addenda and errata

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Retraction of articles

This article reports the retraction of articles published in *Acta Crystallographica Section E* between 2007 and 2009.

After further thorough investigation (see Harrison *et al.*, 2010), articles are retracted as a result of problems with the data sets or incorrect atom assignments. Full details of all the articles are given in Table 1.

Table 1

Details of articles to be retracted, in order of publication.

Title	Reference	DOI	Refcode
catena-Poly[[aqua(pyrazine-2-carboxylato)iron(II)]-µ-pyrazine-2-carboxylato]	Hao & Liu (2007)	10.1107/S1600536806053207	NEVLUW
Poly[aquabis(µ-pyrazine-2-carboxylato)nickel(II)]	Hao, Mu & Liu (2007)	10.1107/S1600536806054225	TEVQUH
catena-Poly[[(2,2'-bipyridine- $\kappa^2 N, N'$)zinc(II)]- μ -imidazole-4,5-dicarboxylato- $\kappa^4 N^1, O^5: N^3, O^4$]	Li, Dong et al. (2007)	10.1107/\$1600536807014420	XIBPAA
$Poly[[aqua(2,2-bipyridyl)(\mu_3-pyridine-3,4-dicarboxylato)manganese(II)] monohydrate]$	Li, Niu et al. (2007)	10.1107/S1600536807023586	GIGYAX
$Poly[chlorido-\mu_3-1,2,4-triazolato-nickel(II)]$	Gao, Wang & Hao (2007 <i>a</i>)	10.1107/S1600536807025962	WIGTEM
Poly[[(µ ₄ -carbonyldibenzene-3,3',4,4'-tetracarboxylato)tetrakis(1,10-phenanthroline)- dicadmium(II)] dihydrate]	Gao, Wang & Niu (2007 <i>a</i>)	10.1107/S1600536807028425	EDUNUN
Tetraaquabis(4,4'-bipyridine)iron(II) pyridine-2,6-dicarboxylate tetrahydrate	Gao, Wang & Niu (2007b)	10.1107/S1600536807027973	EDUPAV
catena-Poly[[(2,2-bipyridine)cobalt(II)]-µ-imidazole-4,5-dicarboxylato]	Hao, Bao & Yu (2007)	10.1107/\$1600536807027699	EDURUR
$catena-Poly[[aqua(pyrazine-2-carboxylato)cobalt(II)]-\mu-pyrazine-2-carboxylato]$	Gao, Wang, Niu & Hao (2007 <i>a</i>)	10.1107/S1600536807027961	ODOJIA01
$Poly[[[aqua(2,2-bipyridine)iron(II)]-\mu_3-pyridine-3,4-dicarboxylato] monohydrate]$	Hao & Yu (2007a)	10.1107/S160053680702867X	RIGRUV
catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato- κ^3O,N,O')gadolinium(III)]- μ -pyridine-2,6-dicarboxylato- $\kappa^4N,O,O':O''$] tetrahydrate]	Hao & Yu (2007b)	10.1107/S1600536807029789	MIGDOW
$Poly[[aqua(pyrazine-2-carboxylato)copper(II)]-\mu-pyrazine-2-carboxylato]$	Gao, Wang, Niu & Hao (2007 <i>b</i>)	10.1107/\$1600536807030528	MIGKUJ
cyclo-Tetrakis[µ-N-(2-hydroxybenzoyl)-N'-(2-hydroxy-3-methoxybenzylidene)hydrazin- ate(2–)ltetracobalt(II) N.N-dimethylformamide tetrasolvate	Gao, Wang & Niu (2007c)	10.1107/S1600536807033338	UDUXOH
$Poly[chlorido(\mu_3-1,2,4-triazolato)manganese(II)]$	Gao, Wang & Hao (2007b)	10.1107/S1600536807032886	UDUZAV
catena-Poly[[aqua(pyrazine-2-carboxylato- $\kappa^2 N^l$,O)zinc(II)]- μ -pyrazine-2-carboxylato- $\kappa^2 N^l$,O:N ⁴]	Gao, Wang, Niu & Hao (2007c)	10.1107/\$1600536807033041	UDUZEZ
cyclo-Tetrakis[µ-N-(2-hydroxybenzoyl)-N'-(2-hydroxy-3-methoxybenzylidene)hydra- zine(2-)ltetrazinc(II) N.N-dimethylformamide tetrasolyate	Gao, Wang & Niu (2007 <i>d</i>)	10.1107/\$1600536807034514	TIFZIS
catena-Poly[[[diaqua(6-carboxypyridine-2-carboxylato)terbium(III)]-µ-pyridine- 2,6-dicarboxylato] tetrahydrate]	Hao & Yu (2007c)	10.1107/\$1600536807034629	TIFZUE
catena-Poly[[aqua(pyrazine-2-carboxylato- $\kappa^2 N^I$,O)manganese(II)]- μ -pyrazine- 2-carboxylato- $\kappa^3 N^I$,O: N^4]	Gao, Wang, Niu & Hao (2007 <i>d</i>)	10.1107/S1600536807034496	TIGBER
Poly[chlorido-µ3-1,2,4-triazolato-iron(II)]	Gao, Wang & Hao (2007 <i>c</i>)	10.1107/\$1600536807036239	TIGHIB
Tetraaquabis(4,4'-bipyridine)manganese(II) pyridine-2,6-dicarboxylate tetrahydrate	Gao, Wang & Niu (2007e)	10.1107/S160053680703766X	AFEGIC
Poly[chlorido(µ ₃ -1,2,4-triazolato)copper(II)]	Gao, Wang & Niu (2007f)	10.1107/S1600536807040007	VIKBAT
catena-Poly[[(2,2'-bipyridine)nickel(II)]-µ-imidazole-4,5-dicarboxylato]	Hao & Yu (2007d)	10.1107/S1600536807040330	VIKCOI
$Poly[[(2,2'-bipyridine)cadmium(II)]-\mu_3-pyridine-2,4-dicarboxylato] monohydrate]$	Li, Wang & Liu (2007)	10.1107/S160053680704202X	XIKVOD
$Poly[aqua(\mu_4-benzene-1,3-dicarboxylato-\kappa^4O:O':O'':O''')bis(imidazole-\kappa N)palladium(II)]$	Hao & Yu (2007e)	10.1107/S1600536807044315	SILKII
Tetra a quabis (4,4'-bipyridine) cobalt (II) pyridine-2,6-dicarboxylate tetrahydrate	Guan, Gao, Wang & Wang (2007 <i>a</i>)	10.1107/S1600536807046107	XILPOY
cyclo-Tetrakis[µ-N-(2-hydroxybenzoyl)-N'-(2-hydroxy-3-methoxybenzylidene)hydrazin- ato(2–)]tetranickel(II) N,N-dimethylformamide tetrasolvate	Guan, Gao, Wang & Wang (2007b)	10.1107/S1600536807048325	SILZOD
Bis(cyanido- κC)bis(1,10-phenanthroline- $\kappa^2 N, N'$)chromium(III) bis(azido- $\kappa N)[N,N'-$ (o-phenylene)bis(pyridine-2-carboxamide)- $\kappa^4 N$]chromate(III) monohydrate	Guan, Gao, Wang & Wang (2007c)	10.1107/S1600536807049872	GIMVUU
$Tris[2-(propyliminomethyl)phenolato-\kappa^2 N, O]iron(III)$	Hao, Mu & Kong (2008a)	10.1107/S1600536808018540	MODFIV
Bis[μ-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato]bis[(thiocyanato-κN)- iron(III)]	Hao, Mu & Kong (2008b)	10.1107/\$1600536808021892	YODCAW
catena-Poly[[aqua(2,2'-bipyridine- $\kappa^2 N, N'$)copper(II)]- μ -5-nitroisophthalato- $\kappa^3 O^1, O^1: O^3$]	Hao & Liu (2008)	10.1107/S1600536808035150	COLVEF
$Tetrakis(\mu-2,4-difluorobenzoato)bis[(2,2'-bipyridine)(2,4-difluorobenzoato)terbium(III)]$	Hao & Liu (2009)	10.1107/S1600536808043936	WOQLAQ

