

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2',4,4',6,6'-Hexamethyl-N-(3phthalimidopropyl)-*N*,*N*'-(propane-1,3diyl)dibenzenesulfonamide

Yu-Xia Wang,* Peng-Fei Cheng and Chao-Jie Wang

College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China Correspondence e-mail: hgxywyx@126.com

Received 2 November 2008; accepted 3 November 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.069; wR factor = 0.219; data-to-parameter ratio = 16.0.

In the title compound, $C_{32}H_{38}N_3O_6S_2$, an intermediate in the synthesis of polyamine drugs, the dihedral angle between the phenyl rings of the two 2,4,6-trimethylbenzenesulfonyl groups is 27.1 (3)°. In the crystal structure, molecules are linked by intermolecular N-H···O hydrogen bonds, thereby forming an infinite one-dimensional chain propagating along [010].

Related literature

Polyamines are essential growth factors for cells, existing mainly as polycations at physiological pH, see: Cullis *et al.* (1999); Seiler *et al.* (1996); Tsen *et al.* (2008).

Experimental

Crystal data $C_{32}H_{39}N_3O_6S_2$ $M_r = 625.78$

Monoclinic, C2/ca = 32.042 (3) Å

b = 9.9782 (8) A	
c = 25.105 (2) Å	
$\beta = 127.917 \ (1)^{\circ}$	
V = 6332.1 (9) Å ³	
7 - 8	

Data collection

17128 measured reflections
6212 independent reflections
4574 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.022$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.069 & 44 \text{ restraints} \\ wR(F^2) &= 0.219 & H\text{-atom parameters constrained} \\ S &= 1.09 & \Delta\rho_{\text{max}} = 0.80 \text{ e} \text{ Å}^{-3} \\ 6212 \text{ reflections} & \Delta\rho_{\text{min}} = -0.57 \text{ e} \text{ Å}^{-3} \\ 388 \text{ parameters} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$	
$N3-H3B\cdots O5^{i}$	0.86	2.53	3.192 (4)	134	
Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.					

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

This work was supported by the Basic Research Foundation for Natural Science of Henan University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2835).

References

- Bruker (2001). SAINT-Plus and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Cullis, P. M., Green, R. E., Merson-Davies, L. & Travis, N. (1999). Chem. Biol. 6, 717–729.
- Seiler, N., Delcros, J.-G. & Moulinoux, J. P. (1996). Int. J. Biochem. Cell Biol. 28, 843–861.
- Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tsen, C., Iltis, M., Kaur, N., Bayer, C., Dekcros, J-G., von Kalm, L. & Phanstiel IV, O. (2008). J. Med. Chem. 51, 324–330.

Mo $K\alpha$ radiation $\mu = 0.22 \text{ mm}^{-1}$

 $0.18 \times 0.15 \times 0.13$ mm

T = 296 (2) K

supporting information

Acta Cryst. (2008). E64, o2289 [doi:10.1107/S1600536808036003]

2,2',4,4',6,6'-Hexamethyl-*N*-(3-phthalimidopropyl)-*N*,*N*'-(propane-1,3-diyl)dibenzenesulfonamide

Yu-Xia Wang, Peng-Fei Cheng and Chao-Jie Wang

S1. Comment

Polyamines are essential growth factors for cells, which exist mainly as polycations at physiological pH (Cullis *et al.*, 1999; Seiler *et al.*, 1996; Tsen *et al.*, 2008). As part of our studies in this area, herein we report the synthesis and structure of the title compound, (I).

The compound (I) consists of a polyamine chain with two 2,4,6-trimethylbenzenesulfonyl group acting as protecting groups (Fig. 1). In the structure of (I), the two phenyl ring of two 2,4,6-trimethylbenzenesulfonyl group are nonparallel due to steric hindrance, characterized by a dihedral angel of 27.1 (3) $^{\circ}$.

In the crystal, molecules are linked through intermolecular N-H…O hydrogen bonds to construct an infinite onedimensional chain (Fig. 2 and Table 1).

