organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-4-[(4-Nitrophenyl)diazenyl]phenyl anthracene-9-carboxvlate

Mark A. Rodriguez,^a* Jessica L. Nichol,^b Thomas Zifer,^c Andrew L. Vance,^c Bryan M. Wong^c and François Léonard^d

^aPO Box 5800, MS 1411, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA, ^bDepartment of Chemistry, Indiana University of Pennsylvania, Indiana, Pennsylvania 15705, USA, CPO Box 969, MS 9403, Sandia National Laboratories, Livermore, California 94551, USA, and ^dPO Box 969, MS 9161, Sandia National Laboratories, Livermore, California 94551, USA Correspondence e-mail: marodri@sandia.gov

Received 24 October 2008; accepted 27 October 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.100; data-to-parameter ratio = 11.9.

In the title compound, C₂₇H₁₇N₃O₄, the azo group displays a trans conformation and the dihedral angles between the central benzene ring and the pendant anthracene and nitrobenzene rings are 82.94 (7) and 7.30 (9) $^{\circ}$, respectively. In the crystal structure, weak $C-H \cdots O$ hydrogen bonds, likely associated with a dipole moment present on the molecule, help to consolidate the packing.

Related literature

This structure is similar to the perviously reported compound (*E*)-2-{Ethyl[4-(4-nitrophenyldiazenyl)phenyl]amino}ethyl anthracene-9-carboxylate (Rodriguez, et al., 2008). For general background, see: Atassi et al. (1998); Becke (1993).

Experimental

Crystal data C27H17N3O4

 $M_r = 447.44$

Monoclinic, $P2_1/c$	
a = 13.525 (2) Å	
b = 8.6011 (14) Å	
c = 18.956 (3) Å	
$\beta = 109.322 \ (3)^{\circ}$	
V = 2080.9 (6) Å ³	

Data collection

Bruker SMART CCD area-detector	14511 measured reflections
diffractometer	3665 independent reflections
Absorption correction: multi-scan	2752 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1999)	$R_{\rm int} = 0.038$
$T_{\min} = 0.980, \ T_{\max} = 0.995$	

Z = 4

Mo $K\alpha$ radiation

 $\mu = 0.10 \text{ mm}^{-1}$

T = 173 (2) K $0.20 \times 0.18 \times 0.05 \text{ mm}$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	307 parameters
$wR(F^2) = 0.100$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.39 \text{ e } \text{\AA}^{-3}$
3665 reflections	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C26-H26\cdots O2^{i}$	0.95	2.54	3.273 (3)	134
$C17-H17\cdots O4^{ii}$	0.95	2.57	3.509 (3)	169

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y + 2, -z.

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XSHELL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94 A L85000.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2827).

References

Atassi, Y., Chauvin, J., Delaire, J. A., Delouis, J. F., Fanton-Maltey, I. & Nakatani, K. (1998). Pure Appl. Chem. 70, 2157-2166.

Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.

Bruker (2001). SMART, XSHELL and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Rodriguez, M. A., Zifer, T., Vance, A. L., Wong, B. M. & Leonard, F. (2008). Acta Cryst. E64, 0595.

Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o2258 [doi:10.1107/S1600536808034958]

(E)-4-[(4-Nitrophenyl)diazenyl]phenyl anthracene-9-carboxylate

Mark A. Rodriguez, Jessica L. Nichol, Thomas Zifer, Andrew L. Vance, Bryan M. Wong and François Léonard

S1. Comment

Atassi *et al.* (1998) has documented photoisomerization of the azobenzene in Disperse Red 1 (DR1) to a *cis* conformation under UV light, with decay back to the equilibrium *trans* species with removal of the UV light. In this manuscript we present another compound, (I), containing a *trans* azobenzene conformational state (Fig. 1). The displacement ellipsoids for most of the atoms are well defined. However, the O1 and O2 atoms at the termination of the nitroazobenzene unit do show subtle enlargement.

