

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Benzyl N'-(1H-indol-2-ylmethylene)hydrazinecarbodithioate ethanol hemisolvate

Hamid Khaledi, Hapipah Mohd Ali and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 15 November 2008; accepted 19 November 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; disorder in solvent or counterion; R factor = 0.033; wR factor = 0.088; data-to-parameter ratio = 16.8.

In the crystal of the title compound, $C_{17}H_{15}N_3S_2 \cdot 0.5C_2H_6O$, the molecules are linked by a pair of $N-H_{aliphatic} \cdot \cdot \cdot S$ hydrogen bonds across a center of inversion, forming a dimer. The ethanol solvent molecule, which is statistically disordered about a crystallographic twofold rotation axis, accepts an $N-H_{aromatic} \cdot \cdot \cdot O$ hydrogen bond; the hydroxy group of the solvent molecule is not engaged in hydrogen bonding.

Related literature

For references to benzyl esters of hydrazinecarbodithioic acids, see: Khaledi *et al.* (2008).

Experimental

Crystal data C₁₇H₁₅N₃S₂·0.5C₂H₆O

 $M_r = 348.47$

Monoclinic, $C2/c$	
a = 13.4225 (2) Å	
b = 15.4088 (2) Å	
c = 16.8120 (3) Å	
$\beta = 102.637 (1)^{\circ}$	
V = 3392.90 (9) Å ³	

Data collection

Bruker SMART APEX CCD	14302 measured reflections
diffractometer	3897 independent reflections
Absorption correction: multi-scan	3332 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.028$
$T_{\min} = 0.924, \ T_{\max} = 0.954$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of
$wR(F^2) = 0.088$	independent and constrained
S = 1.03	refinement
3897 reflections	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
232 parameters	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
5 restraints	

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\frac{N1 - H1n \cdots S2^{i}}{N3 - H3n \cdots O1}$	0.88(1)	2.52 (1)	3.350 (1)	159 (2)
	0.87(1)	2.25 (1)	3.047 (3)	153 (2)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *pubCIF* (Westrip, 2008).

We thank the University of Malaya for funding this study (Science Fund grants 12–02-03–2031, 12–02-03–2051).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2851).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Khaledi, H., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64, o2430.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Westrip, S. P. (2008). publCIF. In preparation.

organic compounds

Z = 8

Mo $K\alpha$ radiation

 $\mu = 0.32 \text{ mm}^{-1}$

T = 100 (2) K $0.25 \times 0.20 \times 0.15 \text{ mm}$

supporting information

Acta Cryst. (2008). E64, o2445 [doi:10.1107/S1600536808038609]

Benzyl N'-(1H-indol-2-ylmethylene)hydrazinecarbodithioate ethanol hemisolvate

Hamid Khaledi, Hapipah Mohd Ali and Seik Weng Ng

S1. Comment

For background references, see: Khaledi et al. (2008).

S2. Experimental

Indole-2-carbaldehyde (0.36 g, 2.5 mmol) and *S*-benzyldithiocarbazate (0.495 g, 2.5 mmol) were heated in ethanol (40 ml) for 3 h. The solution was set aside for the formation of yellow blocks of (I).

S3. Refinement

C-bound hydrogen atoms were placed at calculated positions (C–H = 0.95–0.99 Å) and refined as riding with U(H) = 1.2-1.5 times $U_{eq}(C)$. The amino and hydroxy H atoms were located in a difference map, and were refined with distance restraints of N–H = 0.88±0.01 and O–H = 0.84+_0.01 Å; their U_{iso} values were freely refined.

The ethanol molecule is statistically disordered about a two-fold axis: the O–C distance was restrained to 1.45 ± 0.01 Å and the C–C distance to 1.50+0.01 Å; the displacement factors of the two C atoms were restrained to be equal.

Figure 1

View of (I) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Only one orientation of the ethanol molecule is shown.

