metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dibromidobis(N,N-diethyldithiocarbamato- $\kappa^2 S,S'$)tetra- μ_3 -sulfidodicopper(I)dimolybdenum(V) isopropanol disolvate

Qing Zhang* and Min Liu

College of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China Correspondence e-mail: ixstnu2008@vahoo.cn

Received 22 September 2008; accepted 28 October 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.013 Å; disorder in main residue; R factor = 0.055; wR factor = 0.121; data-to-parameter ratio = 19.0.

The molecule of the title compound, $[Cu_2Mo_2Br_2(C_7H_{14}-NS_2)_2S_4]\cdot 2C_3H_7OH$, comprises one $[(i-C_3H_7)_2NCS_2]_2Mo_2S_4$ unit and two CuBr units held together by six $Cu - \mu_3$ -S bonds, thus forming a cubane-like $Mo_2S_4Cu_2$ core. Intramolecular $O-H\cdots$ S hydrogen bonds may stabilize the structure. Two methyl groups of the two independent solvent molecules are disordered over two positions and were refined with occupancies of 0.733 (12) and 0.267 (12).

Related literature

For sulfido-bridged dinuclear complexes with an M_2S_4 core (M = Mo, W), see: Hidai *et al.* (1999); Lang *et al.* (2003); Curtis *et al.* (1997); Stiefel *et al.* (1985); Wu *et al.* (1990).

Experimental

Crystal data $[Cu_2Mo_2Br_2(C_7H_{14}NS_2)_2S_4]$ -- $2C_3H_8O$

 $M_r = 1079.91$ Triclinic, $P\overline{1}$

b = 12.734 (3) A	Z = 2
c = 12.759 (3) Å	Mo $K\alpha$ radiation
$\alpha = 107.76 (3)^{\circ}$	$\mu = 4.48 \text{ mm}^{-1}$
$\beta = 108.26 \ (3)^{\circ}$	T = 291 (2) K
$\gamma = 90.12 \ (3)^{\circ}$	$0.30 \times 0.29 \times 0.20$ mm
Data collection	
Rigaku Mercury diffractometer	17918 measured reflections
Absorption correction: multi-scan	6703 independent reflections
(Jacobson, 1998)	5814 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.284, \ T_{\max} = 0.408$	$R_{\rm int} = 0.032$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.055$	10 restraints
$wR(F^2) = 0.121$	H-atom parameters constrained
S = 1.12	$\Delta \rho_{\rm max} = 1.90 \text{ e} \text{ Å}^{-3}$

V = 1828.2 (9) Å³

 $\Delta \rho_{\rm min} = -2.13 \text{ e} \text{ Å}^{-3}$

Table 1

6703 reflections

353 parameters

a = 12.515 (3) Å

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$02 - H2D \cdots S5$	0.82	2.47	3.199 (8)	149
$02 - H2D \cdots S6$	0.82	2.59	3.258 (8)	139

Data collection: *CrystalClear* (Rigaku/MSC, 2001); cell refinement: *CrystalClear*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge Jiangxi Science and Technology Normal University for funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2539).

References

- Curtis, M. D., Druker, S. H., Goossen, L. & Kampf, J. W. (1997). Organometallics, 16, 231–235.
- Hidai, M., Ikada, T., Kuwata, S. & Mizobe, Y. (1999). *Inorg. Chem.* 38, 64–69. Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
- Lang, J.-P., Wei, Z.-H., Xu, Q.-F., Li, H.-X. & Chen, J.-X. (2003). J. Organomet. Chem. 87, 197–202.
- Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stiefel, E. I., Halbert, T. R. & Cohen, S. A. (1985). Organometallics, 4, 1689– 1690.
- Wu, X.-T., Zhu, N.-Y. & Zheng, Y.-F. (1990). J. Chem. Soc. Chem. Commun. pp. 780–781.

supporting information

Acta Cryst. (2008). E64, m1540 [doi:10.1107/S1600536808035241]

Dibromidobis(*N*,*N*-diethyldithiocarbamato- $\kappa^2 S$,*S'*)tetra- μ_3 -sulfidodicopper(I)dimolybdenum(V) isopropanol disolvate

Qing Zhang and Min Liu

S1. Comment

In the past decades, chemistry of the sulfido-bridged dinuclear complexes with an M_2S_4 core (M = Mo, W) and various transition metals has been intensively investigated. For example, precursors $[(dtc)_2Mo_2S_2(\mu-S)_2]$ (dtc = S_2CNEt_2) (Hidai *et al.*, 1999; Lang *et al.*, 2003) and $[Cp_{x_2}Mo_2S_2(\mu-S)_2]$ (Cp^x = pentamethyl-, pentaethyl- or pentabutyl-cyclopentadienyl) (Curtis *et al.*, 1997; Stiefel *et al.*, 1985) and $[Et_4N]_2[(edt)_2Mo_2S_2(\mu-S)_2]$ (dt = ethanedithiolate) (Wu *et al.*, 1990) were shown to react with transition metals to form both incomplete $[Mo_2MS_4]$ and complete $[Mo_2M_2S_4]$ cubane-like clusters. We report herein the formation of a complete cubane-like $[Mo_2Cu_2S_4]$ by using $[(i-C_3H_7)_2NCS_2]_2Mo_2S_4$ as the starting material to react with two equivalents of CuBr.

