

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Chloro-*N*-[4-(dimethylamino)benzylidene]aniline

Jian Li,* Zu-Pei Liang and Xi-Shi Tai

Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: zupeiliang@163.com

Received 30 August 2008; accepted 6 November 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.045; wR factor = 0.105; data-to-parameter ratio = 14.0.

In the title molecule, $C_{15}H_{15}ClN_2$, the dihedral angle between the aromatic is 64.1 (2)°.

Related literature

For a related compound, see: You et al. (2004).

Experimental

Crystal data $C_{15}H_{15}CIN_2$ $M_r = 258.74$

Orthorhombic, $P2_12_12_1$ a = 7.7301 (8) Å b = 12.2016 (18) Å c = 14.047 (2) Å $V = 1325.0 (3) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1997) $T_{min} = 0.888, T_{max} = 0.923$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.105$ S = 1.022318 reflections 165 parameters H-atom parameters constrained Mo K α radiation $\mu = 0.27 \text{ mm}^{-1}$ T = 298 (2) K $0.45 \times 0.38 \times 0.30 \text{ mm}$

5507 measured reflections 2318 independent reflections 1391 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.054$

 $\begin{array}{l} \Delta \rho_{max} = 0.17 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.18 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1358 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } -0.07 \mbox{ (10)} \end{array}$

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of Shandong Province (No. Y2007B61) and the Natural Science Foundation of Weifang University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2690).

References

Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

You, X.-L., Lu, C.-R., Zhang, Y. & Zhang, D.-C. (2004). Acta Cryst. C60, 0693– 0695.

supporting information

Acta Cryst. (2008). E64, o2319 [doi:10.1107/S1600536808036386]

2-Chloro-N-[4-(dimethylamino)benzylidene]aniline

Jian Li, Zu-Pei Liang and Xi-Shi Tai

S1. Comment

Schiff base compounds have been used as fine chemicals and medical substrates and they are important ligands in coordination chemistry due to their ease of preparation and their ability to be modified both electronically and sterically. In this paper, the structure of the title compound, (I), is reported. The molecular structure of (I) is illustrated in Fig. 1. The bond lengths and angles in the title molecule are similar to the related compound 4-chloro-*N*-[4-(dimethylamino)benzyl-idene]aniline (You *et al.*, 2004). The 4-(Dimethylamino)benzylidene system is nearly planar to within 0.035 (3) A°. 2-Chlorobenzenamine system is nearly planar to within 0.060 (3) A°. The dihedral angle between these two systems is 67.0 (2) °.

S2. Experimental

A mixture of 4-(dimethylamino)benzaldehyde (0.01 mol) and 2-chlorobenzenamine (0.01 mol) in ethanol (10 ml) was refluxed for 2 h. After cooling, filtration and drying, the title compound was obtained. 10 mg of (I) were dissolved in 15 ml of ethanol, and the solution was kept at room temperature for 5 d. Natural evaporation gave light yellow single crystals of the title compound, suitable for X-ray analysis.

S3. Refinement

H atoms were initially located from difference maps and then refined in a riding model with C—H = 0.93–0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figure 1

The molecular structure of (I), drawn with 30% probability ellipsoids.

2-Chloro-N-[4-(dimethylamino)benzylidene]aniline

Crystal data

C₁₅H₁₅ClN₂ $M_r = 258.74$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 7.7301 (8) Å b = 12.2016 (18) Å c = 14.047 (2) Å V = 1325.0 (3) Å³ Z = 4

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1997) $T_{\min} = 0.888, T_{\max} = 0.923$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.105$	$w = 1/[\sigma^2(F_o^2) + (0.0377P)^2]$
S = 1.02	where $P = (F_o^2 + 2F_c^2)/3$
2318 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
165 parameters	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1358 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.07 (10)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 544

 $\theta = 2.9 - 20.1^{\circ}$ $\mu = 0.27 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.054$

 $h = -9 \rightarrow 9$

 $k = -14 \rightarrow 13$

 $l = -9 \rightarrow 16$

 $D_{\rm x} = 1.297 {\rm Mg} {\rm m}^{-3}$

Block, light yellow $0.45 \times 0.38 \times 0.30$ mm

5507 measured reflections

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$

2318 independent reflections

1391 reflections with $I > 2\sigma(I)$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 1182 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	1.22788 (14)	1.11816 (8)	-0.13149 (7)	0.0753 (4)	
N1	0.9918 (4)	0.9322 (2)	-0.09661 (18)	0.0513 (8)	
N2	0.8770 (4)	0.7449 (2)	0.32629 (18)	0.0555 (8)	