Figure 2 shows a packing arrangement and intermolecular interactions for (I). The nitroazobenzene portion is nearly planar as is the anthracene portion of the molecule. The anthracene is rotated from the nitroazobenzene through the carboxyl group. The title compound displays a head-to-toe configuration *via* weak C—H···O bonds as shown in Figure 2. Specifically, an O2 atom of one molecule makes a weak bond to H26 of the neighboring molecule with a bond length of 2.55 Å. The calculated dipole moment for a molecule of (I) is 7.6806 Debye using the B3LYP functional (Becke, 1993) with the 6–311 G(d,p) triple-zeta basis. This dipole moment likely drives the head-to-toe alignment of the molecules as illustrated in Figure 2.

The structure of (I) is similar in form to that of the previously reported ester (*E*)-2-{ethyl[4-(4-nitrophenyl-diazenyl)phenyl]amino}ethyl anthracene-9-carboxylate (Rodriguez, *et al.*, 2008), with the subtle difference relating to the absence of the ethyl-amino ligand in (I). As with the aformentioned compound, intermolecular interactions for the title compound are exclusively C—H···O in nature (Table 2). An additional interaction which bridges molecules in the *a* axis direction is also shown in Figure 2. This weak hydrogen bond is between the terminal carboxyl oxygen O4 and the neighboring H17 atom. The hydrogen bond shows a length of 2.57 Å and symmetrically bonds the two H atoms of the anthracene of each molecule.

S2. Experimental

The title compound was synthesized from 9-anthracenecarboxylic acid and 4-(4-nitrophenyl)azophenol *via* a dicyclohexylcarbodiimide esterification in anhydrous dichloromethane. After filtration of insoluble side products and removal of solvent by rotary evaporation, the crude product was dissolved in dichloromethane and filtered through a silica gel plug. Evaporation of the solvent gave a red powder that was characterized by 1*H*-NMR, UV/Vis and FTIR. Red crystals of (I) were obtained by recrystallization from hot dichloromethane.

Figure 1

The molecular structure of (I) with 50% probability displacement ellipsoids for non-H atoms.

Figure 2

A packing diagram of (I) illustrating weak C—H···O hydrogen-bond interactions associated with terminal oxygen atoms O2 and O4.

(E)-4-[(4-Nitrophenyl)diazenyl]phenyl anthracene-9-carboxylate

Crystal data	
$C_{27}H_{17}N_3O_4$	Hall symbol: -P 2ybc
$M_r = 447.44$	a = 13.525 (2) Å
Monoclinic, $P2_1/c$	b = 8.6011 (14) Å

Cell parameters from 100 reflections

 $\theta = 1.6 - 25.0^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

 $0.20 \times 0.18 \times 0.05 \text{ mm}$

T = 173 K

Plate, red

c = 18.956(3) Å $\beta = 109.322 (3)^{\circ}$ V = 2080.9 (6) Å³ Z = 4F(000) = 928 $D_{\rm x} = 1.428 \text{ Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å

Data collection

Bruker SMART CCD area-detector	14511 measured reflections
diffractometer	3665 independent reflections
Radiation source: fine-focus sealed tube	2752 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.038$
Detector resolution: 0 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 1.6^{\circ}$
φ and ω scans	$h = -16 \rightarrow 16$
Absorption correction: multi-scan	$k = -10 \rightarrow 10$
(SADABS; Sheldrick, 1999)	$l = -21 \rightarrow 22$
$T_{\min} = 0.980, \ T_{\max} = 0.995$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.100$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
3665 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0388P)^2 + 0.7361P]$
307 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.39 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s, except the e.s.d. in the dihedral angle between two least-square (l.s.) planes, are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances. angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.69229 (14)	1.52655 (19)	0.65761 (9)	0.0352 (4)	
N2	0.44775 (13)	1.12430 (19)	0.43308 (9)	0.0350 (4)	
N3	0.48826 (13)	1.08369 (18)	0.38663 (9)	0.0333 (4)	
01	0.78660 (13)	1.5368 (2)	0.66951 (9)	0.0581 (5)	
O2	0.64573 (13)	1.60250 (18)	0.69126 (8)	0.0486 (4)	
O3	0.26778 (10)	0.69438 (15)	0.15211 (7)	0.0304 (3)	
O4	0.10043 (11)	0.77469 (17)	0.12517 (8)	0.0416 (4)	
C1	0.63159 (15)	1.4180 (2)	0.59981 (10)	0.0272 (4)	
C2	0.52768 (15)	1.3952 (2)	0.59086 (11)	0.0322 (5)	