References

- Gao, Y.-X., Wang, L.-B. & Hao, X.-R. (2007a). Acta Cryst. E63, m1800.
- Gao, Y.-X., Wang, L.-B. & Hao, X.-R. (2007b). Acta Cryst. E63, m2142.
- Gao, Y.-X., Wang, L.-B. & Hao, X.-R. (2007c). Acta Cryst. E63, m2232.
- Gao, Y.-X., Wang, L.-B. & Niu, Y.-L. (2007a). Acta Cryst. E63, m1844.
- Gao, Y.-X., Wang, L.-B. & Niu, Y.-L. (2007b). Acta Cryst. E63, m1845-m1846.
- Gao, Y.-X., Wang, L.-B. & Niu, Y.-L. (2007c). Acta Cryst. E63, m2128. Gao, Y.-X., Wang, L.-B. & Niu, Y.-L. (2007d). Acta Cryst. E63, m2180.
- Gao, Y.-X., Wang, L.-B. & Niu, Y.-L. (2007*a*). Acta Cryst. E63, m2160. Gao, Y.-X., Wang, L.-B. & Niu, Y.-L. (2007*e*). Acta Cryst. E63, m2283.
- Gao, Y.-X., Wang, L.-B. & Niu, Y.-L. (2007f). Acta Cryst. E63, m2265.
- Gao, Y.-X., Wang, L.-B., Niu, Y.-L. & Hao, L.-J. (2007a). Acta Cryst. E63,
- m1882. Gao, Y.-X., Wang, L.-B., Niu, Y.-L. & Hao, L.-J. (2007b). Acta Cryst. E63,
- Gao, Y.-X., Wang, L.-B., Niu, Y.-L. & Hao, L.-J. (2007b). Acta Cryst. E63, m2006.
- Gao, Y.-X., Wang, L.-B., Niu, Y.-L. & Hao, L.-J. (2007c). Acta Cryst. E63, m2143.
- Gao, Y.-X., Wang, L.-B., Niu, Y.-L. & Hao, L.-J. (2007d). Acta Cryst. E63, m2185.
- Guan, G., Gao, Y., Wang, L. & Wang, T. (2007a). Acta Cryst. E63, m2601.

- Guan, G., Gao, Y., Wang, L. & Wang, T. (2007b). Acta Cryst. E63, m2662.
- Guan, G., Gao, Y., Wang, L. & Wang, T. (2007c). Acta Cryst. E63, m2750.
- Hao, L. & Liu, X. (2008). Acta Cryst. E64, m1500.
- Hao, L. & Liu, X. (2009). Acta Cryst. E65, m150.
- Hao, L.-J., Bao, Z.-M. & Yu, T.-L. (2007). Acta Cryst. E63, m1871.
- Hao, L.-J. & Liu, T.-T. (2007). Acta Cryst. E63, m169-m171.
- Hao, L., Mu, C. & Kong, B. (2008a). Acta Cryst. E64, m955.
- Hao, L., Mu, C. & Kong, B. (2008b). Acta Cryst. E64, m1034.
- Hao, L.-J., Mu, C.-H. & Liu, T.-T. (2007). Acta Cryst. E63, m281-m283.
- Hao, L.-J. & Yu, T.-L. (2007a). Acta Cryst. E63, m1926.
- Hao, L.-J. & Yu, T.-L. (2007b). Acta Cryst. E63, m1967.
- Hao, L.-J. & Yu, T.-L. (2007c). Acta Cryst. E63, m2182-m2183.
- Hao, L.-J. & Yu, T.-L. (2007d). Acta Cryst. E63, m2374.
- Hao, L.-J. & Yu, T.-L. (2007e). Acta Cryst. E63, m2555.
- Harrison, W. T. A., Simpson, J. & Weil, M. (2010). Acta Cryst. E66, e1-e2.
- Li, X.-M., Dong, Y.-H., Wang, Q.-W. & Liu, B. (2007). Acta Cryst. E63, m1274– m1276.
- Li, X.-M., Niu, Y.-L., Wang, Q.-W. & Liu, B. (2007). Acta Cryst. E63, m1737– m1738.
- Li, X.-M., Wang, Q.-W. & Liu, B. (2007). Acta Cryst. E63, m2443.

