

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-*r*-(4-Chlorophenyl)-6-*c*-phenyl-3,4,5,6tetrahydro-2*H*-thiopyran-4-one 1-oxide

A. Thiruvalluvar,^a* S. Balamurugan,^a R. J. Butcher,^b K. Pandiarajan^c and D. Devanathan^c

^aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and ^cDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India

Correspondence e-mail: athiru@vsnl.net

Received 10 November 2008; accepted 11 November 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.061; wR factor = 0.211; data-to-parameter ratio = 18.4.

The thiopyran unit of the title molecule, $C_{17}H_{15}ClO_2S$, is in chair form. A crystallographic mirror plane bisects the molecule, passing through the O=S and the opposite C=O atoms of the central ring, with statistical disorder of the Cl atom. The geometry around the S atom is tetrahedral and the carbonyl C is planar. The 4-chlorophenyl group at the 2 position and the phenyl ring at the 6 position have equatorial orientations. Intermolecular C-H···O and C-H···Cl hydrogen bonds are found in the crystal structure. In addition, there is a short O···C intermolecular contact [2.970 (5) Å].

Related literature

For a related crystal structure, see: Thiruvalluvar *et al.* (2007). For applications of sulfoxides, see: Contreras *et al.* (1998); Hutton *et al.* (2002); Okada & Tanaka (2002). For the conformational analysis of substituted thian-1-oxides, see: Freeman *et al.* (2001); Nagao *et al.* (1995). For the antimicrobial activity of aliphatic, aromatic and cyclic sulfoxides, see: Ansel *et al.* (2006); Ingold *et al.* (1999); Rouvier *et al.* (2004).

Experimental

Crystal data $C_{17}H_{15}ClO_2S$ $M_r = 318.81$

Orthorhombic, *Pnma* a = 11.5195 (5) Å

b = 25.7589 (12) Å c = 5.2248 (2) Å $V = 1550.35 (12) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{min} = 0.809, T_{max} = 0.945$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ 106 parameters $wR(F^2) = 0.211$ H-atom parameters constrainedS = 1.20 $\Delta \rho_{max} = 0.32$ e Å⁻³1954 reflections $\Delta \rho_{min} = -0.42$ e Å⁻³

Table 1	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O1^{i}$	0.98	2.43	3.232 (4)	138
$C15 - H15 \cdots Cl1^{ii}$	0.93	2.82	3.745 (9)	170
Summature and an (i) a		1 1		

Symmetry codes: (i) x, y, z + 1; (ii) $-x + \frac{1}{2}, -y, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2*; data reduction: *SAINT-NT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *PLATON* (Spek, 2003).

AT thanks the UGC, India, for the award of a Minor Research Project [File No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007]. RJB acknowledges the NSF–MRI program for funding to purchase the X-ray CCD diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2443).

References

- Ansel, H. C., Norred, W. P. & Roth, I. L. (2006). J. Pharm. Sci. 58, 836-839. Bruker (2004). APEX2, SAINT-NT and SADABS. Bruker AXS Inc.,
- Madison, Wisconsin, USA. Contreras, J. G., Madariaga, S. T. & Alderete, J. B. (1998). J. Phys. Org. Chem.
- 11, 392–396.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Freeman, F., Nguyen, T. & Hehre, W. (2001). J. Mol. Struct. (THEOCHEM), 549, 203–216.
- Hutton, C. A., Jaber, R., Otaegui, M., Turnet, J. J., Turner, P., White, J. M. & Bacskay, G. B. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1066–1071.
- Ingold, K., Bigler, P., Thormann, W., Cavaliero, T., Gottstein, B. & Hemphill, A. (1999). Antimicrob. Agents Chemother. 43, 1052–1061.
- Nagao, Y., Goto, M., Kida, K. & Shiro, M. (1995). Heterocycles, 41, 419-424.
- Okada, K. & Tanaka, M. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 2704–2711.
- Rouvier, C. S., Barret, J. M., Farrell, C. M., Sharples, D., Hill, B. T. & Barbe, J. (2004). Eur. J. Med. Chem. 39, 1029–1038.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Thiruvalluvar, A., Balamurugan, S., Butcher, R. J., Pandiarajan, K. & Devanathan, D. (2007). *Acta Cryst.* E63, 04486.

