Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[N-(2-hydroxyethyl)-N-methylglycinato]copper(II)

Elena A. Buvaylo,^a Volodymyr N. Kokozay,^a Olga Yu. Vassilyeva^{a*} and Brian W. Skelton^b

^aDepartment of Inorganic Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, Kviv 01033, Ukraine, and ^bChemistry, M313, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia Correspondence e-mail: vassilyeva@univ.kiev.ua

Received 2 October 2008; accepted 14 November 2008

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.085; data-to-parameter ratio = 37.2.

The title compound, [Cu(C₅H₁₀NO₃)₂], was obtained unintentionally as the product of an attempted synthesis of a Cu/ Cd mixed-metal mixed-anion complex using zerovalent copper, cadmium(II) oxide and two ammonium salts in the presence of 2-dimethylaminoethanol in acetonitrile, in air. The molecule is centrosymmetric with two monodeprotonated N-(2-hydroxyethyl)-N-methylglycines coordinated to the metal in a tridentate mode, giving a bicyclic chelate with two distorted five-membered rings. The Cu^{II} ion possesses a distorted octahedral geometry, with the N and the O atoms from the carboxylate groups in the equatorial plane. In the crystal structure, intermolecular O-H···O hydrogenbonding interactions from the alkoxide functions of the ligand through the inversion centre form columns of molecules propagated along the *a* axis.

Related literature

For general background, see: Vinogradova et al. (2002, 2003); Farfán et al. (1987). For a related structure, see: Thakuria & Das (2007).

Experimental

Crystal data

$[Cu(C_5H_{10}NO_3)_2]$	$V = 658.27 (15) \text{ Å}^3$
$M_r = 327.82$	Z = 2
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 6.6158 (9) Å	$\mu = 1.68 \text{ mm}^{-1}$
b = 6.7018 (9) Å	T = 150 (2) K
c = 14.950 (2) Å	$0.15 \times 0.13 \times 0.10 \text{ mm}$
$\beta = 96.738 \ (3)^{\circ}$	

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.74, \ T_{\max} = 0.84$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of
$wR(F^2) = 0.085$	independent and constrained
S = 1.02	refinement
3464 reflections	$\Delta \rho_{\rm max} = 0.79 \ {\rm e} \ {\rm \AA}^{-3}$
93 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

13931 measured reflections

 $R_{\rm int} = 0.039$

3464 independent reflections

2539 reflections with $I > 2\sigma(I)$

Table 1 Selected bond lengths (Å).

Cu-O1	2.4667 (9)	Cu-N1	2.0339 (9)
Cu-O2	1.9526 (8)		

Table 2

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ 172.1 (1) O1-H1···O3ⁱⁱ 0.880 (16) 1.84(1)2.713 (1)

Symmetry code: (ii) -x + 2, -y + 1, -z + 1.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: Xtal (Hall et al., 1995); program(s) used to solve structure: Xtal; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Xtal; software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2547).

References

- Farfán, N., Cuellar, L., Aceves, J. M. & Contreras, R. (1987). Synthesis, pp. 927-929
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hall, S. R., King, G. S. D. & Stewart, J. M. (1995). The Xtal3.5 User's Manual. University of Western Australia: Lamb, Perth.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Thakuria, H. & Das, G. (2007). Polyhedron, 26, 149-153.
- Vinogradova, E. A., Kokozay, V. N., Vassilyeva, O. Yu. & Skelton, B. W. (2003). Inorg. Chem. Commun. 6, 82-85.
- Vinogradova, E. A., Vassilyeva, O. Yu., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2002). J. Chem. Soc. Dalton Trans. pp. 4248-4252.

supporting information

Acta Cryst. (2008). E64, m1600 [doi:10.1107/S1600536808037793]

Bis[N-(2-hydroxyethyl)-N-methylglycinato]copper(II)

Elena A. Buvaylo, Volodymyr N. Kokozay, Olga Yu. Vassilyeva and Brian W. Skelton

S1. Comment

In our previous studies, Cd(II) salts were found to react with zerovalent copper and 2-dimethylaminoethanol in solution in air affording tetra-, penta- and hexanuclear assemblies that demonstrated significant structural flexibility of heterometallic cores made up of Cu, Cd, halide ions or acetate groups with O atoms from the aminoalcohol (Vinogradova *et al.*, 2002; Vinogradova *et al.*, 2003). As the reaction systems studied have been so productive in generating new Cd/Cu structures and in attempting to extend this family by employment of two different anions, we have examined the reaction of zerovalent copper, cadmium(II) oxide and two ammonium salts in the presence of the aminoalcohol in a non-aqueous solution, in air:

Cu⁰-CdO-NH₄NCS-NH₄I-2-dimethylaminoethanol-O₂-CH₃CN

However, an attempt to isolate a desired Cu/Cd mixed-metal mixed-anion complex failed. A by-product of the interaction was crystallographically identified that appeared to be a low-dimensional copper complex with new ligand HL, *N*-(2-hydroxyethyl)-*N*-methylglycine, formed *in situ*. The compound with HL in a monodeprotonated form, Cu(MeN(CH₂CH₂OH)(CH₂COO))₂, came as a surprise to us. To the best of our knowledge, neither the ligand nor its compounds with metals have been structurally characterized. The mechanism of the formation of the ligand is obscure, although it seemingly originates from 2-dimethylaminoethanol. It was reported that *N*-(2-hydroxyethyl)-*N*-alkylglycine derivatives could be conveniently prepared in high yields from *N*-alkylethanolamines and glyoxal (Farfán *et al.*, 1987). The authors noted that the method could not be used with N-unsubstituted ethanolamines, but fully N-substituted analogues such as 2-dimethylaminoethanol were not mentioned. We presume that in our case the conditions of the synthesis, namely the presence of zerovalent copper, could effect unknown organic reactions that led to the formation of HL.

In the title compound (Fig. 1), the two *L* molecules are coordinated to the metal in a tridentate mode giving a bicyclic chelate with two distorted five-membered rings, where the N and the O atoms from the carboxylic and the alkoxide functions are bonded to the metal ion. The copper(II) ion, that is bonded to the six atoms in an all-*trans* configuration, possesses a distorted octahedral geometry with N1 and O2 atoms from the carboxylate group in the equatorial plane (Table 1). The Cu—O1 bond in the axial position is substantially elongated (Table 1). The bond lengths (Table 1) are very similar to those observed in an analogous five-membered ring of bis(*N*,*N*-bis(2-Hydroxyethyl)glycinato)copper(II) (Thakuria & Das, 2007).

In the crystral structure, intermolecular O—H···O hydrogen-bonding (Table 2) interactions from the alkoxide functions of *L* through the inversion centre form columns of CuL_2 molecules propagated along the *a* axis (Fig. 2). The Cu···Cu separations in the crystal are larger than 6.6 Å.

S2. Experimental

For the preparation of the title compound, copper powder (0.16 g, 2.5 mmol), CdO (0.32 g, 2.5 mmol), NH₄SCN (0.38g, 5 mmol), NH₄I (0.72 g, 5 mmol), acetonitrile (25 ml) and 2-dimethylaminoethanol (2 ml) were heated to 323-333 K and stirred magnetically for 8 h, until total dissolution of the copper was observed. A fine green powder that precipitated immediately after cooling of the resulting solution was filtered off. The transparent blue solution was allowed to stand at room temperature and blue microcrystals suitable for X-ray analysis precipitated within 1 d. They were collected by filter-suction, washed with dry PrⁱOH and finally dried *in vacuo* at room temperature (yield; 0.42 g). The crystals showed analytical data accounting for the presence of both Cu and Cd in the approximately 3Cu:Cd stoichiometry. However, the sample must has been a mixture as the X-ray structure investigation on a separate single-crystal conclusively established the identity of the compound as Cu(MeN(CH₂CH₂OH)(CH₂COO))₂. We were not able to separate this mixture by manual separation due to the visual uniformity of the crystals.

S3. Refinement

H1 atom (for OH) was located in difference synthesis and refined isotropically [O—H = 0.880 (16) Å and $U_{iso}(H) = 0.023$ (4) Å²]. The remaining H atoms were positioned geometrically, with C—H = 0.99 and 0.98 Å for methylene and methyl H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for methylene H and x = 1.5 for methyl H atoms.

