

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(tetraphenylphosphonium) di-*u*iodido-bis[diiodidotellurate(II)]

Sari M. Närhi, Raija Oilunkaniemi* and Risto S. Laitinen

Department of Chemistry, P.O. Box 3000, FI-90014 University of Oulu, Finland Correspondence e-mail: raija.oilunkaniemi@oulu.fi

Received 31 October 2008: accepted 1 November 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.009 Å; R factor = 0.041; wR factor = 0.107; data-to-parameter ratio = 19.0.

The structure of the title compound, $(C_{24}H_{20}P)_2[Te_2I_6]$, is composed of discrete PPh4⁺ cations and centrosymmetric $[Te_2I_6]^{2-}$ anions. The tellurium(II) atom shows a slightly distorted square-planar TeI₄ geometry and is coordinated to two bridging and two terminal iodine atoms. The planar $[Te_2I_6]^{2-}$ ions are isolated by the cations and no intermolecular tellurium-halogen or halogen-halogen interactions are present.

Related literature

For a review of halidotellurate anions, see Krebs & Ahlers (1990). For the structure of the $[Te_2I_6]^{2-}$ anion, see: Konu & Chivers (2006); Fujiwara et al. (2002). For related materials, see: Janickis et al. (2002, 2003).

Experimental

Crystal data

 $(C_{24}H_{20}P)_2[Te_2I_6]$ $M_r = 1695.34$ Monoclinic, $P2_1/n$ a = 13.252 (3) Å b = 14.494 (3) Å c = 14.109 (3) Å $\beta = 107.48 \ (3)^{\circ}$

V = 2584.8 (9) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 4.80 \text{ mm}^{-1}$ T = 100 (2) K $0.15 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Bruker–Nonius KappaCCD	23569 measured reflections
diffractometer	5009 independent reflections
Absorption correction: multi-scan	4225 reflections with $I > 2\sigma(I)$
(<i>SADABS</i> ; Sheldrick, 1996)	$R_{\text{int}} = 0.103$
(SADABS; Sheldrick, 1996) $T_{min} = 0.511, T_{max} = 0.619$	$R_{\rm int} = 0.103$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	263 parameters
$wR(F^2) = 0.107$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 1.08 \text{ e } \text{\AA}^{-3}$
5009 reflections	$\Delta \rho_{\rm min} = -1.03 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Te1-I2	2.8103 (8)	Te1-I3	3.0676 (8)
Te1-I1	2.8590 (8)	Te1-I3 ⁱ	3.2244 (8)
Symmetry code: (i)	-x + 1, -y + 1, -z + 1		

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial support from the Academy of Finland is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2834).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Brandenburg, K. & Berndt, M. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fujiwara, M., Tajima, N., Imakubo, T., Tamura, M. & Kato, R. (2002). J. Solid State Chem. 168, 396-407.
- Janickis, V., Herberhold, M. & Milius, W. (2003). Z. Anorg. Allg. Chem. 629, 29 - 34
- Janickis, V., Nečas, M., Novosad, J., Dušek, M. & Petříček, V. (2002). Acta Cryst. B58, 977-985.
- Konu, J. & Chivers, T. (2006). Dalton Trans. pp. 3941-3946.
- Krebs, B. & Ahlers, F. P. (1990). Adv. Inorg. Chem. 35, 235-317.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, m1561 [doi:10.1107/S1600536808035927]

Bis(tetraphenylphosphonium) di-µ-iodido-bis[diiodidotellurate(II)]

