organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,4-Bis(3-bromophenyl)-3-azabicyclo-[3.3.1]nonan-9-one

P. Parthiban,^a V. Ramkumar,^b Min Sung Kim,^a Kwon Taek Lim^a and Yeon Tae Jeong^a*

^aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and ^bDepartment of Chemistry, IIT Madras, Chennai, Tamilnadu, India Correspondence e-mail: ytjeong@pknu.ac.kr

Received 6 November 2008; accepted 7 November 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.103; data-to-parameter ratio = 19.4.

The complete molecule of the title compound, $C_{20}H_{19}Br_2NO$, is generated by crystallographic mirror symmetry, with two C, one O and one N atom lying on the mirror plane. The compound exists in a twin-chair conformation with equatorial dispositions of the 3-bromophenyl groups [dihedral angle between rings = $27.37 (3)^{\circ}$]. The packing is stabilized by weak $N-H\cdots O$ and $C-H\cdots O$ interactions.

Related literature

For background, see: Barker et al. (2005); Jeyaraman & Avila (1981); Padegimas & Kovacic (1972); Smith-Verdier et al. (1983). For a similiar structure, see: Parthiban et al. (2008). For puckering parameters, see: Cremer & Pople (1975); Web & Becker (1967).

Experimental

Crystal data C20H19Br2NO $M_r = 449.18$

b = 24.5891 (19) Åc = 10.2598 (6) Å V = 1806.2 (2) Å³ Z = 4

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1999) $T_{\rm min}=0.310,\ T_{\rm max}=0.498$ (expected range = 0.277 - 0.445)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	H atoms treated by a mixture of
$wR(F^2) = 0.103$	independent and constrained
S = 1.05	refinement
2286 reflections	$\Delta \rho_{\rm max} = 0.84 \text{ e} \text{ Å}^{-3}$
118 parameters	$\Delta \rho_{\rm min} = -0.71$ e Å ⁻³

Mo $K\alpha$ radiation $\mu = 4.49 \text{ mm}^{-1}$

 $0.34 \times 0.25 \times 0.18$ mm

12758 measured reflections

2286 independent reflections

1554 reflections with $I > 2\sigma(I)$

T = 298 (2) K

 $R_{\rm int} = 0.035$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H1A \cdots O1^{i} \\ C1 - H1 \cdots O1^{ii} \end{array}$	0.87 (5) 0.98	2.41 (5) 2.54	3.168 (5) 3.361 (4)	145 (4) 142
Summature and an (i) a	1	1	;	

Symmetry codes: (i) x - 1, y, z; (ii) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $-z + \frac{5}{2}$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2838).

References

- Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565-4575
- Bruker (1999). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.
- Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672-2676.
- Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008). Acta Cryst. E64, o1586.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101-103.
- Web, N. C. & Becker, M. R. (1967). J. Chem. Soc. B, pp. 1317-1321.

supporting information

Acta Cryst. (2008). E64, o2332 [doi:10.1107/S1600536808036660]

2,4-Bis(3-bromophenyl)-3-azabicyclo[3.3.1]nonan-9-one

P. Parthiban, V. Ramkumar, Min Sung Kim, Kwon Taek Lim and Yeon Tae Jeong

S1. Comment

Azabicyclic ketones are an important class of heterocycles due to their broad-spectrum biological activities (Jeyaraman & Avila, 1981; Barker *et al.*, 2005). Owing to the diverse possibilities in conformations, *viz.*, chair-chair (Parthiban *et al.*, 2008), chair-boat (Smith-Verdier *et al.*, 1983) and boat-boat (Padegimas & Kovacic, 1972) for the azabicycle, the present crystal study was undertaken to explore the conformation, stereochemistry and bondings in the title compound, (I).

The piperidine ring in (I) adopts an ideal chair conformation with the deviation of ring atoms C3 and N1 from the C1/C2/C2ⁱ/C1ⁱ (i = x, 3/2-y, z) plane being 0.686 (3) and -0.702 (3) Å, respectively. The q2 and q3 values are 0.010 (3) and -0.617 (3)Å and the total puckering amplitude, $Q_T = 0.617$ (3)Å and $\theta = 180.0$ (3)° (Cremer & Pople, 1975; Web & Becker, 1967).