Mo $K\alpha$ radiation $\mu = 0.38 \text{ mm}^{-1}$

 $0.58 \times 0.35 \times 0.15$ mm

33450 measured reflections

1954 independent reflections

1551 reflections with $I > 2\sigma(I)$

T = 296 (2) K

 $R_{\rm int} = 0.040$

supporting information

Acta Cryst. (2008). E64, o2367 [doi:10.1107/S1600536808037355]

2-r-(4-Chlorophenyl)-6-c-phenyl-3,4,5,6-tetrahydro-2H-thiopyran-4-one 1-oxide

A. Thiruvalluvar, S. Balamurugan, R. J. Butcher, K. Pandiarajan and D. Devanathan

S1. Comment

Increasing interest has been focused on the stereochemical aspects of sulphoxides. The conformational analysis of cyclic sulphoxides is an area of attraction for many groups (Okada & Tanaka, 2002; Hutton *et al.*, 2002; Contreras *et al.*, 1998). Significant attention was earlier directed toward the conformational analysis of substituted thian-1-oxides (Freeman *et al.*, 2001; Nagao *et al.*, 1995). The conformational integrity of the sulphoxide has also generated interest in the various conditions under which it may undergo stereoisomerization. A large number of aliphatic, aromatic and cyclic sulphoxides exhibit antimicrobial activity (Ingold *et al.*, 1999; Ansel *et al.*, 2006; Rouvier *et al.*, 2004). Although extensive studies on sulphoxides have disclosed their chemical and physico-chemical properties, little is known about the properties of the sulphinyl groups in cyclic sulphoxides. To investigate the conformations, substitution effect and antimicrobial activity of unsymmetrical thiopyran-4-one 1-oxides, the title compound was synthesized.

Thiruvalluvar *et al.*, (2007) have reported a crystal structure of 2-(4-Fluorophenyl)-6-phenyltetrahydro-2*H*-thiopyran-4one 1-oxide, wherein the thiopyran unit is in chair form. The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. The thiopyran unit of the title molecule, $C_{17}H_{15}ClO_2S$, is in the chair form. The geometry around S1 atom is tetrahedral and C4 is planar. A crystallographic mirror plane bisects the molecule, passing through the O=S and the opposite C=O atoms of the central ring. The (*p*-chloro)phenyl at the 2 position and the phenyl ring at the 6 position have equatorial orientations. C2—H2···O1(*x*, *y*, 1 + *z*) and C15—H15···C11(1/2 - *x*, -*y*, -1/2 + *z*) intermolecular hydrogen bonds forming an infinite one dimensional chain with base vector [0 0 1] are found in the crystal structure. Further, a short intermolecular O1···C4(*x*, *y*, -1 + *z*) contact of 2.970 (5)Å is also found in the crystal structure.

S2. Experimental

A mixture of *cis*-2-(4-chlorophenyl)-6-phenyldithian-4-one (3.18 g, 0.01 mol), diethyl ether (60 ml), bromine (3.0 g) in water (30 ml) was shaken for few minutes. The solid that separated was filtered, washed with ether and recrystallized from chloroform-carbon tetrachloride mixture (1:1 ν/ν). The yield obtained was 68%(2.16 g).

S3. Refinement

The structure was solved in the space group *Pnma* with half a molecule in the asymmetric unit. The other half is related by a mirror plane symmetry [x, 1/2 - y, z]. The s.o.f. of C14A, C11, C14B and H14B is 0.5 and for the remaining phenyl group atoms it is 1.00. This confirms the (*p*-chloro)phenyl group at 2 position and the phenyl group at 6 position. The H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.93–0.98 Å and U_{iso} = $1.2U_{eq}$ (C).

Figure 1

The molecular structure of the title compound with the atomic numbering and 30% probability displacement ellipsoids. The unlabelled and labelled atoms are related by mirror plane [symmetry code: x, 1/2 - y, z].

Figure 2

The packing of the title compound, viewed down the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

2-r-(4-Chlorophenyl)-6-c-phenyl-3,4,5,6-tetrahydro-2*H*-thiopyran-4-one 1-oxide

Crystal data	
$C_{17}H_{15}ClO_2S$	Z = 4
$M_r = 318.81$	F(000) = 664
Orthorhombic, Pnma	$D_{\rm x} = 1.366 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 2ac 2n	Melting point: 417 K
a = 11.5195 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 25.7589 (12) Å	Cell parameters from 9562 reflections
c = 5.2248 (2) Å	$\theta = 3.0-24.8^{\circ}$
$V = 1550.35 (12) \text{ Å}^3$	$\mu=0.38~\mathrm{mm^{-1}}$