C1	1.0238 (4)	0.8391 (3)	-0.0595 (2)	0.0477 (9)	
H1	1.0788	0.7861	-0.0962	0.057*	
C2	0.9776 (4)	0.8127 (2)	0.0381 (2)	0.0436 (9)	
C3	0.8837 (4)	0.8839 (3)	0.0949 (2)	0.0460 (9)	
Н3	0.8439	0.9491	0.0686	0.055*	
C4	0.8472 (5)	0.8618 (3)	0.1884 (2)	0.0478 (9)	
H4	0.7815	0.9112	0.2235	0.057*	
C5	0.9077 (4)	0.7656 (3)	0.2319 (2)	0.0441 (9)	
C6	0.9993 (5)	0.6920 (3)	0.1744 (2)	0.0498 (9)	
H6	1.0379	0.6261	0.2002	0.060*	
C7	1.0331 (5)	0.7156 (3)	0.0807 (2)	0.0510 (10)	
H7	1.0949	0.6652	0.0445	0.061*	
C8	0.7854 (5)	0.8221 (3)	0.3849 (2)	0.0719 (12)	
H8A	0.8528	0.8878	0.3913	0.108*	
H8B	0.7660	0.7908	0.4467	0.108*	
H8C	0.6763	0.8394	0.3559	0.108*	
С9	0.9648 (5)	0.6548 (3)	0.3736 (2)	0.0671 (11)	
H9A	0.9342	0.5870	0.3432	0.101*	
H9B	0.9305	0.6524	0.4393	0.101*	
H9C	1.0876	0.6654	0.3696	0.101*	
C10	1.0315 (5)	0.9502 (3)	-0.1928 (2)	0.0452 (9)	
C11	1.1315 (4)	1.0405 (3)	-0.2197 (2)	0.0481 (9)	
C12	1.1594 (5)	1.0664 (3)	-0.3137 (2)	0.0595 (10)	
H12	1.2266	1.1269	-0.3298	0.071*	
C13	1.0873 (5)	1.0020 (3)	-0.3841 (3)	0.0654 (11)	
H13	1.1042	1.0197	-0.4478	0.078*	
C14	0.9911 (5)	0.9125 (3)	-0.3600 (3)	0.0661 (11)	
H14	0.9451	0.8682	-0.4075	0.079*	
C15	0.9612 (5)	0.8869 (3)	-0.2650 (2)	0.0587 (10)	
H15	0.8932	0.8266	-0.2497	0.070*	

Atomic displacement parameters $(Å^2)$

				10	10	
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0818 (8)	0.0730 (7)	0.0711 (6)	-0.0204 (6)	-0.0003 (6)	-0.0069 (5)
N1	0.060 (2)	0.0516 (17)	0.0423 (16)	-0.0012 (18)	0.0060 (16)	0.0035 (14)
N2	0.053 (2)	0.069 (2)	0.0440 (17)	0.0048 (18)	0.0025 (15)	0.0064 (15)
C1	0.048 (3)	0.050 (2)	0.045 (2)	-0.0014 (19)	-0.0003 (19)	-0.0074 (17)
C2	0.046 (2)	0.0450 (19)	0.0397 (19)	-0.0033 (19)	0.0012 (18)	-0.0035 (16)
C3	0.049 (2)	0.0394 (18)	0.049 (2)	0.0003 (19)	-0.0047 (17)	0.0001 (18)
C4	0.050(2)	0.048 (2)	0.045 (2)	0.0075 (17)	0.0021 (18)	-0.0034 (17)
C5	0.042 (2)	0.052 (2)	0.0386 (19)	-0.0057 (18)	-0.0011 (17)	-0.0029 (18)
C6	0.057 (3)	0.0407 (19)	0.051 (2)	0.005 (2)	-0.003 (2)	0.0055 (17)
C7	0.056 (3)	0.049 (2)	0.048 (2)	0.0044 (19)	0.0023 (19)	-0.0053 (18)
C8	0.076 (3)	0.095 (3)	0.045 (2)	0.004 (3)	0.012 (2)	-0.002(2)
C9	0.062 (3)	0.078 (3)	0.061 (2)	-0.007 (2)	-0.004 (2)	0.024 (2)
C10	0.047 (2)	0.046 (2)	0.043 (2)	0.0044 (19)	0.0025 (19)	0.0001 (17)
C11	0.047 (2)	0.050 (2)	0.047 (2)	0.0046 (19)	0.0041 (19)	0.0020 (17)

supporting information

C12	0.058 (3)	0.063 (2)	0.058 (2)	-0.002 (2)	0.014 (2)	0.009 (2)	
C13	0.069 (3)	0.081 (3)	0.046 (2)	0.019 (2)	0.008 (2)	0.008 (2)	
C14	0.068 (3)	0.080 (3)	0.050(2)	0.007 (3)	-0.006(2)	-0.007 (2)	
C15	0.062 (3)	0.057 (2)	0.057 (2)	-0.003 (2)	0.000(2)	-0.001 (2)	

Geometric parameters (Å, °)

