metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-Bis(5,5-diphenylhydantoinato- κN^3)bis(propane-1,2-diamine- $\kappa^2 N, N'$)-nickel(II)

Xilan Hu,^a* Xingyou Xu,^a Daqi Wang^b and Xiaojiao Li^a

^aHuaihai Institute of Technology, Jiangsu 222005, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail: huxilan836@sohu.com

Received 3 November 2008; accepted 19 November 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.028; wR factor = 0.075; data-to-parameter ratio = 12.5.

The asymmetric unit of the title complex, $[Ni(pht)_2(pn)_2]$ (pht is 5,5-diphenylhydantoinate and pn is propane-1,2-diamine) or $[Ni(C_{15}H_{11}N_2O_2)_2(C_3H_{10}N_2)_2]$, contains one-half $[Ni(pht)_{2}-(pn)_2]$ molecule. The Ni^{II} atom is situated on a crystallographic center of inversion and shows a distorted octahedral coordination geometry. A three-dimensional network structure is assembled by inter- and intramolecular $N-H\cdots O=C$ interactions.

Related literature

For general background see Akitsu *et al.* (1997), Milne *et al.* (1999). For related structures see Akitsu & Einaga *et al.* (2005); Hu *et al.* (2006*a*,*b*).

Experimental

Crystal data [Ni(C₁₅H₁₁N₂O₂)₂(C₃H₁₀N₂)₂]

 $M_r = 709.49$

Triclinic, P1	
a = 8.581 (1) Å	
b = 9.731(1) Å	
c = 12.036 (2) Å	
$\alpha = 100.602 (2)^{\circ}$	
$\beta = 90.298 (1)^{\circ}$	
$\gamma = 113.951 \ (2)^{\circ}$	

Data collection

Bruker SMART CCD area-detector	4760 measured reflections
diffractometer	3164 independent reflections
Absorption correction: multi-scan	2908 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.011$
$T_{\min} = 0.769, \ T_{\max} = 0.816$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	253 parameters
$wR(F^2) = 0.074$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
3164 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

V = 899.2 (2) Å³ Z = 1

Mo $K\alpha$ radiation

 $0.47 \times 0.45 \times 0.36$ mm

 $\mu = 0.59 \text{ mm}^-$ T = 298 (2) K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3-H3'B\cdotsO2$ $N4-H4A\cdotsO1$	0.90	2.55	3.231 (2)	133
	0.90	2.26	2.983 (2)	138

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We are grateful for financial support from the Key Project for Fundamental Research of the Educational Committee of Jiangsu Province (07 K J A15011) and the Natural Science Foundation of Huaihai Institute of Technology (KX07042).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2088).

References

- Akitsu, T. & Einaga, Y. (2005). Acta Cryst. C61, m183-m186.
- Akitsu, T., Komorita, S., Kushi, Y., Li, C., Kanehisa, N. & Kai, Y. (1997). Bull. Chem. Soc. Jpn, 70, 821–827.
- Hu, X.-L., Xu, X.-Y., Wang, D.-Q. & Xu, T.-T. (2006a). Acta Cryst. E62, m1922–m1923.
- Hu, X., Xu, X., Xu, T. & Wang, D. (2006b). Acta Cryst. E62, m2221-m2223.
- Milne, P., Ho, M. & Weaver, D. F. (1999). J. Mol. Struct. (Theochem), 492, 19-28.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2008). E64, m1636 [doi:10.1107/S1600536808038749]

trans-Bis(5,5-diphenylhydantoinato- κN^3)bis(propane-1,2-diamine- $\kappa^2 N, N'$)nickel(II)

Xilan Hu, Xingyou Xu, Daqi Wang and Xiaojiao Li

S1. Comment

5,5-Diphenylimidazoline-2,4-dione (Hpht) is a widely used drug in the treatment of epilepsy. It should also be an excellent ligand for transition metal complexes (Milne *et al.*,1999; Akitsu *et al.*,1997; Akitsu & Einaga, 2005). We have therefore designed and synthesized a series of complexes with 5,5-diphenylhydantoinato ligands (Hu *et al.*, 2006a).