T = 296 K $0.58 \times 0.35 \times 0.15 \text{ mm}$ Thick, colourless Data collection Bruker APEXII CCD 33450 measured reflections diffractometer 1954 independent reflections Radiation source: fine-focus sealed tube 1551 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.040$ $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$ Detector resolution: 0 pixels mm⁻¹ φ and ω scans $h = -15 \rightarrow 15$ $k = -34 \rightarrow 34$ Absorption correction: multi-scan $l = -6 \rightarrow 6$ (SADABS; Bruker, 2004) $T_{\rm min} = 0.809, T_{\rm max} = 0.945$ Refinement Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.061$ Hydrogen site location: inferred from $wR(F^2) = 0.211$ neighbouring sites S = 1.20H-atom parameters constrained 1954 reflections $w = 1/[\sigma^2(F_0^2) + (0.0825P)^2 + 1.5305P]$ where $P = (F_0^2 + 2F_c^2)/3$ 106 parameters 0 restraints $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.0955 (4)	0.00160 (11)	0.0431 (9)	0.1475 (18)	0.500
S1	0.24636 (8)	0.25000	0.27287 (17)	0.0434 (3)	
01	0.3171 (3)	0.25000	0.0330 (5)	0.0614 (10)	
04	0.5597 (3)	0.25000	0.7542 (7)	0.0772 (13)	
C2	0.3029 (3)	0.19728 (12)	0.4726 (5)	0.0477 (9)	
C3	0.4354 (3)	0.20065 (15)	0.4859 (7)	0.0621 (13)	
C4	0.4819 (3)	0.25000	0.5959 (8)	0.0581 (16)	
C11	0.2583 (3)	0.14695 (14)	0.3651 (7)	0.0593 (11)	
C12	0.1618 (4)	0.12411 (19)	0.4657 (10)	0.0873 (18)	
C13	0.1167 (5)	0.0784 (2)	0.3692 (16)	0.113 (3)	
C14A	0.1685 (7)	0.0557 (2)	0.1666 (16)	0.112 (3)	0.500
C14B	0.1685 (7)	0.0557 (2)	0.1666 (16)	0.112 (3)	0.500
C15	0.2634 (7)	0.0778 (3)	0.0566 (14)	0.124 (3)	
C16	0.3087 (5)	0.1234 (2)	0.1524 (10)	0.0940 (19)	

supporting information

H2	0.27192	0.20147	0.64603	0.0573*		
H3A	0.46377	0.17188	0.58808	0.0745*		
H3B	0.46629	0.19651	0.31439	0.0745*		
H12	0.12502	0.13981	0.60394	0.1053*		
H13	0.05139	0.06340	0.44321	0.1358*		
H14B	0.13910	0.02476	0.10157	0.1344*	0.500	
H15	0.29807	0.06199	-0.08411	0.1492*		
H16	0.37304	0.13854	0.07466	0.1130*		

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cl1	0.168 (3)	0.0895 (18)	0.185 (4)	-0.0163 (19)	-0.060 (3)	-0.035 (2)
S1	0.0328 (5)	0.0708 (7)	0.0265 (5)	0.0000	-0.0033 (3)	0.0000
01	0.0611 (19)	0.101 (2)	0.0221 (13)	0.0000	0.0046 (13)	0.0000
O4	0.0365 (16)	0.138 (3)	0.057 (2)	0.0000	-0.0168 (14)	0.0000
C2	0.0413 (14)	0.0715 (18)	0.0304 (13)	0.0054 (13)	-0.0019 (11)	0.0014 (12)
C3	0.0390 (15)	0.096 (3)	0.0512 (18)	0.0139 (16)	-0.0103 (13)	-0.0018 (17)
C4	0.0304 (19)	0.106 (4)	0.038 (2)	0.0000	-0.0045 (16)	0.0000
C11	0.0562 (18)	0.069 (2)	0.0527 (18)	0.0096 (16)	-0.0125 (15)	0.0000 (15)
C12	0.063 (2)	0.095 (3)	0.104 (4)	-0.007 (2)	0.009 (2)	-0.018 (3)
C13	0.092 (4)	0.097 (4)	0.150 (6)	-0.019 (3)	-0.005 (4)	-0.004 (4)
C14A	0.118 (5)	0.080 (3)	0.138 (5)	-0.001 (3)	-0.048 (4)	-0.017 (3)
C14B	0.118 (5)	0.080 (3)	0.138 (5)	-0.001 (3)	-0.048 (4)	-0.017 (3)
C15	0.156 (6)	0.099 (4)	0.118 (5)	0.008 (4)	-0.006 (4)	-0.045 (4)
C16	0.111 (4)	0.094 (3)	0.077 (3)	-0.001 (3)	0.013 (3)	-0.025 (3)