Cl1—C11	1.728 (3)	С7—Н7	0.9300	
N1-C1	1.274 (3)	C8—H8A	0.9600	
N1-C10	1.403 (4)	C8—H8B	0.9600	
N2—C5	1.371 (4)	C8—H8C	0.9600	
N2—C8	1.438 (4)	С9—Н9А	0.9600	
N2C9	1.453 (4)	С9—Н9В	0.9600	
C1—C2	1.453 (4)	С9—Н9С	0.9600	
C1—H1	0.9300	C10—C15	1.385 (4)	
C2—C3	1.385 (4)	C10—C11	1.398 (4)	
C2—C7	1.395 (4)	C11—C12	1.376 (4)	
C3—C4	1.369 (4)	C12—C13	1.379 (5)	
С3—Н3	0.9300	C12—H12	0.9300	
C4—C5	1.404 (4)	C13—C14	1.364 (5)	
C4—H4	0.9300	C13—H13	0.9300	
C5—C6	1.400 (4)	C14—C15	1.390 (4)	
C6—C7	1.373 (4)	C14—H14	0.9300	
С6—Н6	0.9300	C15—H15	0.9300	
C1—N1—C10	119.4 (3)	N2—C8—H8C	109.5	
C5—N2—C8	121.2 (3)	H8A—C8—H8C	109.5	
C5—N2—C9	120.1 (3)	H8B—C8—H8C	109.5	
C8—N2—C9	117.6 (3)	N2—C9—H9A	109.5	
N1-C1-C2	122.5 (3)	N2—C9—H9B	109.5	
N1-C1-H1	118.8	H9A—C9—H9B	109.5	
C2-C1-H1	118.8	N2—C9—H9C	109.5	
C3—C2—C7	116.5 (3)	Н9А—С9—Н9С	109.5	
C3—C2—C1	122.2 (3)	H9B—C9—H9C	109.5	
C7—C2—C1	121.2 (3)	C15—C10—C11	117.3 (3)	
C4—C3—C2	122.5 (3)	C15—C10—N1	122.2 (3)	
С4—С3—Н3	118.7	C11—C10—N1	120.2 (3)	
С2—С3—Н3	118.7	C12—C11—C10	121.8 (3)	
C3—C4—C5	120.9 (3)	C12—C11—C11	119.7 (3)	
C3—C4—H4	119.6	C10—C11—C11	118.5 (3)	
C5—C4—H4	119.6	C11—C12—C13	119.6 (3)	
N2—C5—C6	121.8 (3)	C11—C12—H12	120.2	
N2—C5—C4	121.2 (3)	C13—C12—H12	120.2	
C6—C5—C4	117.0 (3)	C14—C13—C12	119.9 (3)	
C7—C6—C5	121.0 (3)	C14—C13—H13	120.0	
С7—С6—Н6	119.5	C12—C13—H13	120.0	
С5—С6—Н6	119.5	C13—C14—C15	120.6 (4)	
C6—C7—C2	122.1 (3)	C13—C14—H14	119.7	

C6—C7—H7 C2—C7—H7 N2—C8—H8A N2—C8—H8B H8A—C8—H8B	119.0 119.0 109.5 109.5 109.5	C15—C14—H14 C10—C15—C14 C10—C15—H15 C14—C15—H15	119.7 120.8 (3) 119.6 119.6
N1 - C1 - C2 - C3 $N1 - C1 - C2 - C3$ $N1 - C1 - C2 - C7$ $C7 - C2 - C3 - C4$ $C1 - C2 - C3 - C4$ $C2 - C3 - C4 - C5$ $C8 - N2 - C5 - C6$ $C9 - N2 - C5 - C6$	5.2 (5) $-171.9 (3)$ $0.5 (5)$ $-176.7 (3)$ $1.4 (5)$ $178.9 (3)$ $10.8 (5)$ $16 (5)$	$C_{1}-C_{2}-C_{7}-C_{6}$ $C_{1}-N_{1}-C_{10}-C_{15}$ $C_{1}-N_{1}-C_{10}-C_{11}$ $C_{15}-C_{10}-C_{11}-C_{12}$ $N_{1}-C_{10}-C_{11}-C_{12}$ $C_{15}-C_{10}-C_{11}-C_{11}$ $N_{1}-C_{10}-C_{11}-C_{11}$ $N_{1}-C_{10}-C_{11}-C_{11}$	1.6 (3) $176.2 (3)$ $58.8 (5)$ $-127.5 (4)$ $0.1 (5)$ $-177.6 (2)$ $8.4 (4)$ $0.1 (5)$
C8—N2—C5—C4 C9—N2—C5—C4 C3—C4—C5—N2 C3—C4—C5—C6 N2—C5—C6—C7 C4—C5—C6—C7 C5—C6—C7—C2	$\begin{array}{c} -1.6 (5) \\ -169.6 (3) \\ 177.6 (3) \\ -2.8 (5) \\ -178.1 (3) \\ 2.3 (5) \\ -0.4 (5) \end{array}$	C10-C11-C12-C13 C11-C12-C13 C11-C12-C13-C14 C12-C13-C14-C15 C11-C10-C15-C14 N1-C10-C15-C14 C13-C14-C15-C10	0.1 (5) 177.7 (3) -1.0 (6) 1.6 (6) 0.6 (5) 174.4 (3) -1.5 (6)