The title molecule contains one $[(i-C_3H_7)_2NCS_2]_2Mo_2S_4$ moiety and two CuBr units, which are assembled into a distorted Mo_2Cu_2S_4 cubane-like core (Fig. 1). The formal oxidation states for each Mo and Cu remain + 5 and + 1, respectively. Each Mo center is coordinated by three μ_3 -S atoms, and the two S atoms of an $[(i-C_3H_7)_2NCS_2]$ group, forming a distorted square pyramidal geometry, while each Cu atom is tetrahedrally coordinated by three μ_3 -S atoms and a terminal bromide. The Mo-S bonds are in the range of 2.1621 (19)-2.4465 (18) Å, due to the different S atoms coordinated. The Cu-S(terminal) bonds [average value: 2.436 (2) Å] are longer than the other Cu-S bonds [average value: 2.211 (2) Å]. The Mo…Mo [2.7874 (10) Å] and Mo…Cu [average value: 2.8114 (15) Å] distances and the Cu-Br bonds [average value: 2.2812 (15) Å] have normal values. Intramolecular O-H…S hydrogen bonds (Table 1) may be effective in the stabilization of the structure.

S2. Experimental

For the preparation of the title compound, $[(i-C_3H_7)_2NCS_2]_2Mo_2S_4$ (0.49 g, 0.5 mmol), and CuBr (0.144 g, 1.0 mmol) were added into CH₂Cl₂ solution (20 ml). The mixture was stirred at room temperature for 0.5 h, and the dark-red suspension gradually turned into dark red solution, and then filtered. The filtrate was layered with isopropyl alcohol (30 ml) to produce dark red crystals in 4 d.

S3. Refinement

The C15, C16 and C19 methyl groups in di-isopropyl alcohol solvate were disordered over two positions. During the refinement process the disordered atoms were refined with occupancies of 0.733 (12) for C15, H15A, H15B, H15C, C16, H16A, H16B, H16C, C19, H19A, H19B, H19C and 0.267 (12) for C15A, H15D, H15E, H15F, C16A, H16D, H16E, H16F, C19A, H19D, H19E, H19F, respectively. The C15 and C15A atoms were refined isotropically. H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.98 and 0.96 Å for methine and methyl H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.2 for methine H and x = 1.5 for all other H atoms.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

(I)

Crystal data

$[Cu_2Mo_2Br_2(C_7H_{14}NS_2)_2S_4]$ ·2C ₃ H ₈ O
$M_r = 1079.91$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
a = 12.515 (3) Å
b = 12.734 (3) Å
c = 12.759 (3) Å
$\alpha = 107.76 \ (3)^{\circ}$
$\beta = 108.26 (3)^{\circ}$
$\gamma = 90.12 (3)^{\circ}$
V = 1828.2 (9) Å ³

Data collection

Rigaku Mercury	17918 measured reflections
diffractometer	6703 independent reflection
Radiation source: fine-focus sealed tube	5814 reflections with $I > 2\sigma$
Graphite monochromator	$R_{\rm int} = 0.032$
ωscans	$\theta_{\rm max} = 25.4^{\circ}, \ \theta_{\rm min} = 3.3^{\circ}$
Absorption correction: multi-scan	$h = -15 \rightarrow 15$
(Jacobson, 1998)	$k = -15 \rightarrow 15$
$T_{\min} = 0.284, \ T_{\max} = 0.408$	$l = -15 \rightarrow 15$

Z = 2F(000) = 1068 $D_{\rm x} = 1.962 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 6125 reflections $\theta = 3.3 - 25.4^{\circ}$ $\mu = 4.48 \text{ mm}^{-1}$ T = 291 KBlock, dark red $0.30 \times 0.29 \times 0.20$ mm