Geometric parameters (Å, °)

Cl1—C14A	1.751 (7)	C13—C14B	1.349 (11)
Cl1—C14B	1.751 (7)	C14A—C15	1.360 (11)
Cl1—H14B	0.8400	C14B—C15	1.360 (11)
S1—C2	1.832 (3)	C15—C16	1.379 (9)
$S1-C2^i$	1.832 (3)	C2—H2	0.9800
S1—01	1.495 (3)	C3—H3A	0.9700
O4—C4	1.220 (5)	C3—H3B	0.9700
C2—C3	1.530 (5)	C12—H12	0.9300
C2-C11	1.503 (5)	C13—H13	0.9300
C3—C4	1.494 (4)	C14A—H14B	0.9300
C11—C12	1.363 (6)	C14B—H14B	0.9300
C11—C16	1.393 (6)	C15—H15	0.9300
C12—C13	1.382 (8)	C16—H16	0.9300
C13—C14A	1.349 (11)		
Cl1C15 ⁱⁱ	3.645 (9)	C2····O1 ^{xiv}	3.232 (4)
Cl1…H15 ⁱⁱⁱ	2.8200	C2···O1 ^x	3.232 (4)
S1…O4 ^{iv}	3.494 (4)	C3…O1 ^{xiv}	3.412 (4)
S1…O4 ^v	3.276 (4)	C3····O1 ^x	3.412 (4)

S1…C4 ^{iv}	3.605 (4)	C4…S1 ^{xii}	3.605 (4)
S1…O4 ^{vi}	3.494 (4)	C4…O1 ^{xiv}	2.970 (5)
S1…O4 ^{vii}	3.276 (4)	C4…S1 ^{xv}	3.605 (4)
S1…C4 ^{vi}	3.605 (4)	C4…O1 ^x	2.970 (5)
O1…O4 ^{viii}	3.152 (5)	C12…C15 ^{xiv}	3.511 (9)
O1····C2 ^{viii}	3.232 (4)	C15····C12 ^{viii}	3.511 (9)
O1····C3 ^{viii}	3.412 (4)	C15…Cl1 ⁱⁱⁱ	3.645 (9)
O1····C4 ^{viii}	2.970 (5)	C16…O1	3.322 (5)
O1…C16	3.322 (5)	C3…H16	2.7700
O1····C2 ^{ix}	3.232 (4)	С16…Н3В	2.7500
O1…C3 ^{ix}	3.412 (4)	H2…O1 ^{xiv}	2.4300
O1…O4 ^{ix}	3.152 (5)	H2…H12	2.3300
01…C16 ⁱ	3.322 (5)	H2····O4 ^v	2.7900
O1···C4 ^{ix}	2.970 (5)	H2…O4 ^{vii}	2.7900
04…01 ^x	3.152 (5)	H2…O1 ^x	2.4300
O4…S1 ^{xi}	3.276 (4)	H2···H2 ⁱ	2.5000
04 ···· $S1^{xii}$	3 494 (4)	$H3A\cdots H12^{xi}$	2.5900
O4···S1 ^{xiii}	3 276 (4)	H3B…O1	2.6500
$04\cdots01^{xiv}$	3 152 (5)	H3B···C16	2.0500
$04\cdots S1^{xv}$	3.192(3) 3.494(4)	H3B…H16	2.7300
O1···H3Bi	2 6500	H12H2	2.2300
$01 \cdots H2^{viii}$	2 4300	H12H3A ^{vii}	2.5900
$01 \cdots H2^{ix}$	2.4300	H12 H3/A	2.3900
01H3B	2.4500	H16C3	2.8200
$O_4 \cdots H_2^{x_{iii}}$	2.0500	H16H3B	2.7700
$04 \cdot H2^{xi}$	2.7900		2.2500
04-112	2.7900		
C14A—C11—H14B	8.00	C11—C16—C15	120.2 (5)
C14B—C11—H14B	8.00	S1—C2—H2	108.00
$C2-S1-C2^{i}$	95.66 (14)	С3—С2—Н2	108.00
O1—S1—C2	106.48 (13)	C11—C2—H2	108.00
$01 - S1 - C2^{i}$	106.48 (13)	С2—С3—НЗА	109.00
C3—C2—C11	114.0 (3)	С2—С3—Н3В	109.00
S1—C2—C3	109.8 (2)	С4—С3—Н3А	109.00
S1—C2—C11	107.8 (2)	С4—С3—Н3В	108.00
C2—C3—C4	115.0 (3)	НЗА—СЗ—НЗВ	108.00
C3—C4—C3 ⁱ	116.6 (3)	C11—C12—H12	119.00
O4—C4—C3	121.62 (19)	C13—C12—H12	119.00
O4—C4—C3 ⁱ	121.62 (19)	C12—C13—H13	120.00
C12—C11—C16	117.4 (4)	C14A—C13—H13	120.00
C2-C11-C16	122.1 (4)	C14B—C13—H13	120.00
C2—C11—C12	120.5 (3)	Cl1—C14A—H14B	8.00
C11—C12—C13	122.2 (5)	C13—C14A—H14B	120.00
C12—C13—C14A	119.3 (6)	C15—C14A—H14B	120.00
C12—C13—C14B	119.3 (6)	Cl1—C14B—H14B	8.00
Cl1—C14A—C15	124.3 (6)	C13—C14B—H14B	120.00
Cl1—C14A—C13	115.0 (6)	C15—C14B—H14B	120.00
C13—C14A—C15	120.4 (6)	C14A—C15—H15	120.00
	× /		