Sari M. Närhi, Raija Oilunkaniemi and Risto S. Laitinen

S1. Comment

The asymmetric unit of the title compound, (I), $[PPh_4]_2[Te_2I_6]$, consists of one tetraphenylphosphonium cation and half of the anion (Fig. 1). The tellurium atoms show a distorted square planar coordination geometry and are coordinated to two bridging and two terminal iodine atoms (Table 1). The terminal Te—I bond lengths of 2.8103 (8) Å and 2.8590 (8) Å as well as the bridging Te—I bond lengths of 3.0676 (8) Å and 3.2244 (8) Å can be compared to the corresponding Te—I bonds in $[(Et_3PO)_2H]_2[Te_2I_6]$ (Konu & Chivers, 2006) and $(C_{10}H_8S_8)_2[Te_2I_6].3(C_{10}H_8S_8)$ (Fujiwara *et al.* 2002). In $[(Et_3PO)_2H]_2[Te_2I_6]$ and $(C_{10}H_8S_8)_2[Te_2I_6].3(C_{10}H_8S_8)$ the anions are involved in interionic I···I interactions shorter than the van der Waals radii of two iodine atoms, whereas in the present compound intermolecular iodine-iodine contacts are absent. The planar $[Te_2I_6]^2$ ions are isolated by the cations as shown in Fig. 2.

The present salt was obtained from the reaction mixture of PPh₄Cl, KI, Te, TeI₄, and I₂ in acetonitrile. Corresponding reactions with selenium, tellurium and bromine containing starting materials have yielded interesting mixed-valence bromidotellurate(IV)-selenate(II) and -selenate(I) anions [for illustrative examples, see Janickis *et al.* (2002, 2003)].

S2. Experimental

The mixture of PPh₄Cl (0.3750 g, 1.00 mmol), KI (0.2 g, 1 mmol), Te (0.1452 g, 1.14 mmol), TeI₄ (0.3172 g, 0.50 mmol), and I₂ (0.1274 g, 0.50 mmol) in 15 ml acetonitrile gave a grey precipitate and a dark red solution after refluxing 2 h. A mixture of crystals of (I) and PPh₄I₃ was isolated from the filtrate after subsequent concentration of the solution.

S3. Refinement

The H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of (I) showing displacement ellipsoids drawn at 50% probability (arbitrary spheres for the H atoms). The unlabelled atoms are generated by the symmetry operation (1-x, 1-y, 1-z).

Figure 2

Space filling representations of the packing of the molecules.

Bis(tetraphenylphosphonium) di-µ-iodido-bis[diiodidotellurate(II)]

Crystal data

 $(C_{24}H_{20}P)_2[Te_2I_6]$ $M_r = 1695.34$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 13.252 (3) Å b = 14.494 (3) Å c = 14.109 (3) Å $\beta = 107.48$ (3)° V = 2584.8 (9) Å³ Z = 2 F(000) = 1560 $D_x = 2.178 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4225 reflections $\theta = 3.0-26.0^{\circ}$ $\mu = 4.81 \text{ mm}^{-1}$ T = 100 KPlate, brown $0.15 \times 0.15 \times 0.10 \text{ mm}$ Data collection

Bruker Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ scans, and ω scans with κ offsets Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.511, T_{\max} = 0.619$ <i>Refinement</i>	23569 measured reflections 5009 independent reflections 4225 reflections with $I > 2\sigma(I)$ $R_{int} = 0.103$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -16 \rightarrow 16$ $k = -17 \rightarrow 17$ $l = -17 \rightarrow 16$
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.107$	$w = 1/[\sigma^2(F_o^2) + (0.0555P)^2 + 5.4856P]$
S = 1.03	where $P = (F_o^2 + 2F_c^2)/3$
5009 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
263 parameters	$\Delta \rho_{\rm max} = 1.09 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.03 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL</i> , Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.00320 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	v	Z	U_{iso}^*/U_{ea}	
Te1	0.39145 (3)	0.49167 (2)	0.59757 (3)	0.02321 (13)	
II	0.18308 (3)	0.56474 (3)	0.56278 (3)	0.02848 (14)	
I2	0.39684 (3)	0.41640 (3)	0.78259 (3)	0.03878 (15)	
13	0.61278 (3)	0.41817 (3)	0.61252 (3)	0.02757 (13)	
P1	0.32106 (11)	0.11106 (9)	0.54406 (10)	0.0195 (3)	
C11	0.2712 (4)	-0.0042 (4)	0.5160 (4)	0.0229 (12)	
C12	0.3382 (5)	-0.0802 (4)	0.5366 (5)	0.0270 (13)	
H12	0.4121	-0.0718	0.5661	0.032*	
C13	0.2973 (5)	-0.1679 (4)	0.5144 (4)	0.0316 (13)	
H13	0.3432	-0.2198	0.5295	0.038*	
C14	0.1894 (5)	-0.1807 (4)	0.4700 (4)	0.0330 (14)	
H14	0.1613	-0.2411	0.4555	0.040*	
C15	0.1229 (5)	-0.1046 (4)	0.4470 (5)	0.0304 (13)	
H15	0.0496	-0.1133	0.4146	0.036*	
C16	0.1620 (5)	-0.0163 (4)	0.4706 (4)	0.0268 (12)	