ıs r(I) Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.121$	neighbouring sites
S = 1.12	H-atom parameters constrained
6703 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0376P)^2 + 11.7921P]$
353 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
10 restraints	$(\Delta/\sigma)_{\rm max} = 0.006$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.90 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -2.13 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Mo1	1.00881 (5)	0.18736 (4)	0.39883 (5)	0.02348 (15)	
Mo2	1.16712 (5)	0.20599 (5)	0.29120 (5)	0.02768 (16)	
Cu1	1.12203 (10)	0.00501 (8)	0.33253 (10)	0.0544 (3)	
Cu2	1.23373 (9)	0.24097 (8)	0.53604 (10)	0.0517 (3)	
Br1	1.13513 (7)	-0.18080 (6)	0.29790 (7)	0.0441 (2)	
Br2	1.37543 (7)	0.30267 (8)	0.71075 (7)	0.0535 (3)	
S1	1.09552 (15)	0.10190 (15)	0.51854 (15)	0.0308 (4)	
S2	1.29693 (17)	0.12006 (18)	0.3783 (2)	0.0473 (5)	
S3	1.13192 (15)	0.34620 (14)	0.44228 (15)	0.0301 (4)	
S4	1.00310 (14)	0.07858 (14)	0.21230 (14)	0.0281 (4)	
S5	1.17527 (16)	0.15164 (14)	0.09288 (15)	0.0323 (4)	
S 6	1.28036 (15)	0.35219 (14)	0.27486 (15)	0.0311 (4)	
S 7	0.81395 (14)	0.10577 (14)	0.33380 (16)	0.0327 (4)	
S8	0.90078 (15)	0.32398 (14)	0.48497 (16)	0.0325 (4)	
01	0.6199 (7)	0.1776 (6)	-0.1619 (6)	0.087 (2)	
H1D	0.6271	0.1595	-0.2265	0.131*	
O2	1.0055 (6)	0.3083 (5)	0.1913 (6)	0.0697 (19)	
H2D	1.0646	0.2930	0.1781	0.104*	
N1	0.6852 (5)	0.2439 (4)	0.4372 (5)	0.0284 (12)	
N2	1.3096 (5)	0.3023 (5)	0.0653 (5)	0.0293 (13)	
C1	0.5412 (6)	0.1342 (7)	0.2459 (6)	0.0413 (18)	
H1A	0.5335	0.2023	0.2279	0.062*	
H1B	0.4691	0.0901	0.2127	0.062*	
H1C	0.5947	0.0940	0.2140	0.062*	
C2	0.5971 (7)	0.0577 (6)	0.4167 (8)	0.046 (2)	

H2A	0.6226	0.0806	0.5003	0.069*	
H2B	0.6520	0.0160	0.3886	0.069*	
H2C	0.5260	0.0122	0.3862	0.069*	
C3	0.5824 (6)	0.1597 (6)	0.3769 (7)	0.0349 (16)	
H3A	0.5220	0.1956	0.4033	0.042*	
C4	0.6128 (7)	0.4224 (6)	0.4354 (7)	0.0429 (19)	
H4A	0.6557	0.4262	0.3859	0.064*	
H4B	0.6087	0.4959	0.4831	0.064*	
H4C	0.5377	0.3876	0.3883	0.064*	
C5	0.6097 (8)	0.3443(7)	0.5956 (8)	0.050 (2)	
H5A	0.6503	0.3014	0.6423	0.075*	
H5B	0 5345	0 3081	0.5516	0.075*	
H5C	0.6056	0.4169	0.6454	0.075*	
C6	0.6703 (6)	0.3545 (6)	0.5132 (6)	0.079 (15)	
H6A	0.7460	0.3928	0.5609	0.036*	
C7	0.7400	0.3920	0.4229 (6)	0.030	
C8	1.1642(8)	0.2252(5)	-0.1322(7)	0.0237(13)	
	1.1042 (8)	0.2257 (9)	-0.1103	0.003 (3)	
	1.1300	0.2909	-0.1195	0.094	
	1.1222	0.1/60	-0.1100	0.094*	
ПðC	1.1339	0.1955	-0.2152	0.094°	
	1.3407 (9)	0.1313(7)	-0.0735(8)	0.001 (5)	
Н9А	1.4192	0.1450	-0.0281	0.091*	
НУВ	1.3342	0.0982	-0.1557	0.091*	
H9C	1.3022	0.0820	-0.0518	0.091*	
	1.2881 (/)	0.2392 (6)	-0.0598 (6)	0.0401 (19)	
HI0A	1.3274	0.2847	-0.0889	0.048*	
C11	1.3276 (8)	0.4937 (7)	0.0623 (9)	0.056 (2)	
H11A	1.2572	0.5032	0.0775	0.084*	
H11B	1.3132	0.4691	-0.0203	0.084*	
H11C	1.3750	0.5630	0.0975	0.084*	
C12	1.4996 (7)	0.3893 (7)	0.0935 (7)	0.046 (2)	
H12A	1.5341	0.3352	0.1281	0.069*	
H12B	1.5484	0.4578	0.1287	0.069*	
H12C	1.4879	0.3629	0.0113	0.069*	
C13	1.3864 (6)	0.4082 (6)	0.1130 (6)	0.0337 (16)	
H13A	1.4011	0.4361	0.1974	0.040*	
C14	1.2634 (6)	0.2720 (5)	0.1317 (6)	0.0281 (15)	
C15	0.7206 (16)	0.1461 (12)	0.0386 (12)	0.041 (3)*	0.733 (12)
H15A	0.7706	0.0973	0.0688	0.061*	0.733 (12)
H15B	0.6436	0.1170	0.0193	0.061*	0.733 (12)
H15C	0.7353	0.2182	0.0964	0.061*	0.733 (12)
C15A	0.722 (4)	0.186 (5)	0.057 (3)	0.041 (3)*	0.267 (12)
H15D	0.7931	0.2152	0.1172	0.061*	0.267 (12)
H15E	0.6914	0.1219	0.0661	0.061*	0.267 (12)
H15F	0.6700	0.2418	0.0613	0.061*	0.267 (12)
C16	0.8461 (8)	0.2073 (9)	-0.0314 (8)	0.039 (3)	0.733 (12)
H16A	0.8528	0.2791	0.0251	0.058*	0.733 (12)
H16B	0.8590	0.2158	-0.0989	0.058*	0.733 (12)

