. The dihedral angle between the two mean planes is 6.7 (2)°. All bond lengths and angles are as expected. In the crystal structure, the molecules are linked by complementary N—H···O hydrogen bonds into centrosymmetric $R_2^2(8)$ dimers (Fig. 2 and Table 1).

S2. Experimental

The title compound was prepared according to the procedure of Song and Feng *et al.* (2005). Suitable crystals were obtained by vapor diffusion of methanol in DMF at room temperature (m.p. >573 K). Elemental analysis: analysis calculated for $C_{16}H_{13}N_5O_2S$: C 56.63, H 3.86, N 20.64%; found: C 56.55, H 3.76, N 20.81%.

S3. Refinement

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$, but each group was allowed to rotate freely about its C —C bond. Other H atoms were positioned geometrically and constrained to ride on their parent atoms with C—H distances of 0.93 Å, N—H distances of 0.86Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The atoms C3, C4, C6 and C7 in the benzene ring are found to be disordered over two positions.

Figure 1

View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. Both disorder components are shown.

Figure 2

A partial packing diagram for (I) [symmetry code: (a) 2 - x, 2 - y, -z]. Hydrogen bonds are indicated by dashed lines.

1-(4-Methylbenzoyl)-3-[5-(4-pyridyl)-1,3,4-thiadiazol-2-yl]urea

Crystal data

tions

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 6171 measured reflections 2978 independent reflections <i>Refinement</i>	2120 reflections with $I > 2\sigma(I)$ $R_{int} = 0.096$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -6 \rightarrow 6$ $k = -14 \rightarrow 14$ $l = -16 \rightarrow 16$
Refinement on E^2	Secondary storn site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.195$ S = 1.06 2978 reflections 214 parameters 0 restraints Primary atom site location: structure-invariant	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1026P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24$ e Å ⁻³
direct methods	$\Delta \rho_{\min} = -0.32 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.59211 (17)	0.73166 (7)	-0.09171 (5)	0.0562 (3)	
N1	0.8010 (5)	0.96100 (19)	0.13767 (16)	0.0449 (6)	
H1	0.9109	1.0058	0.1159	0.054*	
N2	0.5583 (5)	0.82578 (19)	0.09796 (16)	0.0459 (6)	
H2	0.4995	0.8259	0.1625	0.055*	
N3	0.2887 (6)	0.6962 (2)	0.07332 (18)	0.0565 (7)	
N4	0.2335 (5)	0.6273 (2)	0.00007 (19)	0.0537 (7)	
N5	0.3212 (7)	0.4482 (3)	-0.3539 (2)	0.0800 (9)	
01	0.5680 (6)	0.8977 (2)	0.27987 (16)	0.0916 (9)	
O2	0.8225 (5)	0.90478 (17)	-0.02610 (13)	0.0574 (6)	
C1	1.0069 (10)	1.2823 (3)	0.5070 (3)	0.0936 (14)	
H1A	0.9255	1.2708	0.5759	0.140*	
H1B	0.9400	1.3601	0.4874	0.140*	
H1C	1.2024	1.2684	0.5025	0.140*	
C2	0.9326 (7)	1.1995 (3)	0.4361 (2)	0.0567 (8)	
C5	0.8036 (6)	1.0456 (2)	0.3046 (2)	0.0460 (7)	
C3A	0.9463 (13)	1.2164 (5)	0.3343 (4)	0.0512 (14)*	0.50