H16	0.1157	0.0353	0.4564	0.032*
C21	0.4391 (4)	0.1058 (4)	0.6475 (4)	0.0216 (11)
C22	0.5306 (4)	0.1552 (4)	0.6471 (4)	0.0268 (12)
H22	0.5306	0.1916	0.5911	0.032*
C23	0.6208 (5)	0.1507 (4)	0.7286 (5)	0.0323 (14)
H23	0.6825	0.1841	0.7285	0.039*
C24	0.6208 (5)	0.0973 (4)	0.8100 (4)	0.0305 (13)
H24	0.6829	0.0934	0.8652	0.037*
C25	0.5306 (5)	0.0497 (4)	0.8112 (4)	0.0263 (12)
H25	0.5307	0.0144	0.8680	0.032*
C26	0.4407 (4)	0.0530 (4)	0.7304 (4)	0.0223 (11)
H26	0.3796	0.0191	0.7314	0.027*
C31	0.3505 (4)	0.1619 (4)	0.4396 (4)	0.0208 (11)
C32	0.3740 (4)	0.2572 (4)	0.4442 (4)	0.0233 (11)
H32	0.3701	0.2926	0.4996	0.028*
C33	0.4029 (4)	0.2990 (4)	0.3680 (4)	0.0268 (12)
H33	0.4193	0.3630	0.3711	0.032*
C34	0.4077 (4)	0.2469 (4)	0.2870 (4)	0.0266 (12)
H34	0.4288	0.2752	0.2353	0.032*
C35	0.3818 (4)	0.1534 (4)	0.2808 (4)	0.0267 (12)
H35	0.3834	0.1190	0.2240	0.032*
C36	0.3537 (4)	0.1101 (4)	0.3574 (4)	0.0247 (12)
H36	0.3370	0.0462	0.3536	0.030*
C41	0.2233 (4)	0.1829 (4)	0.5724 (4)	0.0221 (11)
C42	0.2246 (5)	0.1973 (4)	0.6707 (4)	0.0301 (13)
H42	0.2766	0.1680	0.7235	0.036*
C43	0.1496 (5)	0.2545 (4)	0.6908 (5)	0.0357 (15)
H43	0.1511	0.2652	0.7577	0.043*
C44	0.0728 (5)	0.2959 (4)	0.6140 (5)	0.0314 (14)
H44	0.0219	0.3353	0.6281	0.038*
C45	0.0702 (5)	0.2800 (4)	0.5171 (5)	0.0342 (14)
H45	0.0164	0.3078	0.4645	0.041*
C46	0.1445 (5)	0.2242 (4)	0.4954 (5)	0.0296 (13)
H46	0.1421	0.2139	0.4282	0.036*

Atomic aisplacement parameters (A^2)	Atomic	displacement	parameters	(\mathring{A}^2)
--	--------	--------------	------------	--------------------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Tel	0.0210 (2)	0.0221 (2)	0.0260 (2)	-0.00164 (14)	0.00639 (16)	-0.00285 (14)
I1	0.0232 (2)	0.0348 (2)	0.0277 (2)	0.00469 (15)	0.00807 (16)	-0.00166 (15)
I2	0.0337 (3)	0.0505 (3)	0.0295 (3)	-0.00871 (18)	0.00551 (19)	0.00788 (18)
I3	0.0228 (2)	0.0278 (2)	0.0317 (2)	0.00296 (14)	0.00762 (17)	0.00327 (15)
P1	0.0181 (7)	0.0196 (7)	0.0205 (7)	0.0006 (5)	0.0053 (5)	-0.0005 (5)
C11	0.026 (3)	0.027 (3)	0.018 (3)	-0.002(2)	0.010(2)	0.002 (2)
C12	0.020 (3)	0.029 (3)	0.032 (3)	0.002 (2)	0.008 (3)	-0.003 (2)
C13	0.033 (3)	0.033 (3)	0.028 (3)	0.007 (3)	0.008 (3)	0.004 (3)
C14	0.044 (4)	0.025 (3)	0.029 (3)	-0.009(3)	0.010 (3)	0.000 (3)
C15	0.026 (3)	0.031 (3)	0.030 (3)	-0.004 (2)	0.003 (2)	-0.004 (3)

