Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5-Phenyl-7,8-dihydro-1,3-dioxano[4,5-g]isoquinoline

Jiu-Ming Li^{a*} and Dong Liang^b

^aCollege of Chemistry, Inner Mongolia University for Nationalities, Tongliao 028043, People's Republic of China, and ^bQingdao DIC Finechemicals Co. Ltd, Qingdao 266101, People's Republic of China Correspondence e-mail: lijiuming10@yahoo.cn

Received 22 October 2008; accepted 28 October 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.144; data-to-parameter ratio = 12.4.

In the title compound, $C_{16}H_{13}NO_2$, the two benzene rings make a dihedral angle of 55.5 (2)°. The crystal packing is stabilized by intermolecular C-H···O hydrogen bonds and weak π - π stacking interactions [centroid-centroid distance = 3.595 (3)Å], linking the molecules into ladders of inversion dimers.

Related literature

For details of the biological activities of isoquinolinone compounds, see: Bentley (2000); Jayaraman et al. (2002). For the Bischler-Napieralski reaction, see: Bischler & Napieralski (1893). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

β

C ₁₆ H ₁₃ NO ₂	$\gamma = 99.70 \ (3)^{\circ}$
$M_r = 251.27$	V = 622.9 (2) Å ³
Triclinic, P1	Z = 2
a = 8.5005 (17) Å	Mo $K\alpha$ radiation
b = 8.5297 (17) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 10.143 (2) Å	T = 293 (2) K
$\alpha = 109.07 \ (3)^{\circ}$	$0.28 \times 0.10 \times 0.08 \text{ mm}$
$\beta = 109.44 \ (2)^{\circ}$	

Data collection

Rigaku R-AXIS RAPID IP areadetector diffractometer Absorption correction: multi-scan (ABSCOR: Higashi, 1995) $T_{\min} = 0.976, T_{\max} = 0.993$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	173 parameters
$wR(F^2) = 0.143$	H-atom parameters constrained
S = 1.13	$\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$
2145 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

4801 measured reflections

 $R_{\rm int} = 0.037$

2145 independent reflections

1275 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ $D - H \cdots A$ D - H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $C3-H3A\cdots O2^{i}$ 0.93 2.55 3.465 (4) 169

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2432).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Bentley, K. B. (2000). Nat. Prod. Rep. 17, 247-268.
- Bischler, A. & Napieralski, B. (1893). Chem. Ber. 26, 1903.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Jayaraman, M., Fox, B. M., Hollingshead, M., Kohlhagen, G., Pommier, Y. & Cushman, M. (2002). J. Med. Chem. 44, 242-249.
- Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Takyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o2272 [doi:10.1107/S1600536808035009]

5-Phenyl-7,8-dihydro-1,3-dioxano[4,5-g]isoquinoline

Jiu-Ming Li and Dong Liang

S1. Comment

Isoquinolinones are important compounds from both the synthetic and applied points of view. Their structures are incorporated in several alkaloids (Bentley, 20000 and other pharmacologically important compounds (Jayaraman *et al.*, 2002). Of the variety of methods that have been developed for the synthesis of the isoquinoline ring system, the most commonly used procedure is the Bischler-Napieralski reaction (Bischler & Napieralski, 1893). We now wish to report an effective Bischler-Napieralski procedure for the synthesis of 1,2,3,4-tetrahydro-6,7-dimethoxy-1-phenylisoquinoline the title compound (I) and report its crystal structure here.

In compound (I), all bond lengths in the molecular are normal (Allen *et al.*, 1987). The benzene ring C10–C15 and bonded atoms C7, C9, O1 and O2 are coplanar, the largest deviation from the mean plane being 0.039 (2)Å for atom O1. The other benzene ring, C1–C6, and bonded atoms C7 are also coplanar, the largest deviation from the mean plane being 0.032 (2)Å. The two benzene rings make a dihedral angle of 55.5 (2)°.

The relatively short distance of 3.595 (3) between the centroids of benzene ring C10—C15 and 1,3-dioxole ring C13/C14/C16/O1/O2 [at -x,1 - y,-z] indicates the presence of weak π - π interactions, The crystal packing is stabilized by intermolecular C—H…O hydrogen bonds, linking the molecules into ladders of dimers.