H16C	0.9012	0.1639	0.0017	0.058*	0.733 (12)
C16A	0.750 (3)	0.181 (5)	0.0666 (18)	0.039 (3)	0.267 (12)
H16D	0.8166	0.1527	0.1055	0.058*	0.267 (12)
H16E	0.6846	0.1478	0.0724	0.058*	0.267 (12)
H16F	0.7567	0.2603	0.1025	0.058*	0.267 (12)
C17	0.7390 (11)	0.1546 (12)	-0.0634 (10)	0.092 (4)	
H17	0.7484	0.0778	-0.1029	0.111*	
C18	0.8873 (8)	0.4760 (11)	0.2435 (8)	0.080 (4)	
H18A	0.8899	0.5548	0.2593	0.120*	
H18B	0.8831	0.4585	0.3103	0.120*	
H18C	0.8218	0.4401	0.1775	0.120*	
C19	1.0116 (11)	0.4568 (14)	0.1142 (12)	0.059 (4)	0.733 (12)
H19A	1.0792	0.4282	0.1019	0.088*	0.733 (12)
H19B	1.0174	0.5354	0.1280	0.088*	0.733 (12)
H19C	0.9474	0.4214	0.0464	0.088*	0.733 (12)
C19A	0.991 (3)	0.388 (4)	0.100 (4)	0.059 (4)	0.267 (12)
H19D	0.9542	0.4360	0.0569	0.088*	0.267 (12)
H19E	0.9475	0.3167	0.0671	0.088*	0.267 (12)
H19F	1.0654	0.3808	0.0950	0.088*	0.267 (12)
C20	0.9974 (10)	0.4343 (10)	0.2164 (10)	0.083 (3)	
H20	1.0628	0.4732	0.2846	0.099*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.0218 (3)	0.0244 (3)	0.0245 (3)	-0.0001 (2)	0.0092 (2)	0.0066 (2)
Mo2	0.0320 (3)	0.0283 (3)	0.0232 (3)	-0.0066 (2)	0.0126 (2)	0.0052 (2)
Cu1	0.0570 (7)	0.0372 (6)	0.0485 (6)	0.0155 (5)	-0.0029 (5)	0.0061 (5)
Cu2	0.0422 (6)	0.0401 (6)	0.0523 (6)	-0.0043 (4)	-0.0116 (5)	0.0145 (5)
Br1	0.0499 (5)	0.0361 (4)	0.0474 (5)	0.0070 (4)	0.0162 (4)	0.0146 (4)
Br2	0.0384 (5)	0.0843 (7)	0.0297 (4)	-0.0176 (4)	0.0042 (3)	0.0146 (4)
S1	0.0307 (9)	0.0365 (9)	0.0284 (9)	-0.0022 (7)	0.0110 (7)	0.0139 (8)
S2	0.0355 (11)	0.0513 (12)	0.0539 (13)	-0.0013 (9)	0.0220 (10)	0.0076 (10)
S3	0.0314 (9)	0.0260 (9)	0.0325 (9)	-0.0032 (7)	0.0133 (8)	0.0061 (7)
S4	0.0302 (9)	0.0285 (9)	0.0240 (8)	-0.0036 (7)	0.0095 (7)	0.0057 (7)
S5	0.0387 (10)	0.0319 (9)	0.0249 (9)	-0.0102 (7)	0.0161 (8)	0.0017 (7)
S6	0.0368 (10)	0.0311 (9)	0.0244 (8)	-0.0107 (7)	0.0157 (7)	0.0019 (7)
S7	0.0233 (9)	0.0280 (9)	0.0390 (10)	-0.0016 (7)	0.0123 (8)	-0.0022 (8)
S8	0.0265 (9)	0.0267 (9)	0.0405 (10)	-0.0028 (7)	0.0152 (8)	0.0015 (8)
01	0.117 (7)	0.081 (5)	0.064 (5)	-0.019 (5)	0.042 (5)	0.010 (4)
O2	0.081 (5)	0.060 (4)	0.067 (4)	0.012 (4)	0.020 (4)	0.024 (4)
N1	0.026 (3)	0.026 (3)	0.029 (3)	-0.002(2)	0.008 (2)	0.003 (2)
N2	0.033 (3)	0.033 (3)	0.023 (3)	-0.002(2)	0.016 (2)	0.004 (2)
C1	0.033 (4)	0.042 (4)	0.039 (4)	0.000 (3)	0.004 (3)	0.007 (4)
C2	0.039 (5)	0.041 (4)	0.057 (5)	-0.007 (4)	0.011 (4)	0.021 (4)
C3	0.022 (4)	0.035 (4)	0.043 (4)	0.000 (3)	0.012 (3)	0.004 (3)
C4	0.046 (5)	0.037 (4)	0.044 (5)	0.011 (4)	0.014 (4)	0.012 (4)
C5	0.060 (6)	0.044 (5)	0.057 (5)	0.005 (4)	0.037 (5)	0.011 (4)