The cyclohexane ring deviate from the ideal chair conformation by the deviation of ring atoms C3 and C5 from the C2/C4/C4ⁱ/C2ⁱ plane by -0.725 (4) and 0.525 (3)Å, respectively. For the cyclohexane, the q2 and q3 parameters are 0.150 (4) and 0.543 (4)Å respectively. The total puckering amplitude, $Q_T = 0.563$ (3)Å and $\theta = 15.6$ (4)°. Hence, the title compound, exists in a twin-chair conformation with equatorial orientations of the 3-bromophenyl groups on the heterocycle, which are orientated at an angle of 27.37 (3)° to each other. The torsion angles of C3—C2—C1—C6 and its mirror plane C3—C2ⁱ—C1ⁱ—C6ⁱ is 174.45 (4)°. The packing is stabilized by weak N—H…O and C—H…O bonds (Table 1).

S2. Experimental

0.1 mol of *meta* Bromobenzaldehyde and 0.05 mol of cyclohexanone were simultaneously added to a warm solution of 0.075 mol ammonium acetate in 50 ml of absolute ethanol. The mixture was gently warmed on a hot plate till the yellow colour formed during the mixing of the reactants and cooled to room temperature. Then 50 ml of ether was added and allowed to stir over night at warm condition (303–305 K). At the end, the crude azabicyclic ketone was separated by filtration and washed with 1:5 v/v ethanol-ether mixture until the solid become colourless. Colourless blocks of (I) were recrystallised from acetone.

S3. Refinement

The nitrogen-bound H atom was located in a difference map and refined isotropically. The other hydrogen atoms were fixed geometrically (C—H = 0.93-0.98Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of (I) with non-hydrogen atoms represented as 30% probability ellipsoids.

Figure 2

Packing diagram with N-H···O (blue) and C-H···O (red) interactions.

2,4-Bis(3-bromophenyl)-3-azabicyclo[3.3.1]nonan-9-one

Crystal data	
$C_{20}H_{19}Br_2NO$	F(000) = 896
$M_r = 449.18$	$D_{\rm x} = 1.652 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pnma	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2n	Cell parameters from 3647 reflections
a = 7.1595 (6) Å	$\theta = 3.2 - 23.5^{\circ}$
b = 24.5891 (19) Å	$\mu = 4.49 \ { m mm^{-1}}$
c = 10.2598 (6) Å	T = 298 K
V = 1806.2 (2) Å ³	Block, colourless
Z = 4	$0.34 \times 0.25 \times 0.18 \text{ mm}$
Data collection	
Bruker SMART CCD	12758 measured reflections
diffractometer	2286 independent reflections
Radiation source: fine-focus sealed tube	1554 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.035$
ω scans	$\theta_{\rm max} = 28.9^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Bruker, 1999)	$k = -33 \rightarrow 33$
$T_{\min} = 0.310, \ T_{\max} = 0.498$	$l = -13 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.103$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
2286 reflections	and constrained refinement
118 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0338P)^2 + 2.5194P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.84 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*, and *R*-factors based on *ALL* data will be even larger.