H2	0.4957	1.4476	0.6218	0.039*
C3	0.47087 (16)	1.2945 (2)	0.53590 (11)	0.0334 (5)
Н3	0.3993	1.2749	0.5295	0.040*
C4	0.51755 (15)	1.2218 (2)	0.49006 (10)	0.0289 (5)
C5	0.62352 (16)	1.2433 (2)	0.50109 (11)	0.0307 (5)
Н5	0.6556	1.1907	0.4703	0.037*
C6	0.68173 (16)	1.3411 (2)	0.55702 (11)	0.0304 (5)
H6	0.7545	1.3555	0.5660	0.037*
C7	0.42162 (15)	0.9862 (2)	0.32817 (10)	0.0298 (5)
C8	0.31857 (16)	0.9475 (2)	0.31890 (11)	0.0326 (5)
H8	0.2860	0.9874	0.3524	0.039*
С9	0.26266 (16)	0.8502 (2)	0.26061 (11)	0.0316 (5)
Н9	0.1924	0.8218	0.2543	0.038*
C10	0.31210 (15)	0.7960 (2)	0.21211 (10)	0.0273 (4)
C11	0.41510 (15)	0.8342 (2)	0.22141 (11)	0.0296 (5)
H11	0.4480	0.7949	0.1879	0.036*
C12	0.46943 (16)	0.9293 (2)	0.27953 (11)	0.0318 (5)
H12	0.5401	0.9560	0.2862	0.038*
C13	0.16358 (15)	0.6938 (2)	0.11132 (11)	0.0281 (4)
C14	0.14418 (14)	0.5854 (2)	0.04656 (10)	0.0258 (4)
C15	0.09289 (14)	0.6443 (2)	-0.02570 (11)	0.0265 (4)
C16	0.05487 (14)	0.8006 (2)	-0.04087 (12)	0.0313 (5)
H16	0.0626	0.8699	-0.0004	0.038*
C17	0.00814 (16)	0.8515 (2)	-0.11171 (12)	0.0383 (5)
H17	-0.0159	0.9559	-0.1201	0.046*
C18	-0.00531 (17)	0.7513 (3)	-0.17329 (12)	0.0426 (6)
H18	-0.0391	0.7882	-0.2227	0.051*
C19	0.02967 (16)	0.6035 (2)	-0.16205 (12)	0.0381 (5)
H19	0.0206	0.5375	-0.2039	0.046*
C20	0.07981 (14)	0.5446 (2)	-0.08895 (11)	0.0287 (5)
C21	0.11527 (14)	0.3921 (2)	-0.07705 (11)	0.0296 (5)
H21	0.1070	0.3269	-0.1191	0.036*
C22	0.16242 (14)	0.3316 (2)	-0.00585 (11)	0.0256 (4)
C23	0.19358 (15)	0.1725 (2)	0.00493 (12)	0.0309 (5)
H23	0.1821	0.1069	-0.0373	0.037*
C24	0.23912 (15)	0.1134 (2)	0.07422 (12)	0.0345 (5)
H24	0.2597	0.0073	0.0803	0.041*
C25	0.25608 (15)	0.2095 (2)	0.13743 (12)	0.0339 (5)
H25	0.2886	0.1677	0.1860	0.041*
C26	0.22641 (15)	0.3615 (2)	0.12975 (11)	0.0312 (5)
H26	0.2376	0.4236	0.1732	0.037*
C27	0.17899 (14)	0.4293 (2)	0.05797 (11)	0.0260 (4)