The title compound (Fig. 1) consists of a neutral $[Ni(pht)_2(pn)_2]$ complex molecule. The nickel atom is situated at the crystallographic center of inversion and is coordinated by two nitrogen atoms from two pht ligands and four nitrogen atoms from two pn ligands. The metal atom therefore adopts a distorted octahedral NiN₆ coordination environment with a dihedral angle of 86.9 (1)° between N3—N3A—N4A—N4 and the hydantoin ring and dihedral angles between N3—N3A—N4A—N4 and the pht groups of 51.7 (1)° (C4 to C9) and 39.0 (1)° (C10 to C15), respectively. The Ni—N bond distances lie in the range of 2.096 (2) Å to 2.125 (2) Å. Intramolecular hydrogen bonds (Table 1) serve to stabilize the octahedral geometry. Adjacent molecules are linked by intermolecular hydrogen bonds along the crystallographic *a* axis. A similar hydrogen-bonding pattern is also found in the above-mentioned related complexes. The complex shows a three-dimensional network structure assembled by additional intermolecular N—H···O hydrogen bonds between the diamine ligand and the hydantoin ring.

S2. Experimental

To a solution of Hpht (1.00 mmol) in methanol (10 ml) was added Ni(OAc)₂ × 4 H₂O (0.5 mmol) and a solution of propane-1,2-diamine (1 mmol) in methanol (10 ml). Then the mixture was sealed in a 25 ml PTFE-lined stainless steel autoclave and heated to 423 K for 40 h, the fill rate being 80%. After cooling to room temperature, purple single crystals of the title compound were obtained by slow evaporation from the filtrate. Analysis, calculated for $C_{36}H_{42}N_8NiO_4$: C 61.66, H 6.01, N 16.26; found: C 60.94, H 5.97, N 15.78%.

S3. Refinement

The space group was assigned from the systematic absences. All H atoms were placed at calculated positions, with N—H = 0.86–0.89 Å and $U_{iso}(H)$ values of $1.2U_{eq}(N)$, and C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methyne) and 0.93 Å (aryl), respectively, with $U_{iso}(H)$ values of 1.2 $U_{eq}(C)$ (methylene, methyne, aryl) or 1.5 $U_{eq}(C)$ (methyl).

Figure 1

The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The crystal packing of the title complex.

trans-Bis(5,5-diphenylhydantoinato- κN^3)bis(propane-1,2- diamine- $\kappa^2 N, N'$)nickel(II)

Crystal data	
$[Ni(C_{15}H_{11}N_2O_2)_2(C_3H_{10}N_2)_2]$	Z = 1
$M_r = 709.49$	F(000) = 374
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.310 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.581 (1) Å	Cell parameters from 3393 reflections
b = 9.731 (1) Å	$\theta = 2.6 - 28.2^{\circ}$
c = 12.036 (2) Å	$\mu = 0.59 \text{ mm}^{-1}$
$\alpha = 100.602 \ (2)^{\circ}$	T = 298 K
$\beta = 90.298 \ (1)^{\circ}$	Block, violet
$\gamma = 113.951 \ (2)^{\circ}$	$0.47 \times 0.45 \times 0.36 \text{ mm}$
V = 899.2 (2) Å ³	