S2. Experimental

The title compound was synthesized by following Bischler-Napieralski procedures: 0.01 mol N-[2-(3, 4-methylenedioxy)phenyl]benzamide (synthesized by β -(3, 4-methylenedioxy)phenethylamine, Benzoyl chloride and Et₃N) was dissolved in 20 ml CH₃CN, 5 g POCl₃ was added dropwise, the mixture was refluxed under N₂ for 5 h, after cooled the volatiles were evaporated under vacuum, then water was added and adjusted the pH to 8, after extracted with CH₂Cl₂, the organic layers was washed with saturated NaCl and dried with Na₂SO₄, the product was isolated by evaporation of the solvent and recrystalization, 2.31 g, Yield: 92%. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethyl acetate at room temperature.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å, with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$.

Figure 1

The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.

5-Phenyl-7,8-dihydro-1,3-dioxano[4,5-g]isoquinoline

Crystal data

 $C_{16}H_{13}NO_2$ $M_r = 251.27$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.5005 (17) Åb = 8.5297 (17) Åc = 10.143 (2) Å $\alpha = 109.07 (3)^{\circ}$ $\beta = 109.44 \ (2)^{\circ}$ $\gamma = 99.70 (3)^{\circ}$ $V = 622.9 (2) \text{ Å}^3$

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer Radiation source: Rotating Anode Graphite monochromator $R_{\rm int} = 0.037$ ω oscillation scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $k = -10 \rightarrow 10$ $T_{\rm min} = 0.976, \ T_{\rm max} = 0.993$ $l = -11 \rightarrow 12$

Z = 2F(000) = 264 $D_{\rm x} = 1.340 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 1451 reflections $\theta = 2.5 - 23.4^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.28 \times 0.10 \times 0.08 \text{ mm}$

4801 measured reflections 2145 independent reflections 1275 reflections with $I > 2\sigma(I)$ $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ $h = -10 \rightarrow 10$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.144$	$w = 1/[\sigma^2(F_o^2) + (0.0514P)^2 + 0.1397P]$
<i>S</i> = 1.13	where $P = (F_o^2 + 2F_c^2)/3$
2145 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
173 parameters	$\Delta ho_{ m max} = 0.20 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.048 (8)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.9151 (2)	0.7157 (2)	1.18121 (17)	0.0688 (6)	
02	0.6920(2)	0.4574 (2)	1.01260 (17)	0.0656 (6)	
N1	0.8054 (3)	0.6182 (3)	0.5069 (2)	0.0638 (6)	
C1	0.5553 (3)	0.2889 (4)	0.3031 (3)	0.0614 (7)	
H1B	0.5296	0.3808	0.2795	0.074*	
C2	0.4741 (4)	0.1204 (4)	0.1932 (3)	0.0734 (8)	
H2A	0.3938	0.0996	0.0961	0.088*	
C3	0.5097 (4)	-0.0172 (4)	0.2247 (3)	0.0772 (9)	
H3A	0.4550	-0.1308	0.1496	0.093*	
C4	0.6281 (4)	0.0149 (4)	0.3695 (3)	0.0692 (8)	
H4A	0.6521	-0.0779	0.3924	0.083*	
C5	0.7107 (3)	0.1825 (3)	0.4798 (3)	0.0579 (7)	
H5A	0.7914	0.2022	0.5765	0.069*	
C6	0.6756 (3)	0.3230 (3)	0.4491 (2)	0.0511 (6)	
C7	0.7705 (3)	0.5073 (3)	0.5614 (2)	0.0521 (6)	
C8	0.9013 (4)	0.7997 (3)	0.6168 (3)	0.0679 (8)	
H8A	0.8187	0.8570	0.6406	0.081*	
H8B	0.9573	0.8600	0.5702	0.081*	
C9	1.0385 (4)	0.8139 (3)	0.7632 (3)	0.0604 (7)	
H9A	1.1279	0.7664	0.7424	0.072*	
H9B	1.0943	0.9354	0.8351	0.072*	
C10	0.9508 (3)	0.7137 (3)	0.8300 (2)	0.0497 (6)	
C11	0.8169 (3)	0.5585 (3)	0.7272 (2)	0.0468 (6)	