S2. Experimental

Propane-1,3-diamine 1.85 g (25 mmol) was dissolved in 2 M sodium hydroxide and the solution was cooled to 0 °C, a solution of 2,4,6-trimethylbenzenesulfonyl chloride 10.9 g (50 mmol) in CH₂Cl₂ (25 ml) was added dropwise. The reaction mixture was then stirred at room temperture for 18 h. The organic phase was separated from the aqueous phase and washed with 0.5 M HCl solution and brine. The CH₂Cl₂ layer was dried over sodium sulfate, filtered and the solvent removed *in vacuo*, and the residue purified by chromatography.

A mixture of N^1 , N^3 —Bis(mesitylenesulfonyl)-1,3-propyl-diamine 1.05 g (2.33 mmol) and 60% NaH (5.35 mmol, 0.22 g) in DMF 20 ml was stirred at 0 °C for 0.5 h, then warmed to room temperature for 0.5 h. N-(3-bromopropyl)-phthalimide 1.57 g (5.82 mmol) was added and the reaction mixture was stirred at 40 °C for 4 h, then EtoH (2.5 ml) and water (5 ml) were added, the solvent was removed *in vacuo* at 80 °C, the residue was dissolved in CHCl₃ and washed with water, the organic layer was dried over anhydrous sodium sulfate and filtered, then concentrated *in vacuo*, the residue was purified by chromatography. Colorless rod crystal of (I) were obtained.

S3. Refinement

The H atoms were positioned geogmetrically (N—H = 0.86 Å, C—H = 0.93–0.97Å) and refined as riding with $U_{iso}(H)=1.2U_{eq}(\text{carrier})$ or $U_{iso}(H)=1.5U_{eq}(\text{methyl-C})$.

Figure 1

The molecular structure of (I). Displacement ellipsoids for the non-hydrogen atoms are drawn at the 50% probability level.

Figure 2

One-dimensional structure of (I), Hydrogen bonds are shown as dashed lines. For clarity, H atoms not involved in hydrogen bonds are omitted.

2,2',4,4',6,6'-Hexamethyl-N-(3-phthalimidopropyl)-N,N'- (propane-1,3-diyl)dibenzenesulfonamide

Crystal data	
$C_{32}H_{39}N_3O_6S_2$	c = 25.105 (2) Å
$M_r = 625.78$	$\beta = 127.917 (1)^{\circ}$
Monoclinic, $C2/c$	$V = 6332.1 (9) Å^3$
Hall symbol: -C 2yc	Z = 8
a = 32.042 (3) Å	F(000) = 2656
b = 9.9782 (8) Å	$D_{\rm x} = 1.313 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 6528 reflections $\theta = 2.4-28.1^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$

Data collection

Data conection	
Bruker SMART CCD diffractometer	17128 measured reflections 6212 independent reflections
Radiation source: fine-focus sealed tube	4574 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.022$
ωscans	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -25 \rightarrow 39$
(SADABS; Sheldrick, 2001)	$k = -12 \rightarrow 11$
$T_{\min} = 0.962, \ T_{\max} = 0.973$	$l = -30 \rightarrow 21$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.069$	Hydrogen site location: inferred from
$wR(F^2) = 0.219$	neighbouring sites

T = 296 K

Block, colourless

 $0.18 \times 0.15 \times 0.13 \text{ mm}$

 $wR(F^2) = 0.219$ S = 1.106212 reflections 388 parameters 44 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1169P)^2 + 7.2057P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.80$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.57 \ {\rm e} \ {\rm \AA}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.15326 (3)	0.47012 (8)	0.46771 (4)	0.0531 (3)	
S2	0.06920 (4)	0.72487 (9)	0.64731 (6)	0.0655 (3)	
C1	0.14805 (12)	0.2922 (3)	0.45787 (15)	0.0464 (7)	
C2	0.10216 (14)	0.2310 (3)	0.40203 (16)	0.0539 (8)	
C3	0.10074 (16)	0.0918 (4)	0.39911 (18)	0.0635 (9)	
H3A	0.0703	0.0502	0.3626	0.076*	
C4	0.1424 (2)	0.0131 (4)	0.4479 (2)	0.0757 (9)	
C5	0.18654 (16)	0.0764 (4)	0.50242 (19)	0.0637 (9)	
H5A	0.2148	0.0242	0.5361	0.076*	
C6	0.19082 (13)	0.2140 (3)	0.50937 (17)	0.0546 (8)	
C7	0.24128 (15)	0.2685 (4)	0.57208 (19)	0.0734 (10)	
H7A	0.2644	0.1956	0.5992	0.110*	