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[[aqua(2,2'-bipyridine- $\kappa^2 N, N'$)copper(II)]- μ -5-nitroisophthalato- $\kappa^{3}O^{1}O^{1'}O^{3}$

Lujiang Hao^a* and Xia Liu^b

^aCollege of Food and Biological Engineering, Shandong Institute of Light Industry, Jinan 250353, People's Republic of China, and ^bMaize Research Insitute, Shandong Academy of Agricultural Science, Jinan 250100, People's Republic of China Correspondence e-mail: lujianghao001@yahoo.com.cn

Received 28 September 2008; accepted 28 October 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.123; data-to-parameter ratio = 12.5.

In the asymmetric unit of the title compound, $[Cu(C_8H_3NO_6) (C_{10}H_8N_2)(H_2O)]_n$, there are two symmetry-independent onedimensional coordination polymers related by a non-crystallographic inversion center. Within the polymers, the Cu^{II} atoms, coordinated by the water molecule and the chelating 2,2'-bipyridine ligands, are bridged by 5-nitrobenzene-1,3 dicarboxylate dianions which act as tridentate ligands; the carboxylate groups exhibit monodentate and symmetric bidentate coordination modes. The Cu^{II} atoms show a strongly distorted octahedral coordination geometry. In the crystal structure, the two symmetry-independent coordination polymers form another one-dimensional polymeric structure via O-H···O hydrogen bonds between coordinated water molecules and carboxylate groups.

Related literature

For the uses of carboxylic acids in materials science, see: Church & Halvorson (1959), and in biological systems, see: Okabe & Oya (2000); Kim et al. (2001).

Experimental

Crystal data

S = 1.00

Table 1

 $[Cu(C_8H_3NO_6)(C_{10}H_8N_2)(H_2O)]$ $M_r = 446.85$ Monoclinic, $P2_1/n$ a = 10.1326 (10) Åb = 23,263 (3) Å c = 15.6087 (15) Å $\beta = 97.28 (2)^{\circ}$

V = 3649.6 (7) Å³ Z = 8Mo Ka radiation $\mu = 1.25 \text{ mm}^{-1}$ T = 293 (2) K $0.12 \times 0.10 \times 0.08 \text{ mm}$

Data collection Bruker APEXII CCD area-detector 18862 measured reflections diffractometer 6694 independent reflections Absorption correction: multi-scan 5089 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.025$ (SADABS; Bruker, 2001) $T_{\min} = 0.865, T_{\max} = 0.907$ Refinement $R[F^2 > 2\sigma(F^2)] = 0.042$ wR(F²) = 0.123 H atoms treated by a mixture of independent and constrained refinement 6694 reflections $\Delta \rho_{\rm max} = 0.83 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$ 535 parameters 6 restraints Hydrogen-bond geometry (Å, °). D-H $D - H \cdot \cdot A$ $H \cdots A$ $D \cdots A$ $D = H \cdots A$ $O12 - H1W \cdots O2^{i}$ 0.83(4)1.98 (2) 2.742 (3) 153(4) $01 - H4W \cdots O10^{i}$ 0.82 (3) 1.95 (2) 2.724 (3) 158 (4) O12−H2W···O5 0.82 (4) 2.07 (3) 2.760 (3) 141 (4) 01−H3W···O13 0.83(3)2.13(3)2.778(3)135 (4)

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of Shandong Province (grant No. Y2007D39).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2170).

References

Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Church, B. S. & Halvorson, H. (1959). Nature (London), 183, 124-125. Kim, Y., Lee, E. & Jung, D. Y. (2001). Chem. Mater. 13, 2684-2690. Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416-1417. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, m1500 [doi:10.1107/S1600536808035150]

catena-Poly[[aqua(2,2'-bipyridine- $\kappa^2 N, N'$)copper(II)]- μ -5-nitroisophthalato- $\kappa^3 O^1, O^{1'}: O^3$]

Lujiang Hao and Xia Liu

S1. Comment

In recent years, carboxylic acids have been widely used as polydentate ligands, which can coordinate to transition or rare earth ions yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959) and in biological systems (Okabe & Oya, 2000). For example, Kim *et al.* (2001) focused on the syntheses of transition metal complexes containing benzene carboxylate and rigid aromatic pyridine ligands in order to study their electronic conductivity and magnetic properties. The importance of transition metal dicarboxylate complexes motivated us to pursue synthetic strategies for these compounds, using 5-nitroisophthalic acid as a polydentate ligand. Here we report the synthesis and X-ray crystal structure analysis of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The title compound, $[Cu(C_8H_3NO_6)(C_{10}H_8N_2)(H_2O)]_n$ is a one-dimensional coordination polymer (Fig. 2). There are two symmetry independent 1D polymers in the crystal. The Cu(II) atom shows a strongly disordered coordination geometry. It is coordinated by two carboxylate groups from two different 5-nitroisophthalate ligands, 2,2'-bipyridyl and water molecule. The carboxylate groups act in a monodentate and bidentate coordination modes. The symmetry independent polymeric chains are linked via O-H…O hydrogen bonds (Table 1).

S2. Experimental

A mixture of copper dichloride (0.5 mmol), 2,2'-bipyridine (0.5 mmol), and 5-nitroisophthalic acid (0.5 mmol) in H₂O (8 ml) and ethanol (8 ml) was sealed in a 25 ml Teflon-lined stainless steel autoclave and kept at 413 K for three days. Blue crystals were obtained after cooling to room temperature (yield 27%). Anal. Calc. for $C_{18}H_{13}CuN_3O_7$: C 48.34, H 2.91, N 10.74%; Found: C 48.30, H 2.84, N 10.69%.