|--|

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.06375 (6)	0.580496 (16)	0.86233 (5)	0.07173 (19)	
C1	0.5903 (4)	0.70119 (11)	1.1050 (3)	0.0328 (6)	
H1	0.6284	0.7040	1.1965	0.039*	
C2	0.7711 (4)	0.69950 (12)	1.0210 (3)	0.0353 (6)	
H2	0.8451	0.6677	1.0462	0.042*	
C3	0.8806 (6)	0.7500	1.0506 (4)	0.0332 (9)	
C4	0.7389 (4)	0.69827 (13)	0.8727 (3)	0.0401 (7)	
H4A	0.8577	0.6919	0.8298	0.048*	
H4B	0.6577	0.6679	0.8521	0.048*	
C5	0.6529 (6)	0.7500	0.8173 (4)	0.0418 (10)	
H5A	0.6685	0.7500	0.7234	0.050*	
H5B	0.5200	0.7500	0.8356	0.050*	
C6	0.4822 (4)	0.64879 (11)	1.0899 (3)	0.0350 (6)	
C7	0.3394 (4)	0.64162 (11)	1.0003 (3)	0.0376 (7)	
H7	0.2983	0.6707	0.9498	0.045*	
C8	0.2582 (4)	0.59064 (12)	0.9868 (3)	0.0431 (8)	
C9	0.3157 (5)	0.54686 (12)	1.0597 (4)	0.0541 (9)	
H9	0.2610	0.5129	1.0488	0.065*	
C10	0.4556 (6)	0.55456 (15)	1.1489 (4)	0.0621 (11)	
H10	0.4955	0.5254	1.1996	0.074*	

supporting information

C11	0.5382 (5)	0.60472 (14)	1.1647 (4)	0.0511 (9)
H11	0.6324	0.6091	1.2262	0.061*
N1	0.4821 (5)	0.7500	1.0736 (3)	0.0303 (7)
01	1.0403 (4)	0.7500	1.0910 (3)	0.0493 (8)
H1A	0.376 (6)	0.7500	1.115 (4)	0.033 (12)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0813 (3)	0.0450 (2)	0.0889 (4)	-0.01841 (19)	-0.0190 (2)	-0.0091 (2)
C1	0.0371 (15)	0.0305 (14)	0.0308 (16)	0.0038 (12)	0.0021 (12)	0.0031 (12)
C2	0.0324 (15)	0.0331 (14)	0.0404 (16)	0.0064 (12)	0.0004 (12)	0.0023 (13)
C3	0.030 (2)	0.045 (2)	0.025 (2)	0.000	0.0024 (16)	0.000
C4	0.0390 (16)	0.0432 (17)	0.0382 (17)	-0.0025 (13)	0.0047 (13)	-0.0087 (14)
C5	0.039 (2)	0.058 (3)	0.028 (2)	0.000	0.0000 (19)	0.000
C6	0.0401 (16)	0.0260 (13)	0.0387 (16)	0.0037 (12)	0.0105 (13)	0.0017 (12)
C7	0.0434 (17)	0.0247 (14)	0.0447 (18)	0.0012 (12)	0.0046 (14)	0.0023 (13)
C8	0.0480 (18)	0.0284 (15)	0.0531 (19)	-0.0031 (13)	0.0108 (16)	-0.0070 (14)
C9	0.066 (2)	0.0213 (14)	0.075 (3)	-0.0032 (15)	0.016 (2)	0.0009 (16)
C10	0.071 (3)	0.0344 (18)	0.081 (3)	0.0068 (17)	-0.001(2)	0.0204 (19)
C11	0.054 (2)	0.0394 (18)	0.060(2)	0.0025 (15)	-0.0034 (17)	0.0154 (16)
N1	0.0286 (17)	0.0237 (16)	0.0385 (19)	0.000	0.0056 (15)	0.000
01	0.0322 (17)	0.064 (2)	0.0520 (19)	0.000	-0.0072 (14)	0.000

Geometric parameters (Å, °)

Br1—C8	1.905 (3)	C5—H5A	0.9700
C1—N1	1.464 (3)	C5—H5B	0.9700
C1—C6	1.511 (4)	C6—C7	1.386 (4)
C1—C2	1.555 (4)	C6—C11	1.387 (4)
C1—H1	0.9800	C7—C8	1.389 (4)
C2—C3	1.500 (4)	С7—Н7	0.9300
C2—C4	1.540 (4)	C8—C9	1.374 (5)
С2—Н2	0.9800	C9—C10	1.369 (5)
C3—O1	1.216 (5)	С9—Н9	0.9300
$C3-C2^i$	1.500 (4)	C10—C11	1.377 (5)
C4—C5	1.523 (4)	C10—H10	0.9300
C4—H4A	0.9700	C11—H11	0.9300
C4—H4B	0.9700	N1—C1 ⁱ	1.464 (3)
C5C4 ⁱ	1.523 (4)	N1—H1A	0.87 (5)
N1—C1—C6	113.9 (2)	C4 ⁱ —C5—H5B	108.9
N1—C1—C2	109.9 (2)	C4—C5—H5B	108.9
C6—C1—C2	110.3 (2)	H5A—C5—H5B	107.7
N1-C1-H1	107.5	C7—C6—C11	118.8 (3)
C6C1H1	107.5	C7—C6—C1	123.7 (3)
C2-C1-H1	107.5	C11—C6—C1	117.4 (3)
C3—C2—C4	107.1 (3)	C6—C7—C8	119.3 (3)