Benzyl N'-(1H-indol-2-ylmethylene)hydrazinecarbodithioate ethanol hemisolvate

C₁₇H₁₅N₃S₂·0.5C₂H₆O $M_r = 348.47$ Monoclinic, C2/c Hall symbol: -C 2yc a = 13.4225 (2) Å b = 15.4088 (2) Å c = 16.8120 (3) Å $\beta = 102.637$ (1)° V = 3392.90 (9) Å³ Z = 8

Data collection

Bruker SMART APEX CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.924, T_{\max} = 0.954$ F(000) = 1464 $D_x = 1.364 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5259 reflections $\theta = 2.5-28.3^{\circ}$ $\mu = 0.32 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.25 \times 0.20 \times 0.15 \text{ mm}$

14302 measured reflections 3897 independent reflections 3332 reflections with $I > 2\sigma(I)$ $R_{int} = 0.028$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -16 \rightarrow 17$ $k = -19 \rightarrow 20$ $l = -21 \rightarrow 17$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.088$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
3897 reflections	and constrained refinement
232 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0411P)^2 + 3.3308P]$
5 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.35 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.58648 (3)	0.69507 (2)	0.36508 (2)	0.01972 (10)	
S2	0.56141 (3)	0.50160 (2)	0.38844 (2)	0.02263 (11)	
N1	0.48149 (10)	0.62574 (8)	0.46106 (8)	0.0201 (3)	
H1N	0.4612 (15)	0.5843 (10)	0.4893 (11)	0.036 (5)*	
N2	0.45977 (10)	0.71147 (8)	0.47237 (8)	0.0200 (3)	
N3	0.39716 (10)	0.88130 (8)	0.48940 (8)	0.0205 (3)	
H3N	0.4341 (14)	0.8771 (13)	0.4528 (10)	0.039 (6)*	
C1	0.72885 (12)	0.71544 (9)	0.27832 (9)	0.0199 (3)	
C2	0.83286 (12)	0.71386 (11)	0.31290 (10)	0.0254 (3)	
H2	0.8608	0.6671	0.3476	0.031*	
C3	0.89612 (13)	0.77961 (12)	0.29733 (10)	0.0297 (4)	
H3	0.9671	0.7776	0.3212	0.036*	
C4	0.85687 (13)	0.84829 (11)	0.24721 (10)	0.0260 (3)	
H4	0.9004	0.8937	0.2372	0.031*	
C5	0.75366 (13)	0.85010 (10)	0.21189 (10)	0.0242 (3)	
Н5	0.7263	0.8968	0.1770	0.029*	
C6	0.68972 (12)	0.78405 (9)	0.22712 (10)	0.0222 (3)	
H6	0.6190	0.7858	0.2024	0.027*	
C7	0.66018 (12)	0.64525 (9)	0.29845 (10)	0.0211 (3)	
H7A	0.7011	0.5962	0.3264	0.025*	
H7B	0.6144	0.6232	0.2482	0.025*	
C8	0.53949 (11)	0.60480 (9)	0.40842 (9)	0.0180 (3)	
C9	0.40256 (11)	0.72590 (9)	0.52304 (9)	0.0203 (3)	
H9	0.3811	0.6794	0.5524	0.024*	
C10	0.37149 (11)	0.81355 (9)	0.53466 (9)	0.0197 (3)	
C11	0.31225 (12)	0.84426 (9)	0.58549 (9)	0.0208 (3)	
H11	0.2848	0.8111	0.6233	0.025*	
C12	0.29954 (11)	0.93534 (9)	0.57094 (9)	0.0192 (3)	
C13	0.35401 (11)	0.95615 (9)	0.51045 (9)	0.0197 (3)	
C14	0.35929 (12)	1.04048 (10)	0.48156 (10)	0.0246 (3)	