supporting information

C6	0.027 (4)	0.032 (4)	0.028 (4)	0.004 (3)	0.012 (3)	0.001 (3)
C7	0.033 (4)	0.026 (3)	0.028 (4)	0.003 (3)	0.014 (3)	0.006 (3)
C8	0.057 (6)	0.090 (7)	0.031 (5)	-0.026 (5)	-0.002 (4)	0.022 (5)
C9	0.077 (7)	0.053 (5)	0.049 (5)	-0.005 (5)	0.041 (5)	-0.010 (4)
C10	0.053 (5)	0.045 (4)	0.020 (4)	-0.012 (4)	0.016 (3)	0.002 (3)
C11	0.064 (6)	0.043 (5)	0.074 (6)	0.002 (4)	0.032 (5)	0.026 (5)
C12	0.045 (5)	0.044 (5)	0.051 (5)	-0.007 (4)	0.022 (4)	0.014 (4)
C13	0.040 (4)	0.032 (4)	0.031 (4)	-0.012 (3)	0.016 (3)	0.008 (3)
C14	0.029 (4)	0.028 (4)	0.027 (4)	-0.002(3)	0.010 (3)	0.007 (3)
C16	0.020 (5)	0.068 (7)	0.018 (4)	-0.017 (5)	0.002 (4)	0.005 (4)
C16A	0.020 (5)	0.068 (7)	0.018 (4)	-0.017 (5)	0.002 (4)	0.005 (4)
C17	0.089 (9)	0.125 (11)	0.087 (9)	0.027 (8)	0.045 (7)	0.051 (8)
C18	0.056 (6)	0.154 (11)	0.031 (5)	-0.012 (7)	0.010 (4)	0.034 (6)
C19	0.047 (7)	0.092 (12)	0.072 (8)	0.031 (8)	0.028 (6)	0.065 (10)
C19A	0.047 (7)	0.092 (12)	0.072 (8)	0.031 (8)	0.028 (6)	0.065 (10)
C20	0.093 (9)	0.084 (8)	0.054 (6)	0.015 (7)	0.010 (6)	0.011 (6)

Geometric parameters (Å, °)