H7B	0.2334	0.3194	0.5974	0.110*
H7C	0.2583	0.3253	0.5597	0.110*
C8	0.1398 (2)	-0.1383 (4)	0.4422 (2)	0.0849 (10)
H8A	0.1062	-0.1645	0.4014	0.127*
H8B	0.1439	-0.1763	0.4803	0.127*
H8C	0.1676	-0.1700	0.4413	0.127*
C9	0.05315 (15)	0.3038 (5)	0.34304 (18)	0.0761 (11)
H9A	0.0273	0.2393	0.3114	0.114*
H9B	0.0627	0.3598	0.3210	0.114*
H9C	0.0385	0.3580	0.3595	0.114*
C10	0.10008 (13)	0.4624 (3)	0.51695 (17)	0.0581 (8)
H10A	0.0998	0.3656	0.5203	0.070*
H10B	0.0691	0.4888	0.4724	0.070*
C11	0.09849 (17)	0.5273 (4)	0.5705 (2)	0.0732 (10)
H11A	0.0740	0.4792	0.5740	0.088*
H11B	0.1333	0.5236	0.6140	0.088*
C12	0.08133 (16)	0.6696 (4)	0.55154 (18)	0.0698 (10)
H12A	0.0432	0.6719	0.5171	0.084*
H12B	0.0972	0.7070	0.5321	0.084*
C13	0.05511 (12)	0.8878 (3)	0.66060 (17)	0.0512 (7)
C14	0.08566 (13)	0.9494 (4)	0.72467 (17)	0.0554 (8)
C15	0.07141 (15)	1.0790 (4)	0.7284 (2)	0.0718 (10)
H15A	0.0910	1.1211	0.7702	0.086*
C16	0.03042 (19)	1.1470 (5)	0.6740 (3)	0.1001 (12)
C17	0.00179 (16)	1.0841 (4)	0.6122 (2)	0.0822 (12)
H17A	-0.0259	1.1306	0.5745	0.099*
C18	0.01232 (15)	0.9547 (5)	0.6035 (2)	0.0743 (9)
C19	-0.02361 (16)	0.8980 (5)	0.5329 (2)	0.0848 (10)
H19A	-0.0494	0.9641	0.5028	0.127*
H19B	-0.0413	0.8201	0.5326	0.127*
H19C	-0.0030	0.8737	0.5185	0.127*
C20	0.0171 (2)	1.2887 (5)	0.6807 (3)	0.1087 (13)
H20A	0.0404	1.3153	0.7273	0.163*
H20B	-0.0188	1.2922	0.6646	0.163*
H20C	0.0215	1.3484	0.6545	0.163*
C21	0.13243 (15)	0.8889 (5)	0.78906 (18)	0.0743 (11)
H21A	0.1462	0.9517	0.8253	0.111*
H21B	0.1593	0.8679	0.7844	0.111*
H21C	0.1217	0.8085	0.7987	0.111*
C22	0.14972 (14)	0.8142 (4)	0.65501 (19)	0.0644 (9)
H22A	0.1754	0.7424	0.6717	0.077*
H22B	0.1547	0.8552	0.6936	0.077*
C23	0.16017 (16)	0.9152 (4)	0.62171 (19)	0.0692 (10)
H23A	0.1295	0.9732	0.5946	0.083*
H23B	0.1647	0.8699	0.5914	0.083*
C24	0.20845 (15)	1.0008 (4)	0.67022 (18)	0.0644 (9)
H24A	0.2389	0.9430	0.6991	0.077*
H24B	0.2152	1.0570	0.6447	0.077*