H3A	0.9870	1.2852	0.3082	0.061*	0.50
C4A	0.9036 (12)	1.1382 (5)	0.2677 (4)	0.0432 (13)*	0.50
H4A	0.9429	1.1484	0.1976	0.052*	0.50
C6A	0.7810 (12)	1.0218 (5)	0.4113 (4)	0.0501 (14)*	0.50
H6A	0.7357	0.9534	0.4365	0.060*	0.50
C7A	0.8276 (13)	1.1023 (6)	0.4758 (5)	0.0533 (15)*	0.50
H7A	0.7903	1.0933	0.5462	0.064*	0.50
C3B	1.1141 (12)	1.1626 (5)	0.3379 (4)	0.0473 (13)*	0.50
H3B	1.2799	1.1857	0.3197	0.057*	0.50
C4B	1.0226 (12)	1.0914 (5)	0.2743 (4)	0.0405 (12)*	0.50
H4B	1.1179	1.0753	0.2084	0.049*	0.50
C6B	0.6374 (12)	1.0858 (5)	0.3994 (4)	0.0464 (13)*	0.50
H6B	0.4711	1.0634	0.4188	0.056*	0.50
C7B	0.7220 (13)	1.1576 (5)	0.4624 (4)	0.0468 (14)*	0.50
H7B	0.6200	1.1760	0.5270	0.056*	0.50
C8	0.7154 (7)	0.9624 (3)	0.2418 (2)	0.0518 (8)	
C9	0.7317 (6)	0.8962 (2)	0.0638 (2)	0.0430 (7)	
C10	0.4699 (6)	0.7538 (2)	0.03602 (19)	0.0422 (6)	
C11	0.3759 (6)	0.6354 (2)	-0.0884(2)	0.0454 (7)	
C12	0.3576 (6)	0.5700 (2)	-0.1797 (2)	0.0503 (7)	
C13	0.5012 (9)	0.5865 (4)	-0.2729 (3)	0.1010 (16)	
H13	0.6168	0.6387	-0.2796	0.121*	
C14	0.4754 (10)	0.5258 (4)	-0.3576 (3)	0.1101 (18)	
H14	0.5720	0.5405	-0.4206	0.132*	
C15	0.1854 (7)	0.4317 (3)	-0.2624 (3)	0.0663 (9)	
H15	0.0759	0.3771	-0.2572	0.080*	
C16	0.1956 (7)	0.4896 (3)	-0.1754 (2)	0.0581 (8)	
H16	0.0937	0.4747	-0.1136	0.070*	

Atomic displacement parameters $(Å^2)$

	T 711	1 122	1733	1.112	1713	1/23
	0	0	0	0	0	U
S 1	0.0657 (6)	0.0700 (6)	0.0411 (5)	-0.0402 (4)	0.0034 (3)	-0.0127 (3)
N1	0.0545 (15)	0.0513 (13)	0.0352 (12)	-0.0283 (11)	-0.0024 (10)	-0.0022 (9)
N2	0.0566 (15)	0.0543 (14)	0.0333 (12)	-0.0283 (12)	-0.0042 (10)	-0.0003 (10)
N3	0.0751 (18)	0.0661 (16)	0.0403 (13)	-0.0439 (14)	-0.0060 (12)	0.0019 (11)
N4	0.0653 (17)	0.0581 (15)	0.0480 (14)	-0.0341 (13)	-0.0116 (12)	0.0018 (11)
N5	0.093 (2)	0.082 (2)	0.073 (2)	-0.0397 (18)	-0.0040 (17)	-0.0306 (16)
O1	0.145 (2)	0.119 (2)	0.0372 (12)	-0.0999 (19)	0.0036 (13)	-0.0042 (12)
O2	0.0811 (15)	0.0682 (13)	0.0326 (10)	-0.0449 (12)	0.0014 (9)	-0.0052 (9)
C1	0.156 (4)	0.078 (3)	0.062 (2)	-0.043 (3)	-0.035 (2)	-0.0158 (19)
C2	0.074 (2)	0.0541 (18)	0.0452 (17)	-0.0130 (16)	-0.0175 (15)	-0.0104 (13)
C5	0.0518 (17)	0.0528 (16)	0.0355 (14)	-0.0176 (13)	-0.0036 (12)	-0.0009 (12)
C8	0.066 (2)	0.0588 (18)	0.0353 (15)	-0.0287 (15)	-0.0031 (13)	-0.0002 (12)
C9	0.0544 (17)	0.0432 (15)	0.0353 (14)	-0.0201 (13)	-0.0055 (12)	-0.0010 (11)
C10	0.0485 (16)	0.0447 (15)	0.0374 (14)	-0.0173 (12)	-0.0088 (12)	0.0017 (11)
C11	0.0501 (17)	0.0461 (15)	0.0440 (16)	-0.0178 (13)	-0.0082 (13)	-0.0026 (12)
C12	0.0527 (18)	0.0505 (16)	0.0534 (18)	-0.0203 (14)	-0.0114 (14)	-0.0095 (13)