Bis[N-(2-hydroxyethyl)-N-methylglycinato]copper(II)

Crystal data			
[Cu(C ₅ H ₁₀ NO ₃) ₂] $M_r = 327.82$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.6158 (9) Å b = 6.7018 (9) Å c = 14.950 (2) Å $\beta = 96.738$ (3)° V = 658.27 (15) Å ³ Z = 2	F(000) = 342 $D_x = 1.654 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3730 reflections $\theta = 2.7-37.4^{\circ}$ $\mu = 1.68 \text{ mm}^{-1}$ T = 150 K Prism, blue $0.15 \times 0.13 \times 0.10 \text{ mm}$		
Data collection			
Bruker SMART CCD diffractometer Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.74, T_{max} = 0.84$ 13931 measured reflections	3464 independent reflections 2539 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 37.6^{\circ}, \theta_{min} = 2.7^{\circ}$ $h = -11 \rightarrow 11$ $k = -11 \rightarrow 11$ $l = -25 \rightarrow 25$		
Refinement			
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.085$ S = 1.02 3464 reflections 93 parameters 0 restraints	 Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement 		

$w = 1/[\sigma^2(F_o^2) + (0.0446P)^2]$	$\Delta \rho_{\rm max} = 0.79 \text{ e } \text{\AA}^{-3}$
where $P = (F_0^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} = 0.046$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Z	$U_{ m iso}*/U_{ m eq}$
Cu	0.5	0.5	0.5	0.01552 (6)
01	0.73510(13)	0.22020 (14)	0.54077 (6)	0.02229 (17)
H1	0.850 (2)	0.236 (2)	0.5761 (11)	0.023 (4)*
O2	0.73795 (12)	0.64295 (13)	0.46744 (5)	0.01892 (16)
03	0.91657 (13)	0.69293 (14)	0.35177 (6)	0.02203 (17)
N1	0.49180 (14)	0.36667 (14)	0.37742 (6)	0.01627 (17)
C1	0.28504 (18)	0.3436 (2)	0.32884 (8)	0.0230 (2)
H1A	0.215	0.4727	0.3262	0.035*
H1B	0.2082	0.247	0.3606	0.035*
H1C	0.295	0.296	0.2675	0.035*
C2	0.58426 (18)	0.16401 (18)	0.39038 (8)	0.0204 (2)
H2A	0.6117	0.1113	0.3311	0.024*
H2B	0.485	0.0738	0.4143	0.024*
C3	0.77970 (18)	0.16203 (19)	0.45363 (8)	0.0218 (2)
H3A	0.8398	0.0266	0.4561	0.026*
H3B	0.879	0.2557	0.432	0.026*
C4	0.61451 (19)	0.49928 (18)	0.32557 (8)	0.0197 (2)
H4A	0.5225	0.5922	0.289	0.024*
H4B	0.6855	0.4174	0.2838	0.024*
C5	0.77119 (16)	0.61937 (17)	0.38599 (8)	0.01686 (19)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu	0.01503 (9)	0.01819 (9)	0.01393 (9)	-0.00255 (7)	0.00422 (6)	-0.00374 (7)
01	0.0197 (4)	0.0263 (4)	0.0205 (4)	-0.0016 (3)	0.0010 (3)	-0.0004 (3)
O2	0.0186 (4)	0.0224 (4)	0.0164 (3)	-0.0043 (3)	0.0048 (3)	-0.0041 (3)
O3	0.0191 (4)	0.0280 (4)	0.0195 (4)	-0.0042 (3)	0.0048 (3)	0.0025 (3)
N1	0.0152 (4)	0.0188 (4)	0.0149 (4)	-0.0012 (3)	0.0020 (3)	-0.0025 (3)
C1	0.0172 (5)	0.0307 (6)	0.0206 (5)	-0.0023 (4)	-0.0004 (4)	-0.0065 (5)
C2	0.0225 (5)	0.0181 (5)	0.0208 (5)	-0.0010 (4)	0.0031 (4)	-0.0037 (4)
C3	0.0215 (5)	0.0202 (5)	0.0238 (5)	0.0029 (4)	0.0034 (4)	-0.0022 (4)

supporting information

C4	0.0221 (5)	0.0227 (5)	0.0144 (4)	-0.0048 (4)	0.0028 (4)	-0.0003 (4)
C5	0.0163 (4)	0.0172 (5)	0.0172 (5)	0.0011 (4)	0.0026 (3)	0.0012 (4)

Geometric parameters (Å, °)