Data collection

Bruker SMART CCD area-detector	4760 measured reflections
diffractometer	3164 independent reflections
Radiation source: fine-focus sealed tube	2908 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.011$
φ and ω scans	$\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 10$
(<i>SADABS</i> ; Sheldrick, 1996)	$k = -11 \rightarrow 11$
$T_{\min} = 0.769, T_{\max} = 0.816$	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from
$wR(F^2) = 0.075$	neighbouring sites
S = 1.09	H-atom parameters constrained
3164 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0351P)^2 + 0.2523P]$
253 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.17$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.22$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.5000	0.5000	0.5000	0.02926 (10)	
N1	0.09328 (19)	0.14829 (16)	0.62697 (11)	0.0390 (4)	
H1	0.0097	0.0587	0.6140	0.047*	
N2	0.31918 (17)	0.35330 (15)	0.59323 (11)	0.0327 (3)	
N3	0.70216 (19)	0.52417 (18)	0.61129 (13)	0.0448 (4)	
H3A	0.7766	0.6235	0.6302	0.054*	0.749 (12)
H3B	0.6617	0.4923	0.6751	0.054*	0.749 (12)
H3'A	0.7990	0.6047	0.6039	0.054*	0.251 (12)
H3′B	0.6766	0.5364	0.6839	0.054*	0.251 (12)
N4	0.5406 (2)	0.31168 (17)	0.41315 (13)	0.0426 (4)	
H4A	0.4402	0.2291	0.3932	0.051*	0.749 (12)
H4B	0.5927	0.3333	0.3499	0.051*	0.749 (12)
H4'A	0.4581	0.2250	0.4272	0.051*	0.251 (12)
H4′B	0.5306	0.3081	0.3381	0.051*	0.251 (12)
01	0.17051 (16)	0.14829 (14)	0.44533 (10)	0.0465 (3)	
O2	0.39713 (17)	0.50006 (14)	0.77351 (10)	0.0473 (3)	

C1	0.1917 (2)	0.21085 (18)	0.54757 (13)	0.0337(4)	
C2	0.3030 (2)	0.38406 (18)	0.70541 (13)	0.0329 (4)	
C3	0.1457 (2)	0.25095 (18)	0.73787 (13)	0.0330 (4)	
C4	0.0040 (2)	0.3011 (2)	0.77944 (14)	0.0368 (4)	
C5	0.0355 (3)	0.4505 (2)	0.82802 (17)	0.0510(5)	
H5	0.1464	0.5265	0.8351	0.061*	
C6	-0.0972(3)	0.4891 (3)	0.86675 (19)	0.0635 (6)	
Н6	-0.0740	0.5905	0.8991	0.076*	
C7	-0.2594 (3)	0.3800 (3)	0.85770 (19)	0.0650 (6)	
H7	-0.3475	0.4064	0.8836	0.078*	
C8	-0.2934 (3)	0.2302 (3)	0.8102 (2)	0.0712 (7)	
H8	-0.4047	0.1551	0.8043	0.085*	
С9	-0.1620 (3)	0.1901 (3)	0.7708 (2)	0.0582 (5)	
Н9	-0.1861	0.0884	0.7385	0.070*	
C10	0.1974 (2)	0.1815 (2)	0.82832 (14)	0.0370 (4)	
C11	0.2842 (3)	0.2747 (2)	0.93080 (16)	0.0503 (5)	
H11	0.3119	0.3795	0.9434	0.060*	
C12	0.3302 (3)	0.2147 (3)	1.01427 (19)	0.0684 (6)	
H12	0.3890	0.2790	1.0822	0.082*	
C13	0.2896 (4)	0.0616 (4)	0.9973 (2)	0.0843 (8)	
H13	0.3212	0.0211	1.0533	0.101*	
C14	0.2023 (4)	-0.0325 (3)	0.8978 (3)	0.0929 (9)	
H14	0.1736	-0.1373	0.8866	0.112*	
C15	0.1555 (3)	0.0270 (2)	0.8124 (2)	0.0637 (6)	
H15	0.0961	-0.0381	0.7450	0.076*	
C16	0.7858 (7)	0.4340 (8)	0.5562 (4)	0.0575 (12)	0.749 (12)
H16A	0.8554	0.4180	0.6118	0.069*	0.749 (12)
H16B	0.8602	0.4873	0.5032	0.069*	0.749 (12)
C17	0.6525 (7)	0.2805 (5)	0.4932 (5)	0.0575 (12)	0.749 (12)
H17	0.5812	0.2275	0.5487	0.069*	0.749 (12)
C18	0.7400 (14)	0.1808 (15)	0.4340 (10)	0.099 (3)	0.749 (12)
H18A	0.6551	0.0791	0.4038	0.148*	0.749 (12)
H18B	0.8197	0.1759	0.4877	0.148*	0.749 (12)
H18C	0.7999	0.2251	0.3734	0.148*	0.749 (12)
C16′	0.722 (2)	0.368 (2)	0.5724 (13)	0.056 (4)	0.251 (12)
H16C	0.8332	0.3810	0.6020	0.068*	0.251 (12)
H16D	0.6356	0.2892	0.6048	0.068*	0.251 (12)
C17′	0.7033 (17)	0.3156 (18)	0.4444 (14)	0.060 (3)	0.251 (12)
H17′	0.7959	0.3857	0.4081	0.072*	0.251 (12)
C18′	0.683 (4)	0.149 (5)	0.410 (3)	0.103 (8)	0.251 (12)
H18D	0.5901	0.0839	0.4465	0.154*	0.251 (12)
H18E	0.7867	0.1422	0.4322	0.154*	0.251 (12)
H18F	0.6582	0.1151	0.3289	0.154*	0.251 (12)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.02461 (16)	0.02656 (16)	0.02889 (16)	0.00303 (12)	0.00163 (11)	0.00520 (11)