supporting information

C13	0.125 (4)	0.136 (4)	0.063 (2)	-0.099 (3)	0.022 (2)	-0.037 (2)
C14	0.137 (4)	0.154 (4)	0.059 (2)	-0.099 (4)	0.023 (2)	-0.043 (2)
C15	0.079 (2)	0.0558 (19)	0.075 (2)	-0.0306 (18)	-0.0219 (19)	-0.0083 (16)
C16	0.073 (2)	0.0506 (17)	0.0576 (19)	-0.0263 (16)	-0.0127 (16)	-0.0013 (13)

Geometric parameters (Å, °)

S1—C10	1.712 (3)	C5—C6B	1.425 (6)
S1-C11	1.733 (3)	C5—C6A	1.427 (6)
N1—C8	1.378 (3)	C5—C8	1.483 (4)
N1—C9	1.386 (3)	C3A—C4A	1.363 (8)
N1—H1	0.8600	СЗА—НЗА	0.9300
N2—C9	1.354 (3)	C4A—H4A	0.9300
N2-C10	1.380 (3)	C6A—C7A	1.374 (8)
N2—H2	0.8600	С6А—Н6А	0.9300
N3—C10	1.285 (3)	C7A—H7A	0.9300
N3—N4	1.379 (3)	C3B—C4B	1.397 (8)
N4—C11	1.287 (3)	C3B—H3B	0.9300
N5-C14	1.320 (5)	C4B—H4B	0.9300
N5—C15	1.327 (4)	C6B—C7B	1.378 (8)
O1—C8	1.225 (4)	C6B—H6B	0.9300
O2—C9	1.217 (3)	C7B—H7B	0.9300
C1—C2	1.512 (4)	C11—C12	1.475 (4)
C1—H1A	0.9600	C12—C13	1.362 (4)
C1—H1B	0.9600	C12—C16	1.375 (4)
C1—H1C	0.9600	C13—C14	1.382 (5)
С2—С7В	1.264 (6)	C13—H13	0.9300
C2—C3A	1.353 (6)	C14—H14	0.9300
C2—C7A	1.424 (7)	C15—C16	1.367 (5)
C2—C3B	1.483 (6)	C15—H15	0.9300
C5—C4B	1.335 (6)	C16—H16	0.9300
C5—C4A	1.353 (6)		
C10—S1—C11	86.09 (12)	С6А—С7А—Н7А	119.7
C8—N1—C9	127.9 (2)	С2—С7А—Н7А	119.7
C8—N1—H1	116.1	C4B—C3B—C2	116.5 (5)
C9—N1—H1	116.1	C4B—C3B—H3B	121.8
C9—N2—C10	124.4 (2)	C2—C3B—H3B	121.8
C9—N2—H2	117.8	C5—C4B—C3B	122.4 (5)
C10—N2—H2	117.8	C5—C4B—H4B	118.8
C10—N3—N4	111.7 (2)	C3B—C4B—H4B	118.8
C11—N4—N3	112.8 (2)	C7B—C6B—C5	120.3 (5)
C14—N5—C15	115.8 (3)	C7B—C6B—H6B	119.9
C2—C1—H1A	109.5	C5—C6B—H6B	119.9
C2—C1—H1B	109.5	C2—C7B—C6B	122.7 (5)
H1A—C1—H1B	109.5	C2—C7B—H7B	118.7
C2—C1—H1C	109.5	C6B—C7B—H7B	118.7
H1A—C1—H1C	109.5	O1—C8—N1	120.4 (3)