Mo1—Mo2	2.7874 (10)	C8—H8B	0.9600
Mo1—Cu1	2.7715 (14)	C8—H8C	0.9600
Mo1—Cu2	2.7618 (16)	C9—C10	1.508 (12)
Mo1—S1	2.1621 (19)	С9—Н9А	0.9600
Mo1—S3	2.3535 (19)	С9—Н9В	0.9600
Mo1—S4	2.3386 (19)	С9—Н9С	0.9600
Mo1—S7	2.4310 (19)	C10—N2	1.486 (8)
Mo1—S8	2.4160 (19)	C10—H10A	0.9800
Mo2—Cu1	2.8547 (14)	C11—C13	1.510(11)
Mo2—Cu2	2.8582 (15)	C11—H11A	0.9600
Mo2—S2	2.166 (2)	C11—H11B	0.9600
Mo2—S3	2.352 (2)	C11—H11C	0.9600
Mo2—S4	2.356 (2)	C12—C13	1.522 (10)
Mo2—S5	2.4465 (18)	C12—H12A	0.9600
Mo2—S6	2.4349 (18)	C12—H12B	0.9600
Cu1—Br1	2.2867 (14)	C12—H12C	0.9600
Cu1—S1	2.444 (2)	C13—N2	1.497 (8)
Cu1—S2	2.437 (2)	C13—H13A	0.9800
Cu1—S4	2.213 (2)	C14—N2	1.306 (8)
Cu2—Br2	2.2756 (16)	C15—H15A	0.9600
Cu2—S1	2.383 (2)	C15—H15B	0.9600
Cu2—S2	2.481 (3)	C15—H15C	0.9600
Cu2—S3	2.209 (2)	C15A—H15D	0.9600
S5—C14	1.731 (7)	C15A—H15E	0.9600
S6—C14	1.744 (7)	C15A—H15F	0.9600
S7—C7	1.726 (7)	C16—H16A	0.9600
S8—C7	1.741 (7)	C16—H16B	0.9600
01—H1D	0.8200	C16—H16C	0.9600
O2—H2D	0.8200	C16A—H16D	0.9600

C1—C3	1.515 (10)	C16A—H16E	0.9600
C1—H1A	0.9600	C16A—H16F	0.9600
C1—H1B	0.9600	C17—C16	1.378 (15)
C1—H1C	0.9600	C17—C15	1.425 (17)
C2—C3	1.525 (10)	C17—C15A	1.544 (19)
C2—H2A	0.9600	C17—C16A	1.547 (18)
C2—H2B	0.9600	C17—O1	1.715 (15)
C2—H2C	0.9600	С17—Н17	0.9800
C3—N1	1.505 (8)	C18—H18A	0.9600
С3—НЗА	0.9800	C18—H18B	0.9600
C4—C6	1.526 (10)	C18—H18C	0.9600
C4—H4A	0.9600	C19—H19A	0.9600
C4—H4B	0.9600	C19—H19B	0.9600
C4—H4C	0.9600	С19—Н19С	0.9600
C5—C6	1.510 (10)	C19A—H19D	0.9600
С5—Н5А	0.9600	С19А—Н19Е	0.9600
С5—Н5В	0.9600	C19A—H19F	0.9600
C5—H5C	0.9600	C20—C19A	1.40 (4)
C6—N1	1.497 (8)	C20—C19	1.479 (17)
С6—Н6А	0.9800	C20—O2	1.546 (13)
C7—N1	1.306 (8)	C20—C18	1.579 (12)
C8—C10	1.513 (12)	С20—Н20	0.9800
C8—H8A	0.9600		
S1—Mo1—S4	107.30 (7)	C10—C8—H8B	109.5
S1—Mo1—S3	105.60 (7)	H8A—C8—H8B	109.5
S4—Mo1—S3	104.32 (7)	C10—C8—H8C	109.5
S1—Mo1—S8	110.87 (7)	H8A—C8—H8C	109.5
S4—Mo1—S8	137.84 (7)	H8B—C8—H8C	109.5
S3—Mo1—S8	82.15 (6)	С6—С5—Н5А	109.5
S1—Mo1—S7	102.40 (7)	C6—C5—H5B	109.5
S4—Mo1—S7	83.56 (7)	H5A—C5—H5B	109.5
S3—Mo1—S7	146.89 (7)	C6—C5—H5C	109.5
S8—Mo1—S7	71.52 (6)	H5A—C5—H5C	109.5
S1—Mo1—Cu2	56.33 (6)	H5B—C5—H5C	109.5
S4—Mo1—Cu2	107.39 (6)	C3—C2—H2A	109.5
S3—Mo1—Cu2	50.40 (6)	C3—C2—H2B	109.5
S8—Mo1—Cu2	108.24 (6)	H2A—C2—H2B	109.5
S7—Mo1—Cu2	157.85 (6)	C3—C2—H2C	109.5
S1—Mo1—Cu1	57.82 (6)	H2A—C2—H2C	109.5
S4—Mo1—Cu1	50.46 (5)	H2B—C2—H2C	109.5
S3—Mo1—Cu1	106.97 (6)	C3—C1—H1A	109.5
S8—Mo1—Cu1	166.67 (6)	C3—C1—H1B	109.5
S7—Mo1—Cu1	102.73 (6)	H1A—C1—H1B	109.5
Cu2—Mo1—Cu1	72.36 (5)	C3—C1—H1C	109.5
S1—Mo1—Mo2	101.97 (5)	H1A—C1—H1C	109.5
S4—Mo1—Mo2	53.87 (5)	H1B—C1—H1C	109.5
S3—Mo1—Mo2	53.66 (5)	C6—C4—H4A	109.5