supporting information

N1	0.0362 (8)	0.0296 (7)	0.0283 (7)	-0.0070 (6)	0.0060 (6)	0.0005 (6)
N2	0.0296 (7)	0.0271 (7)	0.0285 (7)	-0.0002 (6)	0.0031 (6)	0.0033 (5)
N3	0.0354 (8)	0.0493 (9)	0.0422 (8)	0.0079 (7)	-0.0019 (7)	0.0143 (7)
N4	0.0407 (9)	0.0342 (8)	0.0462 (9)	0.0099 (7)	0.0075 (7)	0.0059 (7)
01	0.0454 (8)	0.0378 (7)	0.0282 (6)	-0.0079 (6)	0.0059 (5)	-0.0010 (5)
O2	0.0453 (7)	0.0366 (7)	0.0329 (6)	-0.0059 (6)	0.0031 (6)	-0.0030 (5)
C1	0.0311 (9)	0.0292 (8)	0.0301 (8)	0.0024 (7)	0.0034 (7)	0.0046 (7)
C2	0.0304 (9)	0.0290 (8)	0.0304 (8)	0.0039 (7)	0.0031 (7)	0.0048 (7)
C3	0.0313 (9)	0.0295 (8)	0.0272 (8)	0.0025 (7)	0.0038 (7)	0.0032 (6)
C4	0.0355 (9)	0.0441 (10)	0.0297 (8)	0.0134 (8)	0.0061 (7)	0.0119 (7)
C5	0.0467 (11)	0.0520 (12)	0.0472 (11)	0.0180 (10)	0.0040 (9)	-0.0008 (9)
C6	0.0677 (16)	0.0705 (15)	0.0572 (13)	0.0382 (13)	0.0098 (11)	0.0017 (11)
C7	0.0620 (15)	0.0929 (19)	0.0575 (13)	0.0471 (14)	0.0196 (11)	0.0201 (13)
C8	0.0395 (12)	0.0841 (18)	0.0908 (18)	0.0206 (12)	0.0208 (12)	0.0308 (15)
C9	0.0409 (11)	0.0533 (12)	0.0777 (15)	0.0136 (10)	0.0168 (11)	0.0209 (11)
C10	0.0328 (9)	0.0395 (9)	0.0354 (9)	0.0107 (8)	0.0108 (7)	0.0102 (7)
C11	0.0544 (12)	0.0543 (12)	0.0382 (10)	0.0192 (10)	0.0011 (9)	0.0078 (9)
C12	0.0703 (16)	0.0855 (18)	0.0460 (12)	0.0272 (14)	-0.0034 (11)	0.0173 (12)
C13	0.099 (2)	0.096 (2)	0.0688 (17)	0.0404 (18)	-0.0025 (15)	0.0412 (16)
C14	0.125 (3)	0.0590 (16)	0.100 (2)	0.0353 (17)	0.000(2)	0.0359 (16)
C15	0.0815 (17)	0.0425 (12)	0.0592 (13)	0.0169 (11)	-0.0027 (12)	0.0126 (10)
C16	0.041 (2)	0.068 (3)	0.067 (2)	0.024 (2)	-0.0031 (18)	0.021 (2)
C17	0.064 (3)	0.054 (2)	0.067 (3)	0.036 (2)	0.009 (2)	0.0153 (19)
C18	0.106 (7)	0.102 (6)	0.111 (5)	0.081 (6)	-0.013 (4)	-0.014 (4)
C16′	0.053 (9)	0.054 (8)	0.071 (8)	0.031 (7)	-0.006 (6)	0.014 (7)
C17′	0.051 (6)	0.080 (8)	0.064 (8)	0.039 (6)	0.019 (5)	0.021 (6)
C18′	0.085 (16)	0.099 (18)	0.14 (2)	0.063 (15)	-0.022 (13)	0.007 (15)