H1B—C1—H1C	109.5	O1—C8—C5	121.8 (3)
C7B—C2—C3A	105.2 (4)	N1	117.7 (2)
C3A—C2—C7A	116.6 (4)	O2—C9—N2	123.3 (3)
C7B—C2—C3B	119.8 (4)	O2—C9—N1	120.5 (2)
C7A—C2—C3B	107.3 (4)	N2—C9—N1	116.2 (2)
C7B—C2—C1	120.0 (4)	N3—C10—N2	120.5 (2)
C3A—C2—C1	122.8 (4)	N3—C10—S1	115.5 (2)
C7A—C2—C1	120.5 (4)	N2-C10-S1	124.0(2)
C3B-C2-C1	120.1 (4)	N4-C11-C12	1237(3)
C4B-C5-C6B	117 5 (4)	N4-C11-S1	123.7(3) 1140(2)
C4A - C5 - C6B	104.1 (4)	C_{12}	1223(2)
C4B $C5$ $C6A$	104.1(4)	$C_{12} = C_{11} = S_1$	122.5(2)
$C_{4}D_{-}C_{5}$	110.0(4)	$C_{13}^{12} = C_{12}^{12} = C_{10}^{11}$	110.0(3)
C4A - C5 - C0A	119.0(4) 122.5(2)	C16 - C12 - C11	121.4(3)
C4B - C5 - C8	123.3 (3)	C10 - C12 - C11	122.0(3)
C4A - C5 - C8	124.9 (3)	C12 - C13 - C14	120.2 (3)
С6В—С5—С8	118.9 (3)	С12—С13—Н13	119.9
C6A—C5—C8	115.3 (3)	С14—С13—Н13	119.9
C2—C3A—C4A	123.7 (5)	N5—C14—C13	123.5 (4)
С2—С3А—НЗА	118.1	N5—C14—H14	118.2
С4А—С3А—Н3А	118.1	C13—C14—H14	118.2
C5—C4A—C3A	119.4 (5)	N5—C15—C16	124.3 (3)
C5—C4A—H4A	120.3	N5—C15—H15	117.8
СЗА—С4А—Н4А	120.3	C16—C15—H15	117.8
C7A—C6A—C5	118.5 (5)	C15—C16—C12	119.6 (3)
С7А—С6А—Н6А	120.8	C15—C16—H16	120.2
С5—С6А—Н6А	120.8	C12—C16—H16	120.2
C6A—C7A—C2	120.7 (5)		
C10—N3—N4—C11	0.4 (4)	C9—N1—C8—O1	3.1 (5)
C7B-C2-C3A-C4A	-437(7)	C9-N1-C8-C5	-1758(3)
C7A - C2 - C3A - C4A	-9.7(8)	C4B-C5-C8-01	158 9 (4)
C3B-C2-C3A-C4A	75 1 (7)	C4A - C5 - C8 - O1	-1621(4)
C1 - C2 - C3A - C4A	1740(5)	C6B-C5-C8-01	-25.6(5)
CAB C5 CAA C3A	-80.2(8)	$\begin{array}{c} \text{C6A} \text{C5} \text{C8} \text{O1} \\ \text{C6A} \text{C5} \text{C8} \text{O1} \\ \end{array}$	18.8(5)
$C_{+D} = C_{-D} = C_{+A} = C_{-A}$	39.2(0)	$C_{0A} = C_{0} = C_{0} = C_{0}$	-22.2(5)
C6A = C5 = C4A = C2A	50.4(7)	C4B = C5 = C6 = N1	-22.2(3)
$C_{0A} = C_{5} = C_{4A} = C_{5A}$	-9.0(8)	C4A - C5 - C6 - N1	10.8(0)
C_{8} C_{3} C_{4A} C_{5A}	1/2.0 (4)	$C_{0B} = C_{0} = C_{0} = N_{1}$	155.5 (5)
$C_2 = C_3 = C_4 = C_5$	10.0 (9)	C6A—C5—C8—N1	-162.3 (3)
C4B—C5—C6A—C7A	42.4 (7)	C10—N2—C9—O2	1.7 (5)
C4A—C5—C6A—C7A	8.5 (7)	C10—N2—C9—N1	-179.0 (2)
C6B—C5—C6A—C7A	-66.8 (6)	C8—N1—C9—O2	179.4 (3)
C8—C5—C6A—C7A	-172.3 (5)	C8—N1—C9—N2	0.1 (5)
C5—C6A—C7A—C2	-8.6 (9)	N4—N3—C10—N2	-178.3 (2)
C7B—C2—C7A—C6A	86.0 (9)	N4—N3—C10—S1	0.4 (3)
C3A—C2—C7A—C6A	9.0 (8)	C9—N2—C10—N3	-174.6 (3)
C3B—C2—C7A—C6A	-32.1 (7)	C9—N2—C10—S1	6.8 (4)
C1—C2—C7A—C6A	-174.6 (5)	C11—S1—C10—N3	-0.7 (2)
C7B—C2—C3B—C4B	6.7 (7)	C11—S1—C10—N2	177.9 (3)