C25	0.16924 (18)	1.1983 (4)	0.68724 (19)	0.0795 (9)
C26	0.17520 (14)	1.2568 (3)	0.74571 (17)	0.0596 (8)
C27	0.15189 (16)	1.3666 (4)	0.7500 (2)	0.0748 (11)
H27A	0.1280	1.4190	0.7123	0.090*
C28	0.16498 (18)	1.3968 (4)	0.8121 (2)	0.0789 (11)
H28A	0.1497	1.4712	0.8162	0.095*
C29	0.20005 (17)	1.3201 (4)	0.8680 (2)	0.0719 (10)
H29A	0.2080	1.3429	0.9093	0.086*
C30	0.22369 (14)	1.2090 (4)	0.86355 (18)	0.0636 (9)
H30A	0.2474	1.1565	0.9013	0.076*
C31	0.21105 (12)	1.1789 (3)	0.80191 (16)	0.0528 (7)
C32	0.22889 (12)	1.0682 (3)	0.78088 (16)	0.0522 (7)
01	0.20542 (11)	0.5116 (3)	0.49361 (14)	0.0727 (7)
O2	0.11048 (11)	0.5309 (3)	0.40790 (13)	0.0741 (7)
O3	0.10576 (13)	0.6647 (3)	0.71039 (18)	0.0900 (9)
O4	0.14220 (13)	1.2330 (3)	0.62932 (13)	0.0890 (8)
05	0.26026 (10)	0.9802 (3)	0.81456 (12)	0.0691 (7)
O6	0.02164 (12)	0.6529 (3)	0.59969 (18)	0.0939 (10)
N1	0.20210 (11)	1.0851 (3)	0.71198 (13)	0.0566 (7)
N2	0.09614 (12)	0.7566 (3)	0.61035 (16)	0.0662 (8)
N3	0.14813 (10)	0.5046 (3)	0.52664 (13)	0.0523 (6)
H3B	0.1729	0.5466	0.5626	0.063*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0687 (5)	0.0447 (4)	0.0570 (5)	0.0021 (4)	0.0443 (4)	0.0024 (3)
S2	0.0762 (6)	0.0477 (5)	0.0974 (7)	-0.0042 (4)	0.0659 (6)	-0.0118 (5)
C1	0.0573 (17)	0.0451 (15)	0.0488 (16)	0.0052 (13)	0.0387 (15)	0.0006 (13)
C2	0.0663 (19)	0.0585 (19)	0.0489 (16)	0.0028 (15)	0.0414 (16)	-0.0046 (14)
C3	0.082 (2)	0.061 (2)	0.0574 (19)	-0.0106 (18)	0.0483 (19)	-0.0156 (16)
C4	0.127 (3)	0.0491 (15)	0.094 (2)	0.0034 (17)	0.089 (2)	-0.0075 (15)
C5	0.085 (2)	0.0552 (19)	0.068 (2)	0.0204 (18)	0.056 (2)	0.0112 (17)
C6	0.0643 (19)	0.0556 (18)	0.0589 (18)	0.0071 (15)	0.0454 (17)	0.0024 (15)
C7	0.060 (2)	0.078 (3)	0.062 (2)	0.0080 (19)	0.0281 (18)	0.0070 (19)
C8	0.131 (3)	0.0509 (15)	0.098 (2)	0.0032 (17)	0.083 (2)	-0.0078 (15)
C9	0.064 (2)	0.090 (3)	0.054 (2)	0.005 (2)	0.0263 (18)	-0.0025 (19)
C10	0.0620 (19)	0.0545 (18)	0.0641 (19)	-0.0097 (15)	0.0420 (17)	-0.0172 (15)
C11	0.079 (2)	0.067 (2)	0.087 (3)	-0.0039 (19)	0.058 (2)	-0.010 (2)
C12	0.069 (2)	0.076 (2)	0.065 (2)	0.0016 (19)	0.0412 (19)	-0.0101 (16)
C13	0.0510 (16)	0.0481 (16)	0.0657 (19)	0.0003 (13)	0.0415 (16)	-0.0056 (14)
C14	0.0531 (17)	0.062 (2)	0.0628 (19)	0.0002 (15)	0.0417 (16)	-0.0057 (16)
C15	0.067 (2)	0.069 (2)	0.089 (3)	-0.0076 (18)	0.053 (2)	-0.029 (2)
C16	0.083 (2)	0.068 (2)	0.151 (3)	0.0135 (17)	0.073 (2)	-0.015 (2)
C17	0.061 (2)	0.074 (2)	0.098 (3)	0.0204 (19)	0.042 (2)	0.009 (2)
C18	0.0549 (15)	0.093 (2)	0.0681 (17)	0.0012 (15)	0.0343 (14)	-0.0060 (16)
C19	0.0613 (16)	0.097 (2)	0.0718 (17)	0.0007 (15)	0.0288 (14)	-0.0062 (16)
C20	0.088 (2)	0.070 (2)	0.155 (3)	0.0145 (17)	0.069 (2)	-0.015 (2)