Cl1—C14B—C15 C13—C14B—C15 Cl1—C14B—C13 C14A—C15—C16 C14B—C15—C16	124.3 (6) 120.4 (6) 115.0 (6) 120.5 (7) 120.5 (7)	C14B—C15—H15 C16—C15—H15 C11—C16—H16 C15—C16—H16	120.00 120.00 120.00 120.00
O1—S1—C2—C3	48.2 (2)	C2-C11-C16-C15	-178.6 (5)
O1—S1—C2—C11	-76.5 (2)	C12-C11-C16-C15	-2.2 (7)
C2 ⁱ —S1—C2—C3	-60.9 (2)	C11—C12—C13—C14A	-0.9 (9)
C2 ⁱ —S1—C2—C11	174.5 (2)	C11—C12—C13—C14B	-0.9 (9)
S1—C2—C3—C4	59.9 (3)	C12—C13—C14A—Cl1	-174.1 (5)
C11—C2—C3—C4	-179.1 (3)	C12—C13—C14A—C15	-0.7 (11)
S1—C2—C11—C12	-96.7 (4)	C12-C13-C14B-Cl1	-174.1 (5)
S1—C2—C11—C16	79.6 (4)	C12-C13-C14B-C15	-0.7 (11)
C3—C2—C11—C12	141.3 (4)	Cl1—C14A—C15—C16	173.5 (6)
C3—C2—C11—C16	-42.5 (5)	C13—C14A—C15—C16	0.7 (11)
C2—C3—C4—O4	134.6 (4)	Cl1—C14B—C15—C16	173.5 (6)
$C2-C3-C4-C3^{i}$	-50.5 (4)	C13-C14B-C15-C16	0.7 (11)
C2-C11-C12-C13	178.7 (5)	C14A—C15—C16—C11	0.8 (10)
C16-C11-C12-C13	2.3 (7)	C14B-C15-C16-C11	0.8 (10)

Symmetry codes: (i) *x*, -*y*+1/2, *z*; (ii) -*x*+1/2, -*y*, *z*-1/2; (iii) -*x*+1/2, -*y*, *z*+1/2; (iv) *x*-1/2, -*y*+1/2, -*z*+1/2; (v) *x*-1/2, -*y*+1/2, -*z*+3/2; (vi) *x*-1/2, *y*, -*z*+3/2; (vii) *x*, *y*, *z*-1; (ix) *x*, -*y*+1/2, *z*-1; (x) *x*, -*y*+1/2, *z*+1; (xi) *x*+1/2, *y*, -*z*+3/2; (xii) *x*+1/2, -*y*+1/2, -*z*+1/2; (xiii) -*z*+1/2; (xiii)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H… <i>A</i>
C2—H2····O1 ^{xiv}	0.98	2.43	3.232 (4)	138
C15—H15…Cl1 ⁱⁱ	0.93	2.82	3.745 (9)	170

Symmetry codes: (ii) -x+1/2, -y, z-1/2; (xiv) x, y, z+1.