S8—Mo1—Mo2	130.76 (5)	C6—C4—H4B	109.5
S7—Mo1—Mo2	135.61 (5)	H4A—C4—H4B	109.5
Cu2—Mo1—Mo2	62.00 (4)	C6—C4—H4C	109.5
Cu1—Mo1—Mo2	61.80 (4)	H4A—C4—H4C	109.5
S2—Mo2—S3	105.05 (8)	H4B—C4—H4C	109.5
S2—Mo2—S4	104.02 (8)	N2—C13—C11	109.8 (6)
S3—Mo2—S4	103.81 (7)	N2—C13—C12	111.4 (6)
S2—Mo2—S6	101.58 (8)	C11—C13—C12	112.6 (6)
S3—Mo2—S6	85.72 (6)	N2—C13—H13A	107.6
S4—Mo2—S6	149.13 (7)	C11—C13—H13A	107.6
S2—Mo2—S5	103.59 (8)	C12—C13—H13A	107.6
S3—Mo2—S5	146.24 (7)	N1—C7—S7	126.4 (5)
S4—Mo2—S5	86.05 (7)	N1—C7—S8	123.9 (5)
S6—Mo2—S5	71.31 (7)	S7—C7—S8	109.6 (4)
S2—Mo2—Mo1	98.63 (6)	N2—C10—C9	111.9 (6)
S3—Mo2—Mo1	53.70 (5)	N2—C10—C8	112.6 (7)
S4—Mo2—Mo1	53.29 (5)	C9—C10—C8	113.5 (7)
S6—Mo2—Mo1	138.23 (5)	N2—C10—H10A	106.1
S5—Mo2—Mo1	137.45 (5)	C9—C10—H10A	106.1
S2-Mo2-Cu1	56.09 (6)	C8—C10—H10A	106.1
S3—Mo2—Cu1	104.42 (5)	N1—C6—C5	112.3 (6)
S4—Mo2—Cu1	49.13 (5)	N1—C6—C4	108.4 (6)
S6—Mo2—Cu1	156.98 (6)	C5—C6—C4	113.6 (6)
S5—Mo2—Cu1	106.21 (6)	N1—C6—H6A	107.4
Mo1—Mo2—Cu1	58.83 (4)	С5—С6—Н6А	107.4
S2—Mo2—Cu2	57.22 (7)	С4—С6—Н6А	107.4
S3—Mo2—Cu2	49.00 (5)	N1—C3—C1	112.6 (6)
S4—Mo2—Cu2	103.90 (6)	N1—C3—C2	112.3 (6)
S6—Mo2—Cu2	104.35 (6)	C1—C3—C2	114.5 (6)
S5—Mo2—Cu2	159.79 (6)	N1—C3—H3A	105.5
Mo1—Mo2—Cu2	58.56 (4)	C1—C3—H3A	105.5
Cu1—Mo2—Cu2	69.75 (5)	С2—С3—НЗА	105.5
S4—Cu1—Br1	124.95 (7)	N2—C14—S5	126.6 (5)
S4—Cu1—S2	100.02 (9)	N2—C14—S6	123.5 (5)
Br1—Cu1—S2	116.22 (8)	S5—C14—S6	109.9 (4)
S4—Cu1—S1	102.17 (8)	C16—C17—C15	108.4 (12)
Br1—Cu1—S1	114.44 (7)	C16—C17—C15A	100 (2)
S2—Cu1—S1	93.70 (8)	C16—C17—C16A	90.1 (16)
S4—Cu1—Mo1	54.58 (5)	C16—C17—O1	125.5 (10)
Br1—Cu1—Mo1	148.85 (6)	C15—C17—O1	113.2 (11)
S2—Cu1—Mo1	92.75 (7)	C15A—C17—O1	108.3 (18)
S1—Cu1—Mo1	48.48 (5)	C16A—C17—O1	121 (2)
S4—Cu1—Mo2	53.62 (6)	С16—С17—Н17	102.0
Br1—Cu1—Mo2	150.08 (6)	С15—С17—Н17	102.0
S2—Cu1—Mo2	47.51 (6)	C15A—C17—H17	120.4
S1—Cu1—Mo2	93.37 (6)	C16A—C17—H17	115.2
Mo1—Cu1—Mo2	59.37 (3)	O1—C17—H17	102.0
S3-Cu2-Br2	125.87 (7)	C19A - C20 - O2	72.2 (18)
SC OUE DIE			, 2.2 (10)