S3. Refinement

The H atoms of water molecule were located from difference Fourier maps and were refined with distance restraints: d(H–H) = 1.38 (2) Å, d(O–H) = 0.88 (2) Å, and with a fixed U_{iso} of 0.080 Å². All other H atoms were placed in calculated positions with a C—H bond distance of 0.93 Å and refined in the riding model approximation with $U_{iso}(H) = 1.2U_{eq}$ of the carrier atom.

A view of the title structure showing the atomic numbering scheme and 30% probability displacement ellipsoids.

_

Figure 2

One of the symmetry-independent coordination polymers

catena-Poly[[aqua(2,2'-bipyridine- $\kappa^2 N, N'$) copper(II)]- μ -5-nitroisophthalato- $\kappa^3 O^1, O^1: O^3$]

Crystal data

[Cu(C₈H₃NO₆)(C₁₀H₈N₂)(H₂O) $M_r = 446.85$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 10.1326 (10) Å b = 23.263 (3) Å c = 15.6087 (15) Å $\beta = 97.28$ (2)° V = 3649.6 (7) Å³ Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans F(000) = 1816 $D_x = 1.627 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6694 reflections $\theta = 1.8-25.5^{\circ}$ $\mu = 1.25 \text{ mm}^{-1}$ T = 293 KBlock, blue $0.12 \times 0.10 \times 0.08 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{min} = 0.865$, $T_{max} = 0.907$ 18862 measured reflections 6694 independent reflections

5089 reflections with $I > 2\sigma(I)$	
$R_{\rm int} = 0.025$	
$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.124$ S = 1.006694 reflections 535 parameters 6 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.075P)^2 + 2.4671P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.83$ e Å⁻³ $\Delta\rho_{min} = -0.40$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $h = -12 \rightarrow 10$ $k = -28 \rightarrow 22$ $l = -18 \rightarrow 18$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у 💦	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Cul	1.16168 (4)	0.154431 (15)	0.85573 (3)	0.02711 (13)	
Cu2	0.12372 (4)	0.354405 (16)	0.93350 (3)	0.03053 (13)	
C1	1.1959 (4)	0.07213 (16)	1.0079 (2)	0.0457 (9)	
H1	1.2145	0.1048	1.0416	0.055*	
C2	1.2039 (5)	0.0193 (2)	1.0471 (3)	0.0635 (13)	
H2	1.2268	0.0161	1.1065	0.076*	
C3	1.1773 (5)	-0.02890 (18)	0.9970 (3)	0.0634 (13)	
H3	1.1810	-0.0651	1.0224	0.076*	
C4	1.1452 (4)	-0.02334 (16)	0.9089 (3)	0.0481 (10)	
H4	1.1282	-0.0556	0.8741	0.058*	
C5	1.1388 (3)	0.03117 (13)	0.8732 (2)	0.0291 (7)	
C6	1.1072 (3)	0.04138 (13)	0.7785 (2)	0.0266 (7)	
C7	1.0796 (3)	-0.00183 (15)	0.7180 (2)	0.0376 (8)	
H7	1.0788	-0.0401	0.7354	0.045*	
C8	1.0527 (4)	0.01249 (16)	0.6306 (2)	0.0408 (9)	
H8	1.0328	-0.0160	0.5891	0.049*	
C9	1.0562 (4)	0.06932 (16)	0.6068 (2)	0.0415 (9)	
H9	1.0383	0.0800	0.5491	0.050*	
C10	1.0866 (3)	0.11017 (14)	0.6700 (2)	0.0337 (8)	
H10	1.0889	0.1486	0.6536	0.040*	
C11	0.3761 (3)	0.19406 (14)	0.8105 (2)	0.0284 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C12	0.8756 (3)	0.17568 (14)	0.8380 (2)	0.0286 (7)
C13	0.7500 (3)	0.20954 (13)	0.80617 (19)	0.0232 (6)
C14	0.6258 (3)	0.18759 (13)	0.8202 (2)	0.0252 (6)
H14	0.6213	0.1526	0.8484	0.030*
C15	0.5081 (3)	0.21767 (13)	0.79223 (19)	0.0228 (6)
C16	0.5143 (3)	0.27058 (14)	0.7520 (2)	0.0287 (7)
H16	0.4375	0.2912	0.7332	0.034*
C17	0.6391 (3)	0.29176 (14)	0.7409 (2)	0.0300(7)
C18	0.7573 (3)	0.26273 (13)	0.7665 (2)	0.0268 (7)
H18	0.8388	0.2784	0.7574	0.032*
C19	0.0858 (4)	0.43908 (16)	0.7844 (3)	0.0419 (9)
H19	0.0717	0.4066	0.7497	0.050*
C20	0.0710 (4)	0.49282 (18)	0.7464 (3)	0.0506 (10)
H20	0.0493	0.4965	0.6869	0.061*
C21	0.0891 (4)	0.54045 (17)	0.7982 (3)	0.0530 (11)
H21	0.0801	0.5770	0.7741	0.064*
C22	0.1206 (3)	0.53393 (15)	0.8859 (3)	0.0437 (9)
H22	0.1312	0.5660	0.9217	0.052*
C23	0.1365 (3)	0.47885 (13)	0.9207 (2)	0.0331 (8)
C24	0.1701 (3)	0.46692 (14)	1.0141 (2)	0.0312 (7)
C25	0.1994 (4)	0.50930 (15)	1.0773 (3)	0.0450 (10)
H25	0.1976	0.5480	1.0620	0.054*
C26	0.2313 (4)	0.49311 (18)	1.1632 (3)	0.0505 (10)
H26	0.2502	0.5209	1.2059	0.061*
C27	0.2346 (4)	0.43618 (19)	1.1844 (3)	0.0502 (10)
H27	0.2573	0.4245	1.2414	0.060*
C28	0.2036 (4)	0.39641 (17)	1.1200 (2)	0.0423 (9)
H28	0.2048	0.3577	1.1348	0.051*
C29	0.4118 (3)	0.33262 (14)	0.9445 (2)	0.0276 (7)
C30	0.5355 (3)	0.29913 (13)	0.9800 (2)	0.0245 (7)
C31	0.6609 (3)	0.31950 (13)	0.9659 (2)	0.0247 (6)
H31	0.6668	0.3529	0.9339	0.030*
C32	0.7773 (3)	0.29078 (12)	0.9988 (2)	0.0230 (6)
C33	0.7701 (3)	0.24090 (13)	1.0462 (2)	0.0281 (7)
H33	0.8466	0.2213	1.0687	0.034*
C34	0.6445 (3)	0.22111 (13)	1.0589 (2)	0.0274 (7)
C35	0.5281 (3)	0.24928 (14)	1.0278 (2)	0.0273 (7)
H35	0.4461	0.2350	1.0387	0.033*
C36	0.9110 (3)	0.31370 (13)	0.9804 (2)	0.0265 (7)
N1	1.1618 (3)	0.07821 (11)	0.92194 (18)	0.0308 (6)
N2	1.1133 (2)	0.09711 (10)	0.75448 (17)	0.0256 (6)
N3	0.1197 (3)	0.43222 (12)	0.86995 (18)	0.0310 (6)
N4	0.1716 (3)	0.41090 (11)	1.03653 (19)	0.0315 (6)
N5	0.6350 (3)	0.16771 (13)	1.1080 (2)	0.0421 (8)
N6	0.6481 (4)	0.34942 (14)	0.7038 (2)	0.0526 (9)
O1	0.0918 (2)	0.30549 (9)	0.81941 (17)	0.0320 (5)
O2	0.3006 (2)	0.31188 (9)	0.96166 (16)	0.0358 (6)
O3	0.4241 (3)	0.37683 (12)	0.90419 (19)	0.0532 (7)