C4A - C5 - C4B - C3B 81.4 (8) $C10 - C6B - C5 - C4B - C3B$ $C6B - C5 - C4B - C3B$ 9.6 (8) $N4 - 6$ $C6A - C5 - C4B - C3B$ -33.0 (7) $S1 - 6$ $C8 - C5 - C4B - C3B$ -174.9 (4) $N4 - 6$ $C2 - C3B - C4B - C5$ -8.8 (8) $S1 - 6$ $C4B - C5 - C6B - C7B$ -8.2 (7) $C16 - 6$ $C4A - C5 - C6B - C7B$ -39.6 (6) $C11 - 6$ $C6A - C5 - C6B - C7B$ -39.6 (6) $C11 - 6$ $C6A - C5 - C6B - C7B$ -39.6 (6) $C12 - 6$ $C3A - C2 - C7B - C6B$ 33.5 (7) $C14 - 6$ $C7A - C2 - C7B - C6B$ -6.0 (8) $C13 - 6$ $C1 - C2 - C7B - C6B$ -6.0 (8) $C13 - 6$ $C1 - C2 - C7B - C6B$ -6.0 (8) $C13 - 6$ $C1 - C2 - C7B - C6B$ -6.0 (8) $C13 - 6$ $C1 - C2 - C7B - C6B$ -6.0 (8) $C13 - 6$ $C5 - C6B - C7B - C6B$ -6.0 (8) $C13 - 6$ $C5 - C6B - C7B - C6B$ -6.0 (8) $C13 - 6$ $C5 - C6B - C7B - C6B$ -6.0 (8) $C13 - 6$ $C5 - C6B - C7B - C6B$ -6.0 (8) $C13 - 6$ $C5 - C6B - C7B - C6B$ -6.0 (8) $C13 - 6$ $C5 - C6B - C7B - C6B$ -6.0 (8) $C13 - 6$ $C5 - C6B - C7B - C6B$ -6.0 (8) $C13 - 6$ $C5 - C6B - C7B - C2$ -6.0 (8) $C13 - 6$ $C5 - C6B - C7B - C2$ -6.0 (8) $C13 - 6$ $C5 - C6B - C7B - C2$ -6.0 (8) $C13 - 6$ $C5 - C6B - C7B - C2$ -6.0 (8) $C10 - 6$ $C5 - C6B - C7B -$	C11—C12—C13 C11—C12—C13 C11—C12—C16 C12—C13—C14 C12—C13—C14 -N5—C14—C13 -C13—C14—N5 -N5—C15—C16 C15—C16—C12 -C12—C16—C15 -C12—C16—C15	176.2 (3) $-3.3 (5)$ $-3.7 (5)$ $176.7 (2)$ $1.4 (7)$ $-178.6 (4)$ $0.8 (8)$ $-1.8 (9)$ $0.5 (6)$ $-0.8 (6)$ $-0.2 (5)$ $179.7 (3)$
--	---	---

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H…A
N2—H2…O1	0.86	1.90	2.583 (3)	135
N1— $H1$ ···O2 ⁱ	0.86	2.10	2.935 (3)	165

Symmetry code: (i) -x+2, -y+2, -z.