S3—Cu2—S1	103.11 (8)	C19—C20—O2	104.5 (10)
Br2—Cu2—S1	115.75 (7)	C19A—C20—C18	118.1 (18)
S3—Cu2—S2	99.62 (9)	C19—C20—C18	113.8 (9)
Br2—Cu2—S2	112.85 (8)	O2—C20—C18	115.1 (10)
S1—Cu2—S2	94.10 (8)	C19A—C20—H20	129.3
S3—Cu2—Mo1	55.17 (5)	C19—C20—H20	107.7
Br2—Cu2—Mo1	153.00 (6)	02-C20-H20	107.7
S1—Cu2—Mo1	49.02 (5)	C18—C20—H20	107.7
S^2 —Cu2—Mo1	92.04(7)	C20-C18-H18A	109.5
$S_2 = C_{u2} = M_0^2$	53 47 (6)	C20-C18-H18B	109.5
$Br^2 - Cu^2 - Mo^2$	146 41 (6)	H18A - C18 - H18B	109.5
$S1 = Cu^2 = Mo^2$	94 60 (6)	C_{20} C_{18} H_{18} C_{18}	109.5
S_{2} C_{112} M_{02}	47 21 (6)	$H_{18} - C_{18} - H_{18} C_{18}$	109.5
M_01 M_02 M_02	59.44(4)	H18B-C18-H18C	109.5
Cu1 = S4 = Mo1	74.96 (6)	C7 N1 $C6$	109.5 120.0(5)
Cu1 = S4 = Mo1	74.90(0)	C7 N1 C3	120.0(5) 123.1(6)
$M_{01} = S4 = M_{02}$	77.20(7)	$C_{1} = N_{1} = C_{3}$	123.1(0) 116.0(5)
M01 - 34 - M02	72.04 (0)	$C_0 = N_1 = C_3$	110.9(3) 124.0(6)
C14 - 50 - 1002	89.4 (<i>2</i>)	C14 N2 C12	124.0(0) 120.0(5)
C_{-} C_{-	89.2 (2)	C14 - N2 - C13	120.0(3)
C = S = M01	89.3 (2)	C10 - N2 - C13	110.0 (5)
M_{02} S2 C_{22}	70.40 (7)		109.5
M02 - S2 - Cu2	73.37(7)	C_{20} C_{17} C_{15} H_{15} A	109.5
Cu1 = S2 = Cu2	83.22 (8)	CI7—CI5—HI5A	109.5
Mol—Sl—Cu2	/4.65 (6)	C17—C15—H15B	109.5
Mol—SI—Cul	/3./0(6)	C1/C15H15C	109.5
Cu2—SI—Cul	85.16 (7)	С20—С19—Н19А	109.5
C14—S5—Mo2	89.3 (2)	С20—С19—Н19В	109.5
Cu2—S3—Mo2	77.53 (7)	H19A—C19—H19B	109.5
Cu2—S3—Mol	74.43 (6)	С20—С19—Н19С	109.5
Mo2—S3—Mo1	72.65 (6)	Н19А—С19—Н19С	109.5
С10—С9—Н9А	109.5	H19B—C19—H19C	109.5
С10—С9—Н9В	109.5	C17—C16—H16A	109.5
Н9А—С9—Н9В	109.5	C17—C16—H16B	109.5
С10—С9—Н9С	109.5	C17—C16—H16C	109.5
Н9А—С9—Н9С	109.5	C20—C19A—H19D	109.5
H9B—C9—H9C	109.5	C20—C19A—H19E	109.5
C13—C12—H12A	109.5	H19D—C19A—H19E	109.5
C13—C12—H12B	109.5	C20—C19A—H19F	109.5
H12A—C12—H12B	109.5	H19D—C19A—H19F	109.5
C13—C12—H12C	109.5	H19E—C19A—H19F	109.5
H12A—C12—H12C	109.5	C17—C15A—H15D	109.5
H12B—C12—H12C	109.5	C17—C15A—H15E	109.5
C13—C11—H11A	109.5	H15D—C15A—H15E	109.5
C13—C11—H11B	109.5	C17—C15A—H15F	109.5
H11A—C11—H11B	109.5	H15D—C15A—H15F	109.5
C13—C11—H11C	109.5	H15E—C15A—H15F	109.5
H11A—C11—H11C	109.5	C17—C16A—H16D	109.5
H11B—C11—H11C	109.5	C17—C16A—H16E	109.5

supporting information

С10—С8—Н8А	109.5	09.5 C17—C16A—H16F		109.5	
Hydrogen-bond geometry (Å, °)					
D—H···A	1	D—H	H···A	D····A	D—H···A
O2—H2 <i>D</i> …S5 O2—H2 <i>D</i> …S6	().82).82	2.47 2.59	3.199 (8) 3.258 (8)	149 139