C21	0.070 (2)	0.099 (3)	0.059 (2)	0.007 (2)	0.0428 (19)	0.004 (2)
C22	0.065 (2)	0.062 (2)	0.077 (2)	0.0052 (17)	0.0488 (19)	-0.0013 (18)
C23	0.079 (2)	0.071 (2)	0.069 (2)	-0.0127 (19)	0.051 (2)	-0.0134 (18)
C24	0.068 (2)	0.071 (2)	0.067 (2)	-0.0084 (18)	0.0480 (19)	-0.0093 (18)
C25	0.1013 (19)	0.0670 (16)	0.0558 (13)	0.0131 (14)	0.0410 (14)	0.0110 (12)
C26	0.0613 (19)	0.0478 (17)	0.0597 (19)	-0.0017 (15)	0.0321 (17)	0.0019 (14)
C27	0.077 (2)	0.054 (2)	0.082 (3)	0.0068 (18)	0.043 (2)	0.0018 (18)
C28	0.094 (3)	0.051 (2)	0.108 (3)	0.002 (2)	0.070 (3)	-0.009 (2)
C29	0.087 (3)	0.063 (2)	0.081 (3)	-0.018 (2)	0.059 (2)	-0.020(2)
C30	0.064 (2)	0.065 (2)	0.0557 (19)	-0.0042 (17)	0.0340 (17)	-0.0022 (16)
C31	0.0471 (16)	0.0491 (17)	0.0546 (17)	-0.0055 (13)	0.0274 (14)	-0.0026 (14)
C32	0.0422 (15)	0.0573 (18)	0.0510 (16)	-0.0027 (14)	0.0255 (14)	0.0013 (14)
01	0.0816 (17)	0.0666 (16)	0.0918 (18)	-0.0112 (13)	0.0644 (15)	-0.0050 (14)
O2	0.0906 (18)	0.0586 (15)	0.0659 (15)	0.0090 (13)	0.0444 (14)	0.0070 (12)
03	0.115 (2)	0.0606 (16)	0.125 (3)	0.0143 (16)	0.090 (2)	0.0101 (17)
O4	0.1081 (18)	0.0715 (15)	0.0585 (12)	0.0151 (13)	0.0364 (13)	0.0111 (11)
05	0.0614 (14)	0.0711 (16)	0.0638 (14)	0.0187 (12)	0.0329 (12)	0.0094 (12)
O6	0.096 (2)	0.0750 (18)	0.146 (3)	-0.0360 (16)	0.092 (2)	-0.0488 (19)
N1	0.0579 (15)	0.0545 (15)	0.0524 (15)	-0.0013 (12)	0.0314 (13)	-0.0031 (12)
N2	0.0697 (18)	0.0615 (17)	0.088 (2)	-0.0128 (14)	0.0592 (17)	-0.0233 (14)
N3	0.0554 (15)	0.0481 (14)	0.0540 (14)	-0.0052 (11)	0.0339 (13)	-0.0116 (11)

Geometric parameters (Å, °)