H14	0.3960	1.0533	0.4407	0.030*	
C15	0.30886 (13)	1.10461 (10)	0.51477 (10)	0.0269 (4)	
H15	0.3116	1.1628	0.4967	0.032*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C16	0.25378 (13)	1.08549 (10)	0.57456 (10)	0.0259 (3)		
H16	0.2196	1.1309	0.5960	0.031*		
C17	0.24827 (12)	1.00197 (10)	0.60284 (10)	0.0229 (3)		
H17	0.2105	0.9897	0.6431	0.027*		
01	0.48913 (18)	0.92618 (16)	0.34417 (14)	0.0289 (5)	0.50	
H1O	0.5523 (10)	0.922 (3)	0.363 (3)	0.045 (13)*	0.50	
C18	0.4709 (7)	1.0002 (6)	0.2875 (4)	0.0472 (9)	0.50	
H18A	0.3966	1.0099	0.2687	0.057*	0.50	
H18B	0.5016	1.0533	0.3157	0.057*	0.50	
C19	0.5162 (7)	0.9824 (6)	0.2172 (4)	0.0472 (9)	0.50	
H19A	0.5044	1.0320	0.1798	0.071*	0.50	
H19B	0.4847	0.9304	0.1888	0.071*	0.50	
H19C	0.5898	0.9729	0.2360	0.071*	0.50	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0245 (2)	0.01412 (17)	0.0230 (2)	0.00081 (13)	0.01047 (15)	0.00013 (13)
S2	0.0342 (2)	0.01388 (17)	0.0233 (2)	-0.00028 (14)	0.01385 (17)	-0.00209 (14)
N1	0.0271 (7)	0.0148 (6)	0.0210 (7)	0.0021 (5)	0.0108 (5)	0.0004 (5)
N2	0.0225 (6)	0.0171 (6)	0.0203 (7)	0.0026 (5)	0.0042 (5)	-0.0024 (5)
N3	0.0223 (6)	0.0210 (6)	0.0204 (7)	0.0009 (5)	0.0092 (5)	-0.0024 (5)
C1	0.0255 (8)	0.0185 (7)	0.0183 (7)	-0.0008 (6)	0.0104 (6)	-0.0024 (5)
C2	0.0261 (8)	0.0299 (8)	0.0217 (8)	0.0038 (6)	0.0082 (7)	0.0082 (6)
C3	0.0207 (8)	0.0439 (10)	0.0241 (9)	-0.0035 (7)	0.0045 (7)	0.0074 (7)
C4	0.0293 (9)	0.0299 (8)	0.0202 (8)	-0.0086 (7)	0.0087 (7)	0.0026 (6)
C5	0.0316 (9)	0.0207 (7)	0.0204 (8)	-0.0001 (6)	0.0062 (7)	0.0028 (6)
C6	0.0229 (8)	0.0213 (7)	0.0222 (8)	-0.0002 (6)	0.0044 (6)	-0.0009 (6)
C7	0.0258 (8)	0.0179 (7)	0.0221 (8)	0.0001 (6)	0.0110 (6)	-0.0025 (6)
C8	0.0199 (7)	0.0170 (6)	0.0169 (7)	-0.0003 (5)	0.0031 (6)	0.0001 (5)
C9	0.0224 (7)	0.0199 (7)	0.0182 (7)	0.0022 (6)	0.0038 (6)	-0.0003 (6)
C10	0.0199 (7)	0.0209 (7)	0.0178 (7)	0.0013 (6)	0.0028 (6)	-0.0012 (6)
C11	0.0242 (8)	0.0206 (7)	0.0181 (8)	0.0021 (6)	0.0057 (6)	-0.0003 (6)
C12	0.0184 (7)	0.0217 (7)	0.0164 (7)	0.0012 (6)	0.0014 (6)	-0.0025 (6)
C13	0.0187 (7)	0.0209 (7)	0.0190 (8)	0.0007 (6)	0.0032 (6)	-0.0043 (6)
C14	0.0281 (8)	0.0227 (7)	0.0235 (8)	-0.0033 (6)	0.0066 (7)	-0.0018 (6)
C15	0.0333 (9)	0.0183 (7)	0.0270 (9)	0.0001 (6)	0.0017 (7)	-0.0020 (6)
C16	0.0265 (8)	0.0234 (7)	0.0262 (9)	0.0053 (6)	0.0020 (7)	-0.0082 (6)
C17	0.0224 (8)	0.0263 (8)	0.0203 (8)	0.0030 (6)	0.0057 (6)	-0.0046 (6)
01	0.0238 (12)	0.0401 (13)	0.0217 (12)	-0.0033 (10)	0.0026 (10)	0.0035 (10)
C18	0.041 (2)	0.050 (3)	0.0478 (15)	0.0096 (19)	0.0033 (12)	-0.001 (2)
C19	0.041 (2)	0.050 (3)	0.0478 (15)	0.0096 (19)	0.0033 (12)	-0.001 (2)