Geometric parameters (Å, °)

Ni1—N3 ⁱ	2.0946 (15)	С6—Н6	0.9300
Ni1—N3	2.0946 (15)	C7—C8	1.371 (4)
Ni1—N4	2.0950 (15)	С7—Н7	0.9300
Ni1—N4 ⁱ	2.0950 (15)	C8—C9	1.394 (3)
Ni1-N2 ⁱ	2.1245 (13)	C8—H8	0.9300
Ni1—N2	2.1245 (13)	С9—Н9	0.9300
N1—C1	1.343 (2)	C10—C15	1.372 (3)
N1—C3	1.456 (2)	C10—C11	1.389 (3)
N1—H1	0.8600	C11—C12	1.380 (3)
N2—C2	1.349 (2)	C11—H11	0.9300
N2—C1	1.379 (2)	C12—C13	1.359 (4)
N3—C16	1.423 (5)	C12—H12	0.9300
N3—C16′	1.580 (13)	C13—C14	1.366 (4)
N3—H3A	0.9000	С13—Н13	0.9300
N3—H3B	0.9000	C14—C15	1.398 (3)
N3—H3'A	0.9000	C14—H14	0.9300
N3—H3′B	0.9000	C15—H15	0.9300
N4—C17′	1.428 (11)	C16—C17	1.517 (8)