C16	0.026 (3)	0.022 (3)	0.029 (3)	-0.002 (2)	0.004 (2)	-0.002 (2)	
C21	0.018 (3)	0.020 (3)	0.026 (3)	0.001 (2)	0.004 (2)	-0.003(2)	
C22	0.027 (3)	0.024 (3)	0.031 (3)	0.006 (2)	0.011 (2)	0.003 (2)	
C23	0.024 (3)	0.035 (3)	0.036 (3)	-0.006 (2)	0.005 (3)	0.001 (3)	
C24	0.026 (3)	0.035 (3)	0.024 (3)	0.007 (2)	-0.003 (2)	-0.003 (2)	
C25	0.026 (3)	0.027 (3)	0.024 (3)	0.006 (2)	0.005 (2)	-0.002 (2)	
C26	0.022 (3)	0.024 (3)	0.021 (3)	0.004 (2)	0.007 (2)	-0.003 (2)	
C31	0.018 (3)	0.023 (3)	0.019 (3)	0.001 (2)	0.002 (2)	0.002 (2)	
C32	0.024 (3)	0.022 (3)	0.023 (3)	-0.001 (2)	0.007 (2)	-0.004(2)	
C33	0.024 (3)	0.024 (3)	0.032 (3)	0.002 (2)	0.008 (2)	0.005 (2)	
C34	0.021 (3)	0.035 (3)	0.026 (3)	0.004 (2)	0.009 (2)	0.011 (2)	
C35	0.029 (3)	0.027 (3)	0.025 (3)	0.005 (2)	0.008 (2)	-0.002 (2)	
C36	0.023 (3)	0.020 (3)	0.029 (3)	0.000 (2)	0.005 (2)	-0.002 (2)	
C41	0.015 (3)	0.023 (3)	0.028 (3)	-0.001 (2)	0.007 (2)	0.001 (2)	
C42	0.023 (3)	0.046 (4)	0.021 (3)	0.006 (3)	0.006 (2)	-0.002 (3)	
C43	0.030 (3)	0.037 (4)	0.043 (4)	0.000 (3)	0.016 (3)	-0.009 (3)	
C44	0.026 (3)	0.028 (3)	0.046 (4)	0.001 (2)	0.020 (3)	-0.003 (3)	
C45	0.036 (3)	0.030 (3)	0.046 (4)	0.013 (3)	0.024 (3)	0.016 (3)	
C46	0.026 (3)	0.037 (3)	0.029 (3)	0.000 (2)	0.013 (3)	0.004 (3)	

Geometric parameters (Å, °)

Te1—I2	2.8103 (8)	C24—H24	0.9500
Te1—I1	2.8590 (8)	C25—C26	1.380 (8)
Te1—I3	3.0676 (8)	C25—H25	0.9500
Te1—I3 ⁱ	3.2244 (8)	C26—H26	0.9500
I3—Te1 ⁱ	3.2244 (8)	C31—C36	1.393 (8)
P1—C31	1.792 (6)	C31—C32	1.414 (7)
P1-C21	1.793 (6)	C32—C33	1.385 (8)
P1-C11	1.796 (6)	С32—Н32	0.9500
P1—C41	1.799 (5)	C33—C34	1.386 (8)
C11—C12	1.389 (8)	С33—Н33	0.9500
C11—C16	1.407 (8)	C34—C35	1.395 (8)
C12—C13	1.381 (8)	С34—Н34	0.9500
С12—Н12	0.9500	C35—C36	1.394 (8)
C13—C14	1.391 (9)	С35—Н35	0.9500
С13—Н13	0.9500	С36—Н36	0.9500
C14—C15	1.387 (9)	C41—C46	1.396 (8)
C14—H14	0.9500	C41—C42	1.397 (8)
C15—C16	1.383 (8)	C42—C43	1.387 (8)
С15—Н15	0.9500	C42—H42	0.9500
С16—Н16	0.9500	C43—C44	1.381 (9)
C21—C26	1.393 (8)	C43—H43	0.9500
C21—C22	1.410 (8)	C44—C45	1.377 (9)
C22—C23	1.390 (8)	C44—H44	0.9500
С22—Н22	0.9500	C45—C46	1.378 (8)
C23—C24	1.383 (9)	C45—H45	0.9500
С23—Н23	0.9500	C46—H46	0.9500