C12	0.7220 (3)	0.4618 (3)	0.7802 (2)	0.0490 (6)	
H12A	0.6326	0.3575	0.7130	0.059*	
C13	0.7659(3)	0.5266 (3)	0.9336 (2)	0.0492 (6)	
C14	0.8994 (3)	0.6795 (3)	1.0347 (2)	0.0510 (6)	
C15	0.9955 (3)	0.7752 (3)	0.9871 (2)	0.0525 (6)	
H15A	1.0871	0.8771	1.0566	0.063*	
C16	0.7728 (4)	0.5854 (4)	1.1664 (3)	0.0713 (8)	
H16A	0.8159	0.5318	1.2363	0.086*	
H16B	0.6882	0.6379	1.1918	0.086*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0833 (14)	0.0751 (12)	0.0399 (9)	0.0155 (10)	0.0240 (9)	0.0202 (8)
O2	0.0861 (14)	0.0677 (11)	0.0470 (10)	0.0158 (10)	0.0377 (9)	0.0221 (9)
N1	0.0805 (16)	0.0671 (14)	0.0497 (12)	0.0199 (12)	0.0329 (11)	0.0267 (11)
C1	0.0513 (15)	0.0779 (18)	0.0514 (15)	0.0196 (13)	0.0185 (12)	0.0255 (14)
C2	0.0562 (17)	0.091 (2)	0.0482 (15)	0.0073 (15)	0.0087 (12)	0.0213 (15)
C3	0.080 (2)	0.0689 (18)	0.0552 (16)	0.0037 (16)	0.0187 (14)	0.0116 (14)
C4	0.079 (2)	0.0613 (16)	0.0564 (16)	0.0162 (14)	0.0246 (14)	0.0179 (13)
C5	0.0633 (16)	0.0625 (15)	0.0404 (13)	0.0169 (13)	0.0184 (11)	0.0168 (12)
C6	0.0522 (15)	0.0630 (15)	0.0383 (12)	0.0164 (12)	0.0232 (10)	0.0173 (11)
C7	0.0588 (16)	0.0615 (15)	0.0433 (12)	0.0229 (12)	0.0272 (11)	0.0221 (12)
C8	0.087 (2)	0.0622 (16)	0.0626 (16)	0.0183 (14)	0.0396 (15)	0.0296 (14)
C9	0.0646 (17)	0.0594 (15)	0.0592 (15)	0.0142 (12)	0.0327 (13)	0.0223 (12)
C10	0.0498 (14)	0.0533 (13)	0.0471 (13)	0.0170 (11)	0.0226 (11)	0.0190 (11)
C11	0.0517 (14)	0.0525 (13)	0.0393 (12)	0.0180 (11)	0.0220 (10)	0.0186 (10)
C12	0.0533 (15)	0.0522 (13)	0.0427 (12)	0.0180 (11)	0.0221 (10)	0.0178 (11)
C13	0.0587 (15)	0.0553 (14)	0.0405 (12)	0.0199 (11)	0.0273 (11)	0.0202 (11)
C14	0.0596 (16)	0.0587 (14)	0.0359 (12)	0.0255 (12)	0.0197 (11)	0.0178 (11)
C15	0.0507 (14)	0.0560 (14)	0.0458 (13)	0.0150 (11)	0.0187 (11)	0.0171 (11)
C16	0.087 (2)	0.0816 (19)	0.0449 (14)	0.0216 (16)	0.0341 (14)	0.0215 (14)

Geometric parameters (Å, °)

01—C14	1.370 (3)	C7—C11	1.481 (3)
O1—C16	1.427 (3)	C8—C9	1.504 (4)
O2—C13	1.381 (3)	C8—H8A	0.9700
O2—C16	1.421 (3)	C8—H8B	0.9700
N1—C7	1.283 (3)	C9—C10	1.499 (3)
N1—C8	1.465 (3)	С9—Н9А	0.9700
C1—C2	1.375 (4)	С9—Н9В	0.9700
C1—C6	1.391 (3)	C10—C11	1.391 (3)
C1—H1B	0.9300	C10—C15	1.394 (3)
C2—C3	1.368 (4)	C11—C12	1.406 (3)
C2—H2A	0.9300	C12—C13	1.359 (3)
C3—C4	1.380 (4)	C12—H12A	0.9300
С3—НЗА	0.9300	C13—C14	1.376 (3)