N4—C17	1.510 (4)	C16—H16A	0.9700
N4—H4A	0.9000	C16—H16B	0.9700
N4—H4B	0.9000	C17—C18	1.534 (11)
N4—H4′A	0.9000	C17—H17	0.9800
N4—H4′B	0.9000	C18—H18A	0.9600
01—C1	1.245 (2)	C18—H18B	0.9600
O2—C2	1.2292 (19)	C18—H18C	0.9600
C2—C3	1.557 (2)	C16'—C17'	1.52 (3)
C3—C10	1.532 (2)	C16'—H16C	0.9700
C3—C4	1.538 (2)	C16'—H16D	0.9700
C4—C5	1.377 (3)	C17'—C18'	1.54 (4)
C4—C9	1.383 (3)	C17'—H17'	0.9800
C5—C6	1.393 (3)	C18′—H18D	0.9600
C5—H5	0.9300	C18'—H18E	0.9600
C6—C7	1.354 (3)	C18′—H18F	0.9600
			0.000
N3 ⁱ —Ni1—N3	180.000 (1)	C10—C3—C4	109.20 (13)
N3 ⁱ —Ni1—N4	96.99 (6)	N1—C3—C2	98.65 (12)
N3—Ni1—N4	83.01 (6)	C10—C3—C2	111.63 (14)
N3 ⁱ —Ni1—N4 ⁱ	83.01 (6)	C4—C3—C2	112.68 (14)
N3—Ni1—N4 ⁱ	96.99 (6)	C5—C4—C9	118.46 (18)
N4—Ni1—N4 ⁱ	180.00 (8)	C5—C4—C3	123.02 (16)
N3 ⁱ —Ni1—N2 ⁱ	90.86 (6)	C9—C4—C3	118.48 (17)
N3—Ni1—N2 ⁱ	89.14 (6)	C4—C5—C6	120.7 (2)
N4—Ni1—N2 ⁱ	90.56 (6)	C4—C5—H5	119.7
N4 ⁱ —Ni1—N2 ⁱ	89.44 (6)	С6—С5—Н5	119.7
N3 ⁱ —Ni1—N2	89.14 (6)	C7—C6—C5	120.5 (2)
N3—Ni1—N2	90.86 (6)	С7—С6—Н6	119.7
N4—Ni1—N2	89.44 (6)	С5—С6—Н6	119.7
N4 ⁱ —Ni1—N2	90.56 (6)	C6—C7—C8	119.7 (2)
N2 ⁱ —Ni1—N2	180.00 (7)	С6—С7—Н7	120.1
C1—N1—C3	111.57 (13)	С8—С7—Н7	120.1
C1—N1—H1	124.2	C7—C8—C9	120.3 (2)
C3—N1—H1	124.2	С7—С8—Н8	119.8
C2—N2—C1	107.79 (13)	С9—С8—Н8	119.8
C2—N2—Ni1	126.79 (11)	C4—C9—C8	120.2 (2)
C1—N2—Ni1	125.37 (10)	С4—С9—Н9	119.9
C16—N3—C16′	26.9 (6)	С8—С9—Н9	119.9
C16—N3—Ni1	108.5 (2)	C15—C10—C11	118.31 (18)
C16'—N3—Ni1	103.2 (5)	C15—C10—C3	121.58 (17)
C16—N3—H3A	110.0	C11—C10—C3	120.09 (16)
C16'—N3—H3A	134.1	C12—C11—C10	121.2 (2)
Ni1—N3—H3A	110.0	C12—C11—H11	119.4
C16—N3—H3B	110.0	C10-C11-H11	119.4
C16′—N3—H3B	88.1	C13—C12—C11	120.0 (2)
Ni1—N3—H3B	110.0	C13—C12—H12	120.0
H3A—N3—H3B	108.4	C11—C12—H12	120.0
C16—N3—H3'A	84.6	C12—C13—C14	119.7 (2)
			. /