Atomic displacement parameters $(Å^2)$

U^{Π}	l	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1 0.04 N2 0.04	431 (11) (409 (10) (0.0312(10) 0.0305(10)	0.0275 (10)	-0.0035(8) 0.0027(8)	0.0066 (8)	-0.0032(8) 0.0012(8)

Acta Cryst. (2008). E64, o2258

N3	0.0388 (10)	0.0277 (9)	0.0353 (10)	0.0021 (8)	0.0148 (9)	0.0029 (8)
01	0.0400 (10)	0.0717 (12)	0.0571 (11)	-0.0170 (9)	0.0088 (8)	-0.0273 (9)
O2	0.0602 (11)	0.0453 (9)	0.0393 (9)	0.0034 (8)	0.0155 (8)	-0.0165 (8)
O3	0.0253 (7)	0.0304 (8)	0.0328 (8)	-0.0026 (6)	0.0060 (6)	-0.0102 (6)
O4	0.0307 (8)	0.0404 (9)	0.0486 (9)	0.0042 (7)	0.0062 (7)	-0.0176 (7)
C1	0.0340 (11)	0.0229 (10)	0.0210 (10)	-0.0012 (8)	0.0040 (9)	0.0008 (8)
C2	0.0352 (12)	0.0302 (11)	0.0306 (11)	0.0052 (9)	0.0102 (9)	-0.0003 (9)
C3	0.0295 (11)	0.0335 (11)	0.0348 (12)	-0.0004 (9)	0.0074 (9)	0.0016 (9)
C4	0.0348 (12)	0.0224 (10)	0.0241 (10)	-0.0027 (9)	0.0023 (9)	0.0017 (8)
C5	0.0401 (12)	0.0276 (11)	0.0263 (11)	0.0024 (9)	0.0135 (9)	-0.0016 (9)
C6	0.0308 (11)	0.0299 (11)	0.0309 (11)	-0.0023 (9)	0.0106 (9)	0.0009 (9)
C7	0.0351 (12)	0.0226 (10)	0.0253 (11)	-0.0047 (9)	0.0013 (9)	0.0003 (8)
C8	0.0467 (13)	0.0280 (11)	0.0246 (11)	0.0042 (9)	0.0137 (10)	0.0006 (9)
C9	0.0327 (12)	0.0317 (11)	0.0296 (11)	-0.0027 (9)	0.0094 (9)	-0.0003 (9)
C10	0.0343 (11)	0.0202 (10)	0.0236 (10)	-0.0005 (8)	0.0045 (9)	-0.0015 (8)
C11	0.0316 (11)	0.0270 (10)	0.0282 (11)	-0.0010 (9)	0.0071 (9)	-0.0018 (9)
C12	0.0314 (11)	0.0301 (11)	0.0303 (11)	-0.0035 (9)	0.0056 (9)	-0.0022 (9)
C13	0.0271 (11)	0.0222 (10)	0.0337 (11)	-0.0021 (8)	0.0083 (9)	-0.0007 (9)
C14	0.0212 (10)	0.0246 (10)	0.0304 (11)	-0.0045 (8)	0.0069 (8)	-0.0032 (8)
C15	0.0202 (10)	0.0244 (10)	0.0343 (11)	-0.0031 (8)	0.0083 (9)	-0.0007 (9)
C16	0.0266 (11)	0.0249 (10)	0.0408 (13)	-0.0026 (8)	0.0091 (9)	-0.0020 (9)
C17	0.0350 (12)	0.0281 (11)	0.0482 (14)	0.0031 (9)	0.0092 (11)	0.0068 (10)
C18	0.0461 (14)	0.0416 (13)	0.0358 (13)	0.0042 (11)	0.0076 (11)	0.0094 (10)
C19	0.0422 (13)	0.0392 (13)	0.0316 (12)	0.0006 (10)	0.0105 (10)	-0.0004 (10)
C20	0.0256 (10)	0.0289 (11)	0.0318 (11)	-0.0015 (8)	0.0097 (9)	-0.0010 (9)
C21	0.0295 (11)	0.0299 (11)	0.0301 (11)	-0.0036 (9)	0.0108 (9)	-0.0062 (9)
C22	0.0213 (10)	0.0237 (10)	0.0319 (11)	-0.0034 (8)	0.0091 (9)	-0.0039 (8)
C23	0.0319 (11)	0.0251 (10)	0.0378 (12)	-0.0008 (9)	0.0142 (10)	-0.0050 (9)
C24	0.0336 (12)	0.0227 (10)	0.0466 (14)	-0.0001 (9)	0.0123 (10)	0.0022 (10)
C25	0.0313 (11)	0.0308 (11)	0.0353 (12)	-0.0014 (9)	0.0053 (9)	0.0056 (9)
C26	0.0319 (11)	0.0280 (11)	0.0314 (12)	-0.0040 (9)	0.0071 (9)	-0.0009 (9)
C27	0.0209 (10)	0.0248 (10)	0.0316 (11)	-0.0044 (8)	0.0078 (8)	-0.0019 (8)