S1—O2	1.404 (3)	C15—H15A	0.9300
S1—O1	1.432 (3)	C16—C17	1.375 (7)
S1—N3	1.623 (3)	C16—C20	1.516 (6)
S1—C1	1.786 (3)	C17—C18	1.385 (6)
S2—O3	1.400 (3)	C17—H17A	0.9300
S2—O6	1.424 (3)	C18—C19	1.510 (5)
S2—N2	1.640 (3)	C19—H19A	0.9600
S2—C13	1.773 (3)	C19—H19B	0.9600
C1—C2	1.403 (5)	C19—H19C	0.9600
C1—C6	1.408 (4)	C20—H20A	0.9600
C2—C3	1.390 (5)	C20—H20B	0.9600
С2—С9	1.526 (5)	C20—H20C	0.9600
C3—C4	1.374 (6)	C21—H21A	0.9600
С3—НЗА	0.9300	C21—H21B	0.9600
C4—C5	1.377 (6)	C21—H21C	0.9600
C4—C8	1.515 (5)	C22—N2	1.473 (5)
C5—C6	1.379 (5)	C22—C23	1.474 (5)
C5—H5A	0.9300	C22—H22A	0.9700
C6—C7	1.503 (5)	C22—H22B	0.9700
C7—H7A	0.9600	C23—C24	1.513 (5)
С7—Н7В	0.9600	C23—H23A	0.9700
С7—Н7С	0.9600	C23—H23B	0.9700
C8—H8A	0.9600	C24—N1	1.453 (4)
C8—H8B	0.9600	C24—H24A	0.9700

C8—H8C	0.9600	C24—H24B	0.9700
С9—Н9А	0.9600	C25—O4	1.199 (4)
С9—Н9В	0.9600	C25—N1	1.402 (5)
С9—Н9С	0.9600	C25—C26	1.479 (6)
C10—N3	1.465 (4)	C26—C27	1.367 (5)
C10—C11	1.520 (5)	C26—C31	1.386 (5)
C10—H10A	0.9700	C27—C28	1.375 (6)
C10—H10B	0.9700	С27—Н27А	0.9300
C11—C12	1.491 (6)	C28—C29	1.371 (6)
C11—H11A	0.9700	C28—H28A	0.9300
C11—H11B	0.9700	C29—C30	1.385 (5)
C12—N2	1.516 (4)	С29—Н29А	0.9300
С12—Н12А	0.9700	C30—C31	1.371 (5)
C12—H12B	0.9700	С30—Н30А	0.9300
C13—C18	1.402 (5)	C31—C32	1.482 (5)
C13—C14	1.410 (5)	C32—O5	1.205 (4)
C14—C15	1 393 (5)	C32—N1	1 390 (4)
C14—C21	1 498 (5)	N3—H3B	0.8600
C15-C16	1 359 (7)		0.0000
	1.555 (1)		
O2—S1—O1	117.42 (17)	C17—C16—C20	120.9 (5)
O2—S1—N3	107.70 (16)	C16—C17—C18	123.0 (4)
O1—S1—N3	105.58 (15)	C16—C17—H17A	118.5
O2—S1—C1	109.56 (15)	C18—C17—H17A	118.5
O1—S1—C1	109.49 (15)	C17—C18—C13	117.6 (4)
N3—S1—C1	106.49 (14)	C17—C18—C19	116.8 (4)
O3—S2—O6	116.9 (2)	C13—C18—C19	125.6 (4)
O3—S2—N2	110.94 (18)	C18—C19—H19A	109.5
O6—S2—N2	106.63 (18)	C18—C19—H19B	109.5
O3—S2—C13	108.23 (17)	H19A—C19—H19B	109.5
O6—S2—C13	110.82 (17)	C18—C19—H19C	109.5
N2—S2—C13	102.29 (16)	H19A—C19—H19C	109.5
C2—C1—C6	120.5 (3)	H19B—C19—H19C	109.5
C2—C1—S1	121.5 (2)	C16—C20—H20A	109.5
C6-C1-S1	118.0 (2)	C16—C20—H20B	109.5
C3—C2—C1	117.9 (3)	H20A—C20—H20B	109.5
C3—C2—C9	116.3 (3)	C16—C20—H20C	109.5
C1—C2—C9	125.8 (3)	H20A—C20—H20C	109.5
C4—C3—C2	122.8 (4)	H20B—C20—H20C	109.5
С4—С3—НЗА	118.6	C14—C21—H21A	109.5
С2—С3—НЗА	118.6	C14—C21—H21B	109.5
C3—C4—C5	117.7 (3)	H21A—C21—H21B	109.5
C3—C4—C8	121.3 (4)	C14—C21—H21C	109.5
C5—C4—C8	121.0 (4)	H21A—C21—H21C	109.5
C4—C5—C6	123.0 (3)	H21B—C21—H21C	109.5
С4—С5—Н5А	118.5	N2—C22—C23	113.6 (3)
С6—С5—Н5А	118.5	N2—C22—H22A	108.9
C5—C6—C1	118.1 (3)	С23—С22—Н22А	108.9