2.4667 (9)	N1—C2	1.4928 (16)
2.4667 (9)	C1—H1A	0.98
1.9526 (8)	C1—H1B	0.98
1.9526 (8)	C1—H1C	0.98
2.0339 (9)	C2—C3	1.5097 (17)
2.0339 (9)	C2—H2A	0.99
1.4235 (15)	C2—H2B	0.99
0.880 (16)	С3—НЗА	0.99
1.2724 (14)	С3—Н3В	0.99
1.2431 (14)	C4—C5	1.5227 (16)
1.4796 (14)	C4—H4A	0.99
1.4823 (15)	C4—H4B	0.99
86.05 (3)	N1—C2—C3	113.40 (10)
80.68 (3)	N1—C2—H2A	108.9
180.00 (3)	C3—C2—H2A	108.9
85.87 (4)	N1—C2—H2B	108.9
94.13 (4)	C3—C2—H2B	108.9
94.13 (4)	H2A—C2—H2B	107.7
85.87 (4)	O1—C3—C2	108.45 (9)
180	O1—C3—H3A	110
109.0 (11)	С2—С3—НЗА	110
114.36 (7)	O1—C3—H3B	110
109.72 (9)	С2—С3—Н3В	110
108.06 (9)	H3A—C3—H3B	108.4
111.85 (9)	N1—C4—C5	112.53 (9)
114.42 (7)	N1—C4—H4A	109.1
104.45 (7)	C5—C4—H4A	109.1
108.39 (7)	N1—C4—H4B	109.1
109.5	C5—C4—H4B	109.1
109.5	H4A—C4—H4B	107.8
109.5	O3—C5—O2	125.00 (11)
109.5	O3—C5—C4	118.11 (10)
109.5	O2—C5—C4	116.83 (10)
109.5		
	$\begin{array}{c} 2.4667 \ (9) \\ 2.4667 \ (9) \\ 1.9526 \ (8) \\ 1.9526 \ (8) \\ 2.0339 \ (9) \\ 2.0339 \ (9) \\ 2.0339 \ (9) \\ 1.4235 \ (15) \\ 0.880 \ (16) \\ 1.2724 \ (14) \\ 1.2431 \ (14) \\ 1.2431 \ (14) \\ 1.4796 \ (14) \\ 1.4823 \ (15) \\ \end{array}$ $\begin{array}{c} 86.05 \ (3) \\ 80.68 \ (3) \\ 180.00 \ (3) \\ 85.87 \ (4) \\ 94.13 \ (4) \\ 94.13 \ (4) \\ 94.13 \ (4) \\ 85.87 \ (4) \\ 180 \\ 109.0 \ (11) \\ 114.36 \ (7) \\ 109.72 \ (9) \\ 108.06 \ (9) \\ 111.85 \ (9) \\ 111.85 \ (9) \\ 114.42 \ (7) \\ 108.39 \ (7) \\ 109.5 \\ 100.5 \\$	2.4667 (9) N1—C2 2.4667 (9) C1—H1A 1.9526 (8) C1—H1B 1.9526 (8) C1—H1C 2.0339 (9) C2—C3 2.0339 (9) C2—H2A 1.4235 (15) C2—H2B 0.880 (16) C3—H3A 1.2724 (14) C3—H3B 1.2431 (14) C4—C5 1.4796 (14) C4—H4A 1.4823 (15) C4—H4B 86.05 (3) N1—C2—C3 80.68 (3) N1—C2—H2A 1.80.00 (3) C3—C2—H2A 85.87 (4) N1—C2—H2B 94.13 (4) C3—C2—H2B 94.13 (4) H2A—C2—H2B 94.13 (4) H2A—C2—H2B 95.87 (4) O1—C3—H3A 109.0 (11) C2—C3—H3B 109.0 (11) C2—C3—H3B 109.72 (9) C2—C3—H3B 108.06 (9) H3A—C3—H3B 111.85 (9) N1—C4—C5 114.42 (7) N1—C4—H4B 109.5 C5—C4—H4B 109.5 C5—C4—H4B 109.5 O3—C5—O2 109.5 O3—C5—C4

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H1…O3 ⁱⁱ	0.880 (16)	1.84 (1)	2.713 (1)	172.1 (1)

Symmetry code: (ii) -x+2, -y+1, -z+1.