Geometric parameters (Å, °)

N1-01	1.223 (2)	C12—H12	0.9500
N102	1.223 (2)	C13—C14	1.494 (3)
N1—C1	1.467 (2)	C14—C15	1.409 (3)
N2—N3	1.231 (2)	C14—C27	1.416 (3)
N2—C4	1.445 (2)	C15—C16	1.434 (3)
N3—C7	1.443 (2)	C15—C20	1.437 (3)
O3—C13	1.365 (2)	C16—C17	1.354 (3)
O3—C10	1.402 (2)	C16—H16	0.9500
O4—C13	1.196 (2)	C17—C18	1.413 (3)
C1—C2	1.373 (3)	C17—H17	0.9500
C1—C6	1.385 (3)	C18—C19	1.349 (3)
С2—С3	1.377 (3)	C18—H18	0.9500
C2—H2	0.9500	C19—C20	1.420 (3)

C3—C4	1.381 (3)	C19—H19	0.9500
С3—Н3	0.9500	C20—C21	1.389 (3)
C4—C5	1.391 (3)	C21—C22	1.389 (3)
C5—C6	1.378 (3)	C21—H21	0.9500
С5—Н5	0.9500	C22—C23	1.426 (3)
С6—Н6	0.9500	C22—C27	1.429 (3)
C7-C12	1 379 (3)	C_{23} C_{24}	1 352 (3)
C7-C8	1.377(3)	C23_H23	0.9500
C^{*} C^{0}	1.307(3)	C_{23} C_{25}	1.411(3)
C_{0}	1.595 (5)	$C_2 4 = C_2 3$	1.411 (3)
	0.9300	C_{24} H_{24}	0.9300
C9—C10	1.384 (3)	C25—C26	1.361 (3)
С9—Н9	0.9500	С25—Н25	0.9500
C10—C11	1.385 (3)	C26—C27	1.423 (3)
C11—C12	1.374 (3)	C26—H26	0.9500
C11—H11	0.9500		
O1—N1—O2	123.42 (18)	O3—C13—C14	109.61 (15)
01—N1—C1	118.41 (17)	C15—C14—C27	121.42 (17)
02—N1—C1	118.17 (18)	C15-C14-C13	118.08 (16)
N3_N2_C4	111135(17)	C_{27} C_{14} C_{13}	120.48(17)
N2_N3_C7	113.66 (17)	C_{14} C_{15} C_{16}	120.10(17) 124.09(18)
$C_{12} = C_{13} = C_{10}$	113.00(17) 123.10(14)	$C_{14} = C_{15} = C_{10}$	124.09(10)
$C_{13} = 0_{3} = 0_{10}$	123.10(14) 122.62(18)	C14 - C15 - C20	117.00(17)
$C_2 = C_1 = C_0$	122.02 (18)	C16 - C15 - C20	117.09(17)
C2—C1—NI	118.71 (17)	C1/C16C15	121.37 (19)
C6-C1-N1	118.67 (17)	C17—C16—H16	119.3
C1—C2—C3	118.39 (19)	C15—C16—H16	119.3
C1—C2—H2	120.8	C16—C17—C18	120.84 (19)
С3—С2—Н2	120.8	С16—С17—Н17	119.6