C16'—N3—H3'A	110.8	С12—С13—Н13	120.1
Ni1—N3—H3'A	111.2	C14—C13—H13	120.1
H3A—N3—H3'A	27.1	C13—C14—C15	120.8 (2)
H3B—N3—H3'A	128.4	C13—C14—H14	119.6
C16—N3—H3'B	128.8	C15—C14—H14	119.6
C16'—N3—H3'B	111.3	C10—C15—C14	119.9 (2)
Ni1—N3—H3'B	111.2	C10—C15—H15	120.0
H3A—N3—H3′B	85.3	C14—C15—H15	120.0
H3B—N3—H3′B	24.9	N3—C16—C17	109.4 (4)
H3'A—N3—H3'B	109.1	N3—C16—H16A	109.8
C17′—N4—C17	30.6 (6)	С17—С16—Н16А	109.8
C17'—N4—Ni1	113.6 (5)	N3—C16—H16B	109.8
C17 - N4 - Ni1	106 75 (19)	C17—C16—H16B	109.8
C17'—N4—H4A	128.2	H16A—C16—H16B	108.2
C17—N4—H4A	110.4	N4-C17-C16	107.8 (4)
Ni1—N4—H4A	110.4	N4-C17-C18	1137(5)
C17'-N4-H4B	80.3	C_{16} C_{17} C_{18}	110.2 (6)
C17—N4—H4B	110.4	N4—C17—H17	108.3
Ni1—N4—H4B	110.1	C_{16} C_{17} H_{17}	108.3
H4A_N4_H4B	108.6	C18 - C17 - H17	108.3
C17'—N4—H4'A	108.7	C17'-C16'-N3	113.0(12)
C17—N4—H4'A	84.0	C17' - C16' - H16C	109.0
Ni1—N4—H4'A	108.7	N3-C16'-H16C	109.0
H4A - N4 - H4'A	29.0	C17'— $C16'$ — $H16D$	109.0
H4B N4 H4'A	131.5	N3-C16'-H16D	109.0
C17'—N4—H4'B	109.2	H_{16C} $-C_{16}$ $-H_{16D}$	107.8
C17 - N4 - H4'B	136.1	N4-C17'-C16'	107.8 102.5(12)
Nil NA HA'B	108.0	$N_{4} = C_{17} = C_{10}$	102.3(12) 105.2(14)
H4A - NA - H4'B	80.1	$C_{16'} - C_{17'} - C_{18'}$	103.2(14) 112(2)
HAR NA HA'R	31.0	$N_{10} = C_{11} = C_{10}$	112 (2)
$H_{A} = N_{A} = H_{A} B$	107.6	$\Gamma_{16'} = \Gamma_{17'} = \Pi_{17'}$	112.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.0	C10 - C17 - H17	112.3
O1 = C1 = N2	124.23(13) 124.13(14)	$C_{18} = C_{17} = H_{18}$	112.3
N1 = C1 = N2	124.13(14) 111.62(12)	C17' - C18' - H18D	109.5
N1 - C1 - N2	111.02(15) 125.70(15)	C17 - C18 - H18E	109.5
$O_2 = C_2 = O_2$	123.70(13) 124.01(14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$N_2 = C_2 = C_3$	124.01(14) 110.20(12)	1100 - 1100 - 1100	109.5
$N_2 - C_2 - C_3$	110.29(13) 112.28(14)	$\begin{array}{c} 118D - C18 - 118F \\ 119E - C19' - 119E \end{array}$	109.5
N1 = C2 = C4	113.20(14) 111.15(14)	П18Е—С18—П18Г	109.5
NI-C3-C4	111.15 (14)		
$N3^{i}$ Ni1 N2 C2	-125 79 (15)	$0^{2}-C^{2}-C^{3}-C^{4}$	651(2)
$N_3 - N_1 - N_2 - C_2$	54.21 (15)	N2-C2-C3-C4	-114.64 (15)
N4-Ni1-N2-C2	137.22 (15)	N1-C3-C4-C5	-135.47 (17)
$N4^{i}$ —Ni1—N2—C2	-42.78 (15)	C10-C3-C4-C5	98.84 (19)
$N2^{i}$ Ni1 N2 C2	4 (100)	$C_{2}-C_{3}-C_{4}-C_{5}$	-258(2)
$N3^{i}$ Ni1 N2 C1	51 22 (14)	N1-C3-C4-C9	46 6 (2)
N_3 — N_1 — N_2 — C_1	-128.78(14)	C10-C3-C4-C9	-79.1(2)
N4 - Ni1 - N2 - C1	-45 78 (14)	C_{2} C_{3} C_{4} C_{9}	156 21 (17)
111 111 112 01	13.70 (17)	02 03 07 07	100.21 (17)