 U^{23}

04	0.9139 (2)	0.35925 (10)	0.93797 (18)	0.0392 (6)	
05	1.0167 (2)	0.28721 (10)	1.00723 (16)	0.0360 (6)	
O6	0.5265 (3)	0.14511 (15)	1.1064 (3)	0.0852 (13)	
O7	0.7369 (3)	0.14842 (12)	1.1487 (2)	0.0579 (8)	
08	0.5457 (3)	0.37104 (19)	0.6687 (4)	0.128 (2)	
09	0.7554 (3)	0.37294 (13)	0.7091 (2)	0.0734 (10)	
O10	0.9862 (2)	0.19817 (9)	0.82626 (16)	0.0328 (5)	
011	0.8637 (3)	0.12791 (13)	0.8686 (2)	0.0653 (9)	
O12	1.1948 (2)	0.20384 (9)	0.97015 (16)	0.0319 (5)	
O13	0.2693 (2)	0.22031 (10)	0.78406 (16)	0.0369 (6)	
O14	0.3736 (2)	0.14837 (10)	0.85273 (17)	0.0390 (6)	
H1W	1.245 (4)	0.2303 (13)	0.960 (3)	0.080*	
H2W	1.132 (3)	0.2151 (17)	0.994 (3)	0.080*	
H3W	0.157 (3)	0.2969 (18)	0.795 (3)	0.080*	
H4W	0.042 (4)	0.2781 (13)	0.824 (3)	0.080*	

Atomic displacement parameters $(Å^2)$

 U^{22}

 U^{11}

(18)	0.795 (3)	0.080*
(13)	0.824 (3)	0.080*
U^{33}	U^{12}	U^{13}
0.0363 (2)	0.00148 (15)	0.00314 (16)
0.0466(3)	0.00113 (15)	0.00654 (18)

Cu1	0.0215 (2)	0.0234 (2)	0.0363 (2)	0.00148 (15)	0.00314 (16)	0.00163 (15)
Cu2	0.0210 (2)	0.0245 (2)	0.0466 (3)	0.00113 (15)	0.00654 (18)	0.00113 (16)
C1	0.065 (3)	0.041 (2)	0.031 (2)	0.0004 (19)	0.0076 (18)	0.0047 (16)
C2	0.096 (4)	0.060 (3)	0.033 (2)	0.006 (3)	0.007 (2)	0.014 (2)
C3	0.092 (4)	0.040 (2)	0.059 (3)	0.004 (2)	0.012 (3)	0.031 (2)
C4	0.063 (3)	0.0273 (18)	0.053 (3)	-0.0023 (17)	0.005 (2)	0.0101 (16)
C5	0.0230 (16)	0.0246 (16)	0.0396 (19)	-0.0009 (12)	0.0039 (14)	0.0044 (13)
C6	0.0201 (15)	0.0235 (15)	0.0361 (18)	-0.0006 (12)	0.0037 (13)	0.0017 (13)
C7	0.0313 (18)	0.0270 (17)	0.054 (2)	-0.0024 (14)	0.0052 (16)	-0.0048 (16)
C8	0.036 (2)	0.043 (2)	0.042 (2)	-0.0019 (16)	0.0012 (16)	-0.0122 (16)
C9	0.041 (2)	0.048 (2)	0.034 (2)	0.0023 (17)	-0.0006 (16)	-0.0037 (16)
C10	0.0362 (19)	0.0319 (17)	0.0323 (19)	0.0054 (14)	0.0015 (15)	0.0049 (14)
C11	0.0197 (16)	0.0332 (17)	0.0332 (18)	-0.0034 (13)	0.0071 (13)	-0.0116 (14)
C12	0.0172 (16)	0.0347 (18)	0.0332 (18)	0.0028 (13)	0.0008 (13)	0.0056 (14)
C13	0.0147 (14)	0.0287 (16)	0.0257 (16)	0.0017 (12)	0.0008 (12)	0.0000 (12)
C14	0.0219 (16)	0.0261 (15)	0.0283 (16)	-0.0010 (12)	0.0054 (13)	-0.0006 (13)
C15	0.0156 (14)	0.0280 (15)	0.0252 (16)	-0.0013 (12)	0.0041 (12)	-0.0061 (12)
C16	0.0173 (15)	0.0372 (18)	0.0314 (18)	0.0093 (13)	0.0027 (13)	0.0019 (14)
C17	0.0269 (17)	0.0298 (16)	0.0343 (18)	0.0035 (13)	0.0078 (14)	0.0110 (13)
C18	0.0156 (14)	0.0337 (17)	0.0314 (18)	-0.0016 (12)	0.0039 (12)	0.0049 (13)
C19	0.040 (2)	0.040 (2)	0.049 (2)	0.0029 (16)	0.0137 (17)	0.0071 (17)
C20	0.043 (2)	0.058 (3)	0.052 (2)	0.0069 (19)	0.0135 (19)	0.024 (2)
C21	0.040 (2)	0.034 (2)	0.088 (3)	0.0026 (17)	0.021 (2)	0.027 (2)
C22	0.031 (2)	0.0237 (17)	0.078 (3)	0.0018 (14)	0.0160 (19)	0.0050 (18)
C23	0.0160 (15)	0.0232 (16)	0.062 (2)	0.0000 (12)	0.0137 (15)	0.0010 (15)
C24	0.0149 (15)	0.0292 (17)	0.051 (2)	-0.0005 (12)	0.0090 (14)	-0.0043 (15)
C25	0.032 (2)	0.0279 (18)	0.077 (3)	-0.0019 (15)	0.0121 (19)	-0.0106 (18)
C26	0.034 (2)	0.059 (3)	0.058 (3)	-0.0019 (18)	0.0037 (19)	-0.021 (2)
C27	0.039 (2)	0.064 (3)	0.048 (2)	0.0050 (19)	0.0075 (18)	-0.006 (2)