C2—C3—C4	120.25 (19)	C18—C17—H17	119.6
С2—С3—Н3	119.9	C19—C18—C17	120.1 (2)
С4—С3—Н3	119.9	С19—С18—Н18	119.9
C3—C4—C5	120.56 (18)	C17—C18—H18	119.9
C3—C4—N2	114 30 (17)	C18-C19-C20	1213(2)
C_{5} C_{4} N2	125 14 (18)	C_{18} C_{19} H_{19}	1193
C6 C5 C4	129.14(10) 110.65(18)	C_{10} C_{10} H_{10}	110.3
C6 C5 H5	119.05 (10)	$C_{20} = C_{10} = C_{10}$	119.5
$C_0 = C_5 = H_5$	120.2	$C_{21} = C_{20} = C_{19}$	121.33(18)
C4—C5—H5	120.2		119.19 (18)
C5-C6-C1	118.43 (18)	019-020-015	119.26 (18)
С5—С6—Н6	120.8	C22—C21—C20	122.30 (18)
C1—C6—H6	120.8	C22—C21—H21	118.8
C12—C7—C8	120.27 (18)	C20—C21—H21	118.8
C12—C7—N3	114.06 (17)	C21—C22—C23	121.17 (17)
C8—C7—N3	125.67 (18)	C21—C22—C27	119.68 (17)
С7—С8—С9	120.27 (18)	C23—C22—C27	119.15 (18)
С7—С8—Н8	119.9	C24—C23—C22	121.19 (19)
С9—С8—Н8	119.9	C24—C23—H23	119.4
C10—C9—C8	118.32 (19)	С22—С23—Н23	119.4
С10—С9—Н9	120.8	C23—C24—C25	119.90 (19)
			· · · · · · · · · · · · · · · · · · ·

С8—С9—Н9	120.8	C23—C24—H24	120.0
C9—C10—C11	121.49 (18)	C25—C24—H24	120.0
C9—C10—O3	125.30 (17)	C26—C25—C24	120.85 (19)
C11—C10—O3	113.16 (16)	С26—С25—Н25	119.6
C12—C11—C10	119.47 (18)	С24—С25—Н25	119.6
C12—C11—H11	120.3	C25—C26—C27	121.29 (19)
C10-C11-H11	120.3	C25—C26—H26	119.4
C11—C12—C7	120.18 (19)	С27—С26—Н26	119.4
C11—C12—H12	119.9	C14—C27—C26	123.82 (17)
C7—C12—H12	119.9	C14—C27—C22	118.54 (17)
O4—C13—O3	123.49 (17)	C26—C27—C22	117.60 (17)
O4—C13—C14	126.81 (18)		
	()		

Hydrogen-bond geometry (Å, °)

	D—H	H····A	D····A	<i>D</i> —H··· <i>A</i>
C26—H26…O2 ⁱ	0.95	2.54	3.273 (3)	134
C17—H17…O4 ⁱⁱ	0.95	2.57	3.509 (3)	169

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*, -*y*+2, -*z*.