Geometric parameters (Å, °)

<u>S1—C8</u>	1.7506 (15)	C9—C10	1.439 (2)
S1—C7	1.8187 (15)	С9—Н9	0.9500
S2—C8	1.6647 (14)	C10—C11	1.372 (2)

N1—C8	1.3397 (19)	C11—C12	1.428 (2)
N1—N2	1.3748 (16)	C11—H11	0.9500
N1—H1N	0.875 (9)	C12—C17	1.406 (2)
N2—C9	1.285 (2)	C12—C13	1.413 (2)
N3—C13	1.3713 (18)	C13—C14	1.394 (2)
N3_C10	1.3792(10)	C14-C15	1.391(2) 1.383(2)
N3 H3N	0.873(0)	C14 $H14$	0.9500
C_1 C_2	1,200(2)	C_{14} C_{16} C_{16}	1.403(2)
C1 = C2	1.390 (2)		1.403(2)
C1 = C0	1.392 (2)		0.9500
	1.507 (2)		1.3/9(2)
C2—C3	1.383 (2)	C16—H16	0.9500
С2—Н2	0.9500	С17—Н17	0.9500
C3—C4	1.383 (2)	O1—C18	1.472 (8)
С3—Н3	0.9500	01—H10	0.839 (10)
C4—C5	1.383 (2)	C18—C19	1.469 (5)
C4—H4	0.9500	C18—H18A	0.9900
C5—C6	1.391 (2)	C18—H18B	0.9900
С5—Н5	0.9500	C19—H19A	0.9800
С6—Н6	0.9500	C19—H19B	0.9800
C7—H7A	0.9900	C19—H19C	0.9800
C7H7B	0.9900		0.9000
C/—II/B	0.7700		
C ⁸ S1 C7	102 42 (7)	C11 C10 N2	100.24(12)
	102.42 (7)	CII = CI0 = N3	109.34 (13)
C8—N1—N2	119.62 (12)	C11—C10—C9	129.24 (14)
C8—N1—H1N	118.6 (13)	N3—C10—C9	121.37 (14)
N2—N1—H1N	121.7 (13)	C10—C11—C12	107.22 (13)
C9—N2—N1	115.70 (13)	C10—C11—H11	126.4
C13—N3—C10	108.88 (12)	C12—C11—H11	126.4
C13—N3—H3N	125.6 (14)	C17—C12—C13	118.83 (14)
C10—N3—H3N	125.5 (14)	C17—C12—C11	134.62 (15)
C2—C1—C6	118.72 (14)	C13—C12—C11	106.55 (13)
C2—C1—C7	120.08 (14)	N3—C13—C14	129.59 (14)
C6-C1-C7	121.17 (14)	N3—C13—C12	108.01 (13)
$C_3 - C_2 - C_1$	120.66 (15)	C14-C13-C12	122 40 (14)
$C_3 - C_2 - H_2$	119.7	C_{15} C_{14} C_{13}	122.10(11) 117.29(15)
C_{1} C_{2} H_{2}	110.7	$C_{15} = C_{14} = C_{15}$	121 4
$C_1 = C_2 = C_2$	110.7	C_{13} C_{14} H_{14}	121.4
C4 - C3 - C2	120.35 (13)		121.4
C4 - C3 - H3	119.7	C14 - C15 - C16	121.36 (15)
C2—C3—H3	119.7		119.3
C3—C4—C5	119.29 (15)	C16—C15—H15	119.3
C3—C4—H4	120.4	C17—C16—C15	121.27 (14)
C5—C4—H4	120.4	C17—C16—H16	119.4
C4—C5—C6	120.45 (15)	C15—C16—H16	119.4
C4—C5—H5	119.8	C16—C17—C12	118.83 (15)
С6—С5—Н5	119.8	С16—С17—Н17	120.6
C5—C6—C1	120.35 (15)	C12—C17—H17	120.6
С5—С6—Н6	119.8	C18—O1—H1O	108 (3)
С1—С6—Н6	119.8	C19—C18—O1	109.7 (7)