C4—C5	1.372 (3)	C14—C15	1.364 (3)
C4—H4A	0.9300	C15—H15A	0.9300
C5—C6	1.387 (3)	C16—H16A	0.9700
С5—Н5А	0.9300	C16—H16B	0.9700
C6—C7	1.487 (3)		
C14—O1—C16	105.44 (18)	С10—С9—С8	108.3 (2)
C13—O2—C16	105.24 (18)	С10—С9—Н9А	110.0
C7—N1—C8	117.11 (19)	С8—С9—Н9А	110.0
C2—C1—C6	120.6 (3)	С10—С9—Н9В	110.0
C2—C1—H1B	119.7	С8—С9—Н9В	110.0
C6—C1—H1B	119.7	H9A—C9—H9B	108.4
C3—C2—C1	120.9 (3)	C11—C10—C15	121.1 (2)
C3—C2—H2A	119.6	C11—C10—C9	116.9 (2)
C1—C2—H2A	119.6	C15—C10—C9	122.0 (2)
C2—C3—C4	119.1 (3)	C10-C11-C12	120.3 (2)
С2—С3—НЗА	120.5	C10—C11—C7	117.7 (2)
С4—С3—НЗА	120.5	C12—C11—C7	121.8 (2)
C5—C4—C3	120.5 (3)	C13—C12—C11	117.4 (2)
С5—С4—Н4А	119.7	C13—C12—H12A	121.3
C3—C4—H4A	119.7	C11—C12—H12A	121.3
C4—C5—C6	120.9 (2)	C12—C13—C14	121.9 (2)
С4—С5—Н5А	119.6	C12—C13—O2	128.3 (2)
С6—С5—Н5А	119.6	C14—C13—O2	109.77 (19)
C5—C6—C1	118.0 (2)	C15—C14—O1	127.9 (2)
C5—C6—C7	122.7 (2)	C15—C14—C13	122.1 (2)
C1—C6—C7	119.0 (2)	O1—C14—C13	110.0 (2)
N1—C7—C11	122.4 (2)	C14—C15—C10	117.2 (2)
N1—C7—C6	116.7 (2)	C14—C15—H15A	121.4
C11—C7—C6	120.8 (2)	C10-C15-H15A	121.4
N1—C8—C9	112.5 (2)	O2—C16—O1	108.54 (19)
N1—C8—H8A	109.1	O2—C16—H16A	110.0
С9—С8—Н8А	109.1	O1—C16—H16A	110.0
N1—C8—H8B	109.1	O2—C16—H16B	110.0
С9—С8—Н8В	109.1	O1—C16—H16B	110.0
H8A—C8—H8B	107.8	H16A-C16-H16B	108.4
C6—C1—C2—C3	-0.1 (4)	N1-C7-C11-C10	-22.2 (4)
C1—C2—C3—C4	0.5 (5)	C6—C7—C11—C10	159.5 (2)
C2—C3—C4—C5	-0.8 (5)	N1—C7—C11—C12	153.3 (3)
C3—C4—C5—C6	0.9 (4)	C6—C7—C11—C12	-25.0 (4)
C4—C5—C6—C1	-0.5 (4)	C10-C11-C12-C13	0.3 (4)
C4—C5—C6—C7	-175.7 (2)	C7—C11—C12—C13	-175.0 (2)
C2-C1-C6-C5	0.1 (4)	C11—C12—C13—C14	-0.9 (4)
C2—C1—C6—C7	175.6 (2)	C11—C12—C13—O2	179.4 (2)
C8—N1—C7—C11	2.5 (4)	C16—O2—C13—C12	-173.7 (3)
C8—N1—C7—C6	-179.1 (2)	C16—O2—C13—C14	6.5 (3)
C5—C6—C7—N1	142.5 (3)	C16—O1—C14—C15	174.1 (3)

C1—C6—C7—N1	-32.7 (3)	C16—O1—C14—C13	-5.3 (3)	
C5—C6—C7—C11	-39.2 (3)	C12—C13—C14—C15	0.0 (4)	
C1—C6—C7—C11	145.6 (2)	O2-C13-C14-C15	179.8 (2)	
C7—N1—C8—C9	37.6 (3)	C12—C13—C14—O1	179.4 (2)	
N1-C8-C9-C10	-56.4 (3)	O2-C13-C14-O1	-0.8 (3)	
C8—C9—C10—C11	37.8 (3)	O1-C14-C15-C10	-178.0 (2)	
C8—C9—C10—C15	-139.8 (3)	C13—C14—C15—C10	1.3 (4)	
C15—C10—C11—C12	1.0 (4)	C11—C10—C15—C14	-1.8 (4)	
C9-C10-C11-C12	-176.6 (2)	C9-C10-C15-C14	175.7 (2)	
C15—C10—C11—C7	176.5 (2)	C13—O2—C16—O1	-9.7 (3)	
C9—C10—C11—C7	-1.1 (3)	C14—O1—C16—O2	9.3 (3)	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C3—H3A····O2 ⁱ	0.93	2.55	3.465 (4)	169

Symmetry code: (i) -x+1, -y, -z+1.