C28	0.037 (2)	0.043 (2)	0.047 (2)	0.0056 (17)	0.0058 (17)	-0.0007 (17)
C29	0.0166 (15)	0.0327 (17)	0.0326 (18)	0.0031 (13)	-0.0002 (13)	-0.0046 (14)
C30	0.0155 (15)	0.0300 (16)	0.0279 (17)	0.0005 (12)	0.0024 (12)	-0.0048 (12)
C31	0.0192 (15)	0.0241 (15)	0.0312 (17)	-0.0012 (12)	0.0053 (12)	-0.0004 (12)
C32	0.0156 (15)	0.0266 (15)	0.0276 (16)	-0.0004 (11)	0.0059 (12)	-0.0043 (12)
C33	0.0187 (15)	0.0345 (17)	0.0305 (18)	0.0020 (13)	0.0017 (13)	0.0005 (13)
C34	0.0216 (16)	0.0316 (16)	0.0288 (17)	-0.0020 (13)	0.0027 (13)	0.0043 (13)
C35	0.0175 (15)	0.0342 (17)	0.0307 (18)	-0.0059 (13)	0.0050 (13)	0.0015 (13)
C36	0.0140 (15)	0.0294 (16)	0.0370 (18)	0.0009 (12)	0.0073 (13)	-0.0085 (14)
N1	0.0305 (15)	0.0280 (14)	0.0347 (16)	-0.0011 (11)	0.0068 (12)	0.0048 (11)
N2	0.0213 (13)	0.0233 (13)	0.0320 (15)	0.0026 (10)	0.0030 (11)	-0.0005 (11)
N3	0.0216 (14)	0.0277 (14)	0.0446 (18)	0.0022 (11)	0.0075 (12)	0.0052 (12)
N4	0.0239 (14)	0.0268 (14)	0.0445 (18)	0.0028 (11)	0.0071 (12)	-0.0015 (12)
N5	0.0325 (17)	0.0448 (18)	0.0488 (19)	-0.0039 (14)	0.0042 (14)	0.0181 (14)
N6	0.044 (2)	0.049 (2)	0.068 (2)	0.0143 (16)	0.0185 (17)	0.0321 (17)
01	0.0243 (12)	0.0261 (12)	0.0455 (14)	0.0024 (9)	0.0044 (10)	-0.0001 (10)
O2	0.0148 (11)	0.0301 (12)	0.0621 (16)	0.0023 (9)	0.0033 (10)	-0.0029 (11)
O3	0.0327 (14)	0.0511 (17)	0.075 (2)	0.0086 (12)	0.0035 (13)	0.0290 (15)
O4	0.0241 (12)	0.0291 (12)	0.0669 (17)	-0.0021 (9)	0.0153 (12)	0.0085 (11)
O5	0.0157 (11)	0.0366 (12)	0.0564 (16)	0.0029 (9)	0.0072 (10)	-0.0003 (11)
06	0.0464 (19)	0.086 (2)	0.116 (3)	-0.0290 (17)	-0.0150 (19)	0.065 (2)
O7	0.0401 (16)	0.0511 (17)	0.083 (2)	0.0105 (13)	0.0080 (15)	0.0336 (15)
08	0.046 (2)	0.117 (3)	0.226 (5)	0.037 (2)	0.036 (3)	0.131 (4)
09	0.061 (2)	0.0534 (18)	0.102 (3)	-0.0163 (16)	-0.0027 (19)	0.0388 (18)
O10	0.0121 (10)	0.0274 (11)	0.0583 (15)	0.0017 (8)	0.0015 (10)	-0.0021 (10)
011	0.0313 (15)	0.0648 (19)	0.101 (2)	0.0135 (13)	0.0130 (15)	0.0564 (18)
012	0.0267 (12)	0.0261 (11)	0.0415 (14)	0.0039 (9)	-0.0003 (10)	-0.0027 (10)
013	0.0157 (11)	0.0404 (13)	0.0550 (16)	0.0031 (10)	0.0066 (10)	-0.0012 (11)
014	0.0223 (12)	0.0378 (14)	0.0583 (16)	-0.0027 (10)	0.0103 (11)	0.0048 (11)