C1—C7—S1	106.10 (10)	C19—C18—H18A	109.7
С1—С7—Н7А	110.5	O1—C18—H18A	109.7
S1—C7—H7A	110.5	C19—C18—H18B	109.7
С1—С7—Н7В	110.5	O1—C18—H18B	109.7
S1—C7—H7B	110.5	H18A—C18—H18B	108.2
H7A—C7—H7B	108.7	C18—C19—H19A	109.5
N1—C8—S2	121.15 (11)	C18—C19—H19B	109.5
N1	113.45 (10)	H19A—C19—H19B	109.5
S2—C8—S1	125.40 (9)	C18—C19—H19C	109.5
N2-C9-C10	119.03 (14)	H19A—C19—H19C	109.5
N2—C9—H9	120.5	H19B—C19—H19C	109.5
С10—С9—Н9	120.5		
C8—N1—N2—C9	179.09 (14)	N2-C9-C10-C11	-179.23 (16)
C6—C1—C2—C3	0.6 (2)	N2-C9-C10-N3	3.6 (2)
C7—C1—C2—C3	-177.57 (15)	N3-C10-C11-C12	0.47 (17)
C1—C2—C3—C4	0.2 (3)	C9—C10—C11—C12	-176.97 (15)
C2—C3—C4—C5	-0.8 (3)	C10-C11-C12-C17	179.98 (17)
C3—C4—C5—C6	0.6 (2)	C10-C11-C12-C13	-0.39 (17)
C4—C5—C6—C1	0.2 (2)	C10—N3—C13—C14	179.53 (16)
C2—C1—C6—C5	-0.8 (2)	C10—N3—C13—C12	0.12 (17)
C7—C1—C6—C5	177.36 (14)	C17—C12—C13—N3	179.86 (13)
C2-C1-C7-S1	106.98 (14)	C11—C12—C13—N3	0.16 (16)
C6—C1—C7—S1	-71.14 (16)	C17—C12—C13—C14	0.4 (2)
C8—S1—C7—C1	-163.14 (11)	C11—C12—C13—C14	-179.30 (14)
N2—N1—C8—S2	-176.00 (11)	N3—C13—C14—C15	-179.11 (15)
N2—N1—C8—S1	3.72 (18)	C12—C13—C14—C15	0.2 (2)
C7—S1—C8—N1	179.96 (11)	C13—C14—C15—C16	-0.6 (2)
C7—S1—C8—S2	-0.33 (12)	C14—C15—C16—C17	0.3 (3)
N1—N2—C9—C10	-176.43 (13)	C15—C16—C17—C12	0.3 (2)
C13—N3—C10—C11	-0.38 (17)	C13—C12—C17—C16	-0.7 (2)
C13—N3—C10—C9	177.30 (13)	C11—C12—C17—C16	178.94 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1n···S2 ⁱ	0.88(1)	2.52 (1)	3.350(1)	159 (2)
N3—H3n…O1	0.87 (1)	2.25 (1)	3.047 (3)	153 (2)

Symmetry code: (i) -x+1, -y+1, -z+1.