C3—C2—C1	107.5 (2)	С6—С7—Н7	120.3
C4—C2—C1	115.1 (2)	С8—С7—Н7	120.3
С3—С2—Н2	109.0	C9—C8—C7	121.8 (3)
С4—С2—Н2	109.0	C9—C8—Br1	118.8 (2)
C1—C2—H2	109.0	C7—C8—Br1	119.4 (2)
O1—C3—C2	124.10 (16)	C10—C9—C8	118.3 (3)
$O1-C3-C2^{i}$	124.10 (17)	С10—С9—Н9	120.8
$C2-C3-C2^{i}$	111.8 (3)	С8—С9—Н9	120.8
C5—C4—C2	114.4 (3)	C9—C10—C11	121.1 (3)
C5—C4—H4A	108.7	C9—C10—H10	119.5
C2—C4—H4A	108.7	C11—C10—H10	119.4
C5—C4—H4B	108.7	C10—C11—C6	120.7 (3)
C2—C4—H4B	108.7	C10-C11-H11	119.7
H4A—C4—H4B	107.6	C6C11H11	119.7
C4 ⁱ —C5—C4	113.3 (4)	C1 ⁱ —N1—C1	110.1 (3)
C4 ⁱ —C5—H5A	108.9	C1 ⁱ —N1—H1A	110.7 (13)
С4—С5—Н5А	108.9	C1—N1—H1A	110.7 (14)
N1—C1—C2—C3	59.2 (3)	C2-C1-C6-C11	82.1 (3)
C6—C1—C2—C3	-174.5 (2)	C11—C6—C7—C8	-0.8(4)
N1—C1—C2—C4	-60.1 (3)	C1—C6—C7—C8	175.0 (3)
C6—C1—C2—C4	66.3 (3)	C6—C7—C8—C9	-0.1 (5)
C4—C2—C3—O1	-113.3 (4)	C6—C7—C8—Br1	-179.3 (2)
C1—C2—C3—O1	122.5 (4)	C7—C8—C9—C10	0.8 (5)
$C4-C2-C3-C2^{i}$	65.3 (4)	Br1-C8-C9-C10	180.0 (3)
$C1-C2-C3-C2^{i}$	-58.9 (4)	C8—C9—C10—C11	-0.5 (6)
C3—C2—C4—C5	-52.8 (3)	C9—C10—C11—C6	-0.4 (6)
C1—C2—C4—C5	66.7 (4)	C7—C6—C11—C10	1.1 (5)
$C2$ — $C4$ — $C5$ — $C4^i$	43.3 (5)	C1-C6-C11-C10	-175.0 (3)
N1-C1-C6-C7	30.3 (4)	$C6-C1-N1-C1^{i}$	173.61 (18)
C2-C1-C6-C7	-93.7 (3)	$C2$ — $C1$ — $N1$ — $C1^i$	-62.1 (4)
N1-C1-C6-C11	-153.8 (3)		

Symmetry code: (i) x, -y+3/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A···O1 ⁱⁱ	0.87 (5)	2.41 (5)	3.168 (5)	145 (4)
С1—Н1…О1 ^{іїі}	0.98	2.54	3.361 (4)	142

Symmetry codes: (ii) *x*-1, *y*, *z*; (iii) *x*-1/2, -*y*+3/2, -*z*+5/2.