<i>Geometric parameters (Å, °)</i>	
------------------------------------	--

Geometric parameters (A	Geometric parameters (Å, °)						
Cul—Ol0	2.049 (2)	C19—N3	1.345 (5)				
Cu1—N1	2.052 (3)	C19—C20	1.384 (5)				
Cu1—N2	2.078 (3)	C19—H19	0.9300				
Cu1—012	2.115 (2)	C20—C21	1.371 (6)				
Cu1—O14 ⁱ	2.158 (2)	C20—H20	0.9300				
Cu1-013 ⁱ	2.258 (2)	C21—C22	1.374 (6)				
Cu2—O2	2.046 (2)	C21—H21	0.9300				
Cu2—N3	2.062 (3)	C22—C23	1.393 (5)				
Cu2—N4	2.086 (3)	C22—H22	0.9300				
Cu2—O1	2.104 (2)	C23—N3	1.341 (4)				
Cu2—O4 ⁱⁱ	2.139 (2)	C23—C24	1.481 (5)				
Cu2—O5 ⁱⁱ	2.294 (2)	C24—N4	1.349 (4)				
C1—N1	1.350 (5)	C24—C25	1.400 (5)				
C1—C2	1.372 (6)	C25—C26	1.391 (6)				
C1—H1	0.9300	C25—H25	0.9300				
C2—C3	1.373 (6)	C26—C27	1.364 (6)				

С2—Н2	0.9300	C26—H26	0.9300
C3—C4	1.379 (6)	C27—C28	1.373 (6)
С3—Н3	0.9300	С27—Н27	0.9300
C4—C5	1.383 (5)	C28—N4	1.346 (5)
C4—H4	0.9300	C28—H28	0.9300
C5—N1	1.337 (4)	C29—O3	1.220 (4)
C5—C6	1.491 (5)	C29—O2	1.284 (4)
C6—N2	1.353 (4)	C29—C30	1.520 (4)
C6—C7	1.383 (5)	C30—C35	1.386 (4)
С7—С8	1.398 (5)	C30—C31	1.400 (4)
С7—Н7	0.9300	C31—C32	1.395 (4)
C8—C9	1.375 (5)	С31—Н31	0.9300
C8—H8	0.9300	C32—C33	1.382 (4)
C9—C10	1.375 (5)	C32—C36	1.518 (4)
С9—Н9	0.9300	C33—C34	1.391 (4)
C10—N2	1.347 (4)	С33—Н33	0.9300
С10—Н10	0.9300	C34—C35	1.383 (4)
C11—O14	1.253 (4)	C34—N5	1.470 (4)
C11—O13	1.265 (4)	С35—Н35	0.9300
C11—C15	1.506 (4)	C36—O4	1.252 (4)
C12—O11	1.222 (4)	C36—O5	1.260 (4)
C12—O10	1.271 (4)	N5-06	1.216 (4)
C12—C13	1.525 (4)	N5-07	1.226 (4)
C13—C18	1.390 (4)	N6-09	1.211 (4)
C13—C14	1.401 (4)	N6-08	1.218 (4)
C14—C15	1.404 (4)	O1—H3W	0.83 (3)
C14—H14	0.9300	Q1—H4W	0.82 (3)
C15—C16	1.387 (4)	O4—Cu2 ⁱ	2.139 (2)
C16—C17	1.388 (5)	O5—Cu2 ⁱ	2.294 (2)
C16—H16	0.9300	O12—H1W	0.82 (4)
C17—C18	1.389 (4)	O12—H2W	0.82 (4)
C17—N6	1.468 (4)	O13—Cu1 ⁱⁱ	2.258 (2)
C18—H18	0.9300	O14—Cu1 ⁱⁱ	2.158 (2)
010—Cu1—N1	119.16 (10)	N3—C19—C20	122.2 (4)
O10—Cu1—N2	91.92 (10)	N3—C19—H19	118.9
N1—Cu1—N2	79.26 (10)	С20—С19—Н19	118.9
O10—Cu1—O12	87.71 (9)	C21—C20—C19	118.5 (4)
N1—Cu1—O12	93.12 (10)	C21—C20—H20	120.7
N2—Cu1—O12	171.06 (10)	С19—С20—Н20	120.7
O10-Cu1-O14 ⁱ	149.84 (9)	C20—C21—C22	119.7 (3)
N1—Cu1—O14 ⁱ	90.99 (10)	C20—C21—H21	120.1
N2-Cu1-014 ⁱ	94.65 (10)	C22—C21—H21	120.1
O12-Cu1-O14 ⁱ	90.11 (10)	C21—C22—C23	119.4 (4)
O10-Cu1-O13 ⁱ	90.66 (9)	C21—C22—H22	120.3
N1-Cu1-O13 ⁱ	150.04 (10)	C23—C22—H22	120.3
N2-Cu1-O13 ⁱ	98.11 (10)	N3—C23—C22	120.9 (4)
O12-Cu1-O13 ⁱ	90.83 (9)	N3—C23—C24	115.2 (3)