C24—C25	1.385 (9)		
$12 T_{2} 1 I_{1}$	$02 \ 27 \ (2)$	C26 C25 C24	120 5 (6)
12 - 101 - 11 12 To1 12	93.27 (3)	$C_{20} = C_{23} = C_{24}$	120.3 (0)
12 - 1c1 - 15 11 To1 12	92.34(3)	$C_{20} = C_{23} = H_{23}$	119.8
11 - 101 - 15 12 T ₂ 1 12	1/4.091(17) 179.951(17)	$C_{24} - C_{23} - H_{23}$	119.8
$12 - 101 - 13^{\circ}$	1/0.001(1/)	$C_{25} = C_{20} = C_{21}$	120.2 (3)
$11 - 101 - 15^{-1}$	80.75 (5) 87.40 (2)	C_{23} C_{20} H_{20}	119.9
$13 - 101 - 15^{\circ}$	87.49 (3)	$C_{21} - C_{20} - H_{20}$	119.9
$1e_1 - 13 - 1e_1$	92.51(5)	$C_{30} = C_{31} = C_{32}$	120.2(5)
C_{31} PI C_{21}	109.5 (3)	C_{30} C_{31} P_{1}	122.1(4)
	110.9 (2)	C_{32} C_{31} P_1	117.6 (4)
C21—P1—C11	108.2 (3)	C33—C32—C31	120.0 (5)
C31—P1—C41	107.1 (3)	C33—C32—H32	120.0
C21—P1—C41	110.8 (3)	C31—C32—H32	120.0
C11—P1—C41	110.2 (3)	C32—C33—C34	119.6 (5)
C12—C11—C16	120.1 (5)	C32—C33—H33	120.2
C12—C11—P1	121.5 (4)	C34—C33—H33	120.2
C16—C11—P1	118.5 (4)	C33—C34—C35	120.6 (5)
C13—C12—C11	120.1 (6)	C33—C34—H34	119.7
C13—C12—H12	120.0	C35—C34—H34	119.7
C11—C12—H12	120.0	C36—C35—C34	120.5 (5)
C12—C13—C14	120.3 (6)	С36—С35—Н35	119.8
С12—С13—Н13	119.9	С34—С35—Н35	119.8
C14—C13—H13	119.9	C31—C36—C35	119.0 (5)
C15—C14—C13	119.7 (6)	C31—C36—H36	120.5
C15—C14—H14	120.2	C35—C36—H36	120.5
C13—C14—H14	120.2	C46—C41—C42	119.5 (5)
C16—C15—C14	120.9 (6)	C46—C41—P1	119.7 (4)
C16—C15—H15	119.6	C42—C41—P1	120.8 (4)
C14—C15—H15	119.6	C43—C42—C41	119.7 (6)
C15—C16—C11	119.0 (5)	C43—C42—H42	120.1
C15—C16—H16	120.5	C41—C42—H42	120.1
C11—C16—H16	120.5	C44—C43—C42	120.2 (6)
$C_{26} - C_{21} - C_{22}$	119.2 (5)	C44—C43—H43	119.9
$C_{26} - C_{21} - P_{1}$	119.2(3) 119.7(4)	C42-C43-H43	119.9
$C_{22} = C_{21} = P_1$	121.1(4)	C45 - C44 - C43	120.0 (6)
$C_{22} = C_{21} = C_{21}$	121.1(1) 1199(5)	C45 - C44 - H44	120.0
$C_{23} = C_{22} = C_{21}$	120.0	C_{43} C_{44} H_{44}	120.0
$C_{23} = C_{22} = H_{22}$	120.0	C_{43} C_{44} C_{45} C_{46}	120.0
$C_{21} = C_{22} = C_{22}$	120.0	C44 - C43 - C40	120.8 (0)
$C_{24} = C_{23} = C_{22}$	119.9 (0)	C44 - C45 - H45	119.0
C24—C23—H23	120.1	C46—C45—H45	119.6
$U_{22} - U_{23} - H_{23}$	120.1	$\begin{array}{c} C45 \\ C45 \\ C46 \\ C41 \\ C46 \\ C46 \\ C41 \\ C46 \\$	119.7 (6)
$C_{23} = C_{24} = C_{23}$	120.3 (5)	C43 - C40 - H40	120.1
C23—C24—H24	119.9	C41—C40—H40	120.1
C25—C24—H24	119.9		
I2—Te1—I3—Te1 ⁱ	-178.850 (17)	P1-C21-C26-C25	-178.9 (4)
I3 ⁱ —Te1—I3—Te1 ⁱ	0.0	C21—P1—C31—C36	107.5 (5)
			. ,