C5—C6—C7	116.9 (3)	N2—C22—H22B	108.9
C1—C6—C7	125.1 (3)	C23—C22—H22B	108.9
С6—С7—Н7А	109.5	H22A—C22—H22B	107.7
С6—С7—Н7В	109.5	C22—C23—C24	113.9 (3)
H7A—C7—H7B	109.5	С22—С23—Н23А	108.8
С6—С7—Н7С	109.5	C24—C23—H23A	108.8
H7A—C7—H7C	109.5	С22—С23—Н23В	108.8
H7B—C7—H7C	109.5	C24—C23—H23B	108.8
C4—C8—H8A	109.5	H23A—C23—H23B	107.7
C4—C8—H8B	109.5	N1—C24—C23	112.4 (3)
H8A—C8—H8B	109.5	N1—C24—H24A	109.1
C4—C8—H8C	109.5	C23—C24—H24A	109.1
H8A—C8—H8C	109.5	N1—C24—H24B	109.1
H8B—C8—H8C	109.5	C23—C24—H24B	109.1
С2—С9—Н9А	109.5	H24A—C24—H24B	107.9
С2—С9—Н9В	109.5	O4—C25—N1	123.8 (4)
H9A—C9—H9B	109.5	O4—C25—C26	130.2 (4)
С2—С9—Н9С	109.5	N1—C25—C26	105.9 (3)
Н9А—С9—Н9С	109.5	C27—C26—C31	121.3 (4)
Н9В—С9—Н9С	109.5	C27—C26—C25	130.6 (3)
N3—C10—C11	109.5 (3)	C31—C26—C25	108.0 (3)
N3—C10—H10A	109.8	C26—C27—C28	117.7 (4)
C11—C10—H10A	109.8	С26—С27—Н27А	121.2
N3—C10—H10B	109.8	С28—С27—Н27А	121.2
C11—C10—H10B	109.8	C29—C28—C27	121.6 (4)
H10A-C10-H10B	108.2	C29—C28—H28A	119.2
C12—C11—C10	109.3 (3)	C27—C28—H28A	119.2
C12—C11—H11A	109.8	C28—C29—C30	120.6 (4)
C10-C11-H11A	109.8	С28—С29—Н29А	119.7
C12—C11—H11B	109.8	С30—С29—Н29А	119.7
C10-C11-H11B	109.8	C31—C30—C29	118.0 (3)
H11A—C11—H11B	108.3	С31—С30—Н30А	121.0
C11—C12—N2	113.7 (3)	С29—С30—Н30А	121.0
C11—C12—H12A	108.8	C30—C31—C26	120.8 (3)
N2—C12—H12A	108.8	C30—C31—C32	130.9 (3)
C11—C12—H12B	108.8	C26—C31—C32	108.4 (3)
N2—C12—H12B	108.8	O5—C32—N1	124.9 (3)
H12A—C12—H12B	107.7	O5—C32—C31	129.1 (3)
C18—C13—C14	121.0 (3)	N1-C32-C31	105.9 (3)
C18—C13—S2	116.5 (3)	C32—N1—C25	111.7 (3)
C14—C13—S2	122.4 (3)	C32—N1—C24	125.1 (3)
C15—C14—C13	117.0 (3)	C25—N1—C24	123.2 (3)
C15—C14—C21	116.9 (3)	C22—N2—C12	119.1 (3)
C13—C14—C21	126.0 (3)	C22—N2—S2	114.7 (2)
C16—C15—C14	123.4 (4)	C12—N2—S2	118.8 (2)
C16—C15—H15A	118.3	C10—N3—S1	118.2 (2)
C14—C15—H15A	118.3	C10—N3—H3B	120.9
C15—C16—C17	117.9 (4)	S1—N3—H3B	120.9

C15—C16—C20	121.2 (5)			
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	D····A	D—H…A
N3—H3 <i>B</i> ···O5 ⁱ	0.86	2.53	3.192 (4)	134
Symmetry code: (i) $-x+1/2$, $y-1/2$, $-z+3/2$				