$O14^{i}$ — $Cu1$ — $O13^{i}$	59.29 (8)	C22—C23—C24	123.8 (3)
O2—Cu2—N3	119.41 (10)	N4—C24—C25	120.2 (3)
O2—Cu2—N4	91.57 (10)	N4—C24—C23	115.5 (3)
N3—Cu2—N4	78.83 (11)	C25—C24—C23	124.3 (3)
O2—Cu2—O1	87.52 (9)	C26—C25—C24	119.4 (4)
N3—Cu2—O1	94.37 (10)	С26—С25—Н25	120.3
N4—Cu2—O1	171.62 (10)	C24—C25—H25	120.3
O2—Cu2—O4 ⁱⁱ	149.99 (9)	C27—C26—C25	119.5 (4)
N3—Cu2—O4 ⁱⁱ	90.60 (9)	С27—С26—Н26	120.3
N4—Cu2—O4 ⁱⁱ	94.38 (10)	C25—C26—H26	120.3
O1—Cu2—O4 ⁱⁱ	90.54 (10)	C26—C27—C28	118.7 (4)
O2—Cu2—O5 ⁱⁱ	91.14 (9)	С26—С27—Н27	120.6
N3—Cu2—O5 ⁱⁱ	149.09 (9)	С28—С27—Н27	120.6
N4—Cu2—O5 ⁱⁱ	96.95 (10)	N4—C28—C27	123.0 (4)
O1—Cu2—O5 ⁱⁱ	91.40 (9)	N4—C28—H28	118.5
O4 ⁱⁱ —Cu2—O5 ⁱⁱ	58.96 (8)	С27—С28—Н28	118.5
N1—C1—C2	122.1 (4)	O3—C29—O2	125.0 (3)
N1—C1—H1	119.0	O3—C29—C30	119.1 (3)
C2—C1—H1	119.0	O2—C29—C30	115.9 (3)
C1—C2—C3	118.7 (4)	C35—C30—C31	118.7 (3)
C1—C2—H2	120.6	C35—C30—C29	121.8 (3)
С3—С2—Н2	120.6	C31-C30-C29	119.5 (3)
C2—C3—C4	119.7 (4)	C32-C31-C30	121.5 (3)
С2—С3—Н3	120.1	C32 -C31-H31	119.3
С4—С3—Н3	120.1	C30—C31—H31	119.3
C3—C4—C5	118.8 (4)	C33—C32—C31	120.0 (3)
C3—C4—H4	120.6	C33—C32—C36	120.3 (3)
C5—C4—H4	120.6	C31—C32—C36	119.7 (3)
N1—C5—C4	121.7 (3)	C32—C33—C34	117.7 (3)
N1—C5—C6	115.7 (3)	С32—С33—Н33	121.1
C4—C5—C6	122.6 (3)	С34—С33—Н33	121.1
N2—C6—C7	121.3 (3)	C35—C34—C33	123.2 (3)
N2—C6—C5	114.6 (3)	C35—C34—N5	118.3 (3)
C7—C6—C5	124.1 (3)	C33—C34—N5	118.4 (3)
C6—C7—C8	119.4 (3)	C34—C35—C30	118.9 (3)
С6—С7—Н7	120.3	С34—С35—Н35	120.5
С8—С7—Н7	120.3	С30—С35—Н35	120.5
C9—C8—C7	118.9 (3)	O4—C36—O5	121.0 (3)
С9—С8—Н8	120.5	O4—C36—C32	118.6 (3)
С7—С8—Н8	120.5	O5—C36—C32	120.4 (3)
C8—C9—C10	118.8 (3)	O4—C36—Cu2 ⁱ	57.03 (16)
С8—С9—Н9	120.6	O5—C36—Cu2 ⁱ	64.09 (16)
С10—С9—Н9	120.6	$C32$ — $C36$ — $Cu2^i$	174.0 (2)
N2—C10—C9	123.0 (3)	C5—N1—C1	119.0 (3)
N2-C10-H10	118.5	C5—N1—Cu1	115.6 (2)
С9—С10—Н10	118.5	C1—N1—Cu1	125.1 (2)
O14—C11—O13	120.5 (3)	C10—N2—C6	118.5 (3)
O14—C11—C15	119.1 (3)	C10—N2—Cu1	126.8 (2)

O13—C11—C15	120.4 (3)	C6—N2—Cu1	114.8 (2)
O14—C11—Cu1 ⁱⁱ	58.05 (16)	C23—N3—C19	119.2 (3)
O13—C11—Cu1 ⁱⁱ	62.60 (17)	C23—N3—Cu2	115.6 (2)
C15—C11—Cu1 ⁱⁱ	174.8 (2)	C19—N3—Cu2	124.6 (2)
O11—C12—O10	124.3 (3)	C28—N4—C24	119.1 (3)
O11—C12—C13	118.5 (3)	C28—N4—Cu2	126.4 (2)
O10-C12-C13	117.1 (3)	C24—N4—Cu2	114.5 (2)
C18—C13—C14	119.6 (3)	O6—N5—O7	123.5 (3)
C18—C13—C12	121.0 (3)	O6—N5—C34	118.3 (3)
C14—C13—C12	119.4 (3)	O7—N5—C34	118.2 (3)
C13—C14—C15	121.0 (3)	O9—N6—O8	123.4 (3)
C13—C14—H14	119.5	O9—N6—C17	119.1 (3)
C15—C14—H14	119.5	08—N6—C17	117.6 (4)
C16—C15—C14	119.8 (3)	Cu2—O1—H3W	118 (3)
C16—C15—C11	120.1 (3)	Cu2—O1—H4W	112 (3)
C14—C15—C11	120.0 (3)	H3W—O1—H4W	113 (4)
C15—C16—C17	117.8 (3)	C29—O2—Cu2	122.8 (2)
C15—C16—H16	121.1	C36—O4—Cu2 ⁱ	93.58 (18)
С17—С16—Н16	121.1	C36—O5—Cu2 ⁱ	86.30 (19)
C16—C17—C18	123.9 (3)	C12—O10—Cu1	121.3 (2)
C16—C17—N6	118.4 (3)	Cu1—O12—H1W	106 (3)
C18—C17—N6	117.6 (3)	Cu1—O12—H2W	121 (3)
C13—C18—C17	117.9 (3)	H1W-012-H2W	112 (4)
C13—C18—H18	121.0	C11-013-Cu1 ⁱⁱ	87.6 (2)
C17—C18—H18	121.0	C11—014—Cu1 ⁱⁱ	92.45 (19)
Symmetry codes: (i) $x+1$, y , z ; (ii) $x-1$, y , z .			
Hydrogen-bond geometry (Å, °)	X		

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A	
O12—H1 <i>W</i> ···O2 ⁱ	0.83 (4)	1.98 (2)	2.742 (3)	153 (4)	
O1—H4 <i>W</i> ···O10 ⁱⁱ	0.82 (3)	1.95 (2)	2.724 (3)	158 (4)	
O12—H2 <i>W</i> ···O5	0.82 (4)	2.07 (3)	2.760 (3)	141 (4)	
O1—H3 <i>W</i> ···O13	0.83 (3)	2.13 (3)	2.778 (3)	135 (4)	

 $\overline{\text{Symmetry codes: (i) } x+1, y, z; (ii) } x-1, y, z.$