N4 ⁱ —Ni1—N2—C1	134.22 (14)	C9—C4—C5—C6	-0.5 (3)
N2 ⁱ —Ni1—N2—C1	-179 (100)	C3—C4—C5—C6	-178.45 (18)
N3 ⁱ —Ni1—N3—C16	122 (100)	C4—C5—C6—C7	0.3 (3)
N4—Ni1—N3—C16	15.4 (3)	C5—C6—C7—C8	0.1 (4)
N4 ⁱ —Ni1—N3—C16	-164.6 (3)	C6—C7—C8—C9	-0.4 (4)
N2 ⁱ —Ni1—N3—C16	-75.2 (3)	C5—C4—C9—C8	0.3 (3)
N2—Ni1—N3—C16	104.8 (3)	C3—C4—C9—C8	178.32 (19)
N3 ⁱ —Ni1—N3—C16′	95 (100)	C7—C8—C9—C4	0.2 (4)
N4—Ni1—N3—C16′	-12.0 (8)	N1-C3-C10-C15	-15.7 (2)
N4 ⁱ —Ni1—N3—C16′	168.0 (8)	C4—C3—C10—C15	108.7 (2)
N2 ⁱ —Ni1—N3—C16'	-102.7 (8)	C2-C3-C10-C15	-126.00 (19)
N2—Ni1—N3—C16′	77.3 (8)	N1-C3-C10-C11	166.25 (16)
N3 ⁱ —Ni1—N4—C17′	162.2 (9)	C4—C3—C10—C11	-69.3 (2)
N3—Ni1—N4—C17′	-17.8 (9)	C2-C3-C10-C11	56.0 (2)
N4 ⁱ —Ni1—N4—C17′	-110 (100)	C15-C10-C11-C12	1.0 (3)
N2 ⁱ —Ni1—N4—C17′	71.3 (9)	C3—C10—C11—C12	179.14 (19)
N2—Ni1—N4—C17′	-108.7 (9)	C10-C11-C12-C13	-0.4 (4)
N3 ⁱ —Ni1—N4—C17	-165.9 (3)	C11—C12—C13—C14	-0.4 (5)
N3—Ni1—N4—C17	14.1 (3)	C12-C13-C14-C15	0.7 (5)
N4 ⁱ —Ni1—N4—C17	-78 (100)	C11—C10—C15—C14	-0.8 (4)
N2 ⁱ —Ni1—N4—C17	103.1 (3)	C3—C10—C15—C14	-178.9 (2)
N2—Ni1—N4—C17	-76.9 (3)	C13-C14-C15-C10	0.0 (5)
C3—N1—C1—O1	-177.93 (17)	C16'—N3—C16—C17	40.6 (13)
C3—N1—C1—N2	1.9 (2)	Ni1—N3—C16—C17	-42.2 (6)
C2-N2-C1-O1	179.86 (17)	C17'—N4—C17—C16	68.4 (11)
Ni1—N2—C1—O1	2.4 (3)	Ni1—N4—C17—C16	-39.8 (6)
C2—N2—C1—N1	0.0 (2)	C17'—N4—C17—C18	-54.1 (13)
Ni1—N2—C1—N1	-177.47 (11)	Ni1—N4—C17—C18	-162.3 (7)
C1—N2—C2—O2	178.50 (18)	N3—C16—C17—N4	55.9 (7)
Ni1—N2—C2—O2	-4.1 (3)	N3-C16-C17-C18	-179.5 (6)
C1—N2—C2—C3	-1.79 (19)	C16—N3—C16'—C17'	-64.1 (18)
Ni1—N2—C2—C3	175.64 (10)	Ni1—N3—C16'—C17'	40.7 (17)
C1—N1—C3—C10	-120.79 (16)	C17—N4—C17′—C16′	-40.9 (13)
C1—N1—C3—C4	115.83 (16)	Ni1—N4—C17'—C16'	42.2 (18)
C1—N1—C3—C2	-2.67 (18)	C17—N4—C17′—C18′	76 (2)
O2—C2—C3—N1	-177.60 (17)	Ni1—N4—C17'—C18'	159.0 (19)
N2-C2-C3-N1	2.68 (18)	N3—C16′—C17′—N4	-55 (2)
O2—C2—C3—C10	-58.2 (2)	N3—C16′—C17′—C18′	-167.3 (14)
N2—C2—C3—C10	122.05 (15)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N3—H3′B…O2	0.90	2.55	3.231 (2)	133
N4—H4A…O1	0.90	2.26	2.983 (2)	138