C31—P1—C11—C12	92.1 (5)	C11—P1—C31—C36	-12.0 (5)
C21—P1—C11—C12	-28.1 (6)	C41—P1—C31—C36	-132.3 (4)
C41—P1—C11—C12	-149.4 (5)	C21—P1—C31—C32	-70.6 (5)
C31—P1—C11—C16	-86.9 (5)	C11—P1—C31—C32	169.9 (4)
C21—P1—C11—C16	152.9 (4)	C41—P1—C31—C32	49.6 (5)
C41—P1—C11—C16	31.6 (5)	C36—C31—C32—C33	-1.6 (8)
C16—C11—C12—C13	-1.2 (9)	P1-C31-C32-C33	176.6 (4)
P1-C11-C12-C13	179.8 (5)	C31—C32—C33—C34	0.5 (8)
C11—C12—C13—C14	0.9 (9)	C32—C33—C34—C35	1.2 (8)
C12—C13—C14—C15	0.7 (9)	C33—C34—C35—C36	-1.9 (8)
C13—C14—C15—C16	-2.1 (9)	C32—C31—C36—C35	0.9 (8)
C14—C15—C16—C11	1.8 (9)	P1-C31-C36-C35	-177.1 (4)
C12—C11—C16—C15	-0.2 (9)	C34—C35—C36—C31	0.8 (8)
P1-C11-C16-C15	178.9 (5)	C31—P1—C41—C46	36.7 (5)
C31—P1—C21—C26	-167.4 (4)	C21—P1—C41—C46	156.1 (4)
C11—P1—C21—C26	-46.3 (5)	C11—P1—C41—C46	-84.1 (5)
C41—P1—C21—C26	74.7 (5)	C31—P1—C41—C42	-143.9 (5)
C31—P1—C21—C22	13.4 (5)	C21—P1—C41—C42	-24.5 (5)
C11—P1—C21—C22	134.5 (4)	C11—P1—C41—C42	95.3 (5)
C41—P1—C21—C22	-104.6 (5)	C46—C41—C42—C43	-1.9 (9)
C26—C21—C22—C23	0.2 (8)	P1-C41-C42-C43	178.7 (5)
P1—C21—C22—C23	179.4 (5)	C41—C42—C43—C44	1.1 (9)
C21—C22—C23—C24	0.2 (9)	C42—C43—C44—C45	0.4 (9)
C22—C23—C24—C25	-1.1 (9)	C43—C44—C45—C46	-1.1 (9)
C23—C24—C25—C26	1.6 (9)	C44—C45—C46—C41	0.3 (9)
C24—C25—C26—C21	-1.2 (8)	C42—C41—C46—C45	1.2 (9)
C22-C21-C26-C25	0.3 (8)	P1-C41-C46-C45	-179.4 (5)

Symmetry code: (i) -x+1, -y+1, -z+1.