organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

tert-Butylammonium 2,3,4,5-tetrachloro-6-methoxycarbonylbenzoate

Jian Li,* Zu-Pei Liang, Cui-Hua Lin and Xi-Shi Tai

Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: zupeiliang@163.com

Received 3 September 2008; accepted 6 November 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.044; wR factor = 0.116; data-to-parameter ratio = 13.6.

In the title compound, $C_4H_{12}N^+ \cdot C_9H_3Cl_4O_4^-$, the benzene ring forms dihedral angles of 62.4 (2) and 64.0 (3)°, respectively, with the essentially planar methoxycarbonyl and carboxylate groups. In the crystal structure, intermolecular $N-H \cdots O$ hydrogen bonds connect anions and cations, forming one-dimensional chains along [010].

Related literature

For background information, see: Ungwitayatorn *et al.* (2001). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_4H_{12}N^+ \cdot C_9H_3Cl_4O_4^-} \\ {M_r} = 391.06 \\ {\rm Monoclinic, P_2_1} \\ {a} = 9.0193 \ (14) \ {\rm \mathring{A}} \\ {b} = 6.5084 \ (11) \ {\rm \mathring{A}} \\ {c} = 14.5965 \ (15) \ {\rm \mathring{A}} \\ {\beta} = 91.7570 \ (10)^\circ \end{array}$

 $V = 856.4 (2) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.70 \text{ mm}^{-1}$ T = 298 (2) K $0.53 \times 0.48 \times 0.44 \text{ mm}$

Data collection

Bruker SMART CCD

diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.706, T_{\max} = 0.747$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$vR(F^2) = 0.116$	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.04	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
2790 reflections	Absolute structure: Flack (1983),
05 parameters	1147 Friedel pairs
restraint	Flack parameter: 0.00 (9)

4281 measured reflections

 $R_{\rm int} = 0.043$

2790 independent reflections

2364 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots O4^{i}$ $N1-H1B\cdots O4^{ii}$	0.89 0.89	1.97 1.97	2.838 (4) 2.850 (4)	165 168
$N1 - H1C \cdot \cdot \cdot O3^{iii}$	0.89	1.94	2.818 (4)	169

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 1; (ii) x + 1, y, z; (iii) -x + 1, $y - \frac{1}{2}$, -z + 1.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of Shandong Province (No. Y2007B61).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2693).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (1996). SABABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Ungwitayatorn, J., Matayatsuk, C. & Sothipatcharasai, P. (2001). Sci. Asia, 27, 245–250.

supporting information

Acta Cryst. (2008). E64, o2318 [doi:10.1107/S1600536808036398]

tert-Butylammonium 2,3,4,5-tetrachloro-6-methoxycarbonylbenzoate

Jian Li, Zu-Pei Liang, Cui-Hua Lin and Xi-Shi Tai

S1. Comment

Phthalimides are compounds which can posses biological activity (see: e.g. Ungwitayatorn *et al.*, 2001). 2-(Methoxy-carbonyl)-3,4,5,6-tetrachlorobenzoic acid is an intermediate in the sysnthesis of tetrachlorophthalimides and their derivatives. In this paper, the structure of the title compound (I) is reported. The asymmetric unit contains one *tert*-butyl-ammonium cation and one 2-(methoxycarbonyl)-3,4,5,6-tetrachlorobenzene-1-carboxylate anion (Fig. 1). The bond lengths in (I) are normal (Allen *et al.*, 1987). In the crystal structure, intermolecular N-H···O hydrogen bonds connect anions and cations to form one-dimensional chains along [O10].

S2. Experimental

A mixture of tetrachlorophthalic anhydride (2.86 g, 0.01 mol) and methanol (20 ml) was refluxed for 0.5 h and then *tert*butylamine (0.73 g, 0.01 mol) was added and the mixture stirred for 4 h at room temperature. After filtration, the filtrate was kept at room temperature for 5 d. Natural evaporation gave colourless single crystals of the title compound, suitable for X-ray analysis.

S3. Refinement

H atoms were initially located from difference maps and then refined in a riding-model approximation with C—H = 0.96 Å, N—H = 0.89 Å and $U_{iso}(H) = 1.5U_{eq}(N, C)$.

Figure 1

The molecular structure of (I), drawn with 30% probability ellipsoids.

Figure 2

Part of the crystal structure of (I) with hydrogen bonds indicated by dashed lines.

tert-Butylammonium 2,3,4,5-tetrachloro-6-methoxycarbonylbenzoate

Crystal data

 $C_4H_{12}N^+ \cdot C_9H_3Cl_4O_4^ M_r = 391.06$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 9.0193 (14) Å*b* = 6.5084 (11) Å *c* = 14.5965 (15) Å $\beta = 91.757 (1)^{\circ}$ V = 856.4 (2) Å³ Z = 2

Data collection

4281 measured reflect
2790 independent ref
2364 reflections with
$R_{\rm int} = 0.043$
$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.$
$h = -10 \rightarrow 10$
$k = -7 \rightarrow 7$
$l = -15 \rightarrow 17$

F(000) = 400 $D_x = 1.516 \text{ Mg m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 2177 reflections $\theta = 2.3 - 27.0^{\circ}$ $\mu = 0.71 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.53 \times 0.48 \times 0.44 \text{ mm}$

ctions flections $I > 2\sigma(I)$ 3°

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.116$	$w = 1/[\sigma^2(F_o^2) + (0.048P)^2 + 0.2322P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
2790 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
205 parameters	$\Delta \rho_{\rm max} = 0.21 \ { m e} \ { m \AA}^{-3}$
1 restraint	$\Delta ho_{ m min} = -0.28 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL97 (Sheldrick,
direct methods	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.075 (5)
map	Absolute structure: Flack (1983), 1147 Friedel
-	pairs
	Absolute etmeture peremeter: $0.00(0)$

Absolute structure parameter: 0.00 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R* factors *R* are based on *F* with *F* sat to go for estimating *E*². The threshold current of $F^2 > \tau(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic d	or equivalent isotrop	pic displacement	parameters	$(Å^2)$)
----------------------------------	---------------	-----------------------	------------------	------------	---------	---

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	-0.17713 (11)	0.5505 (2)	0.24305 (8)	0.0650 (4)	
Cl2	-0.10033 (15)	0.2412 (2)	0.09021 (8)	0.0730 (4)	
C13	0.20894 (14)	0.2526 (2)	0.00306 (8)	0.0670 (4)	
Cl4	0.44428 (12)	0.5681 (2)	0.07197 (8)	0.0645 (4)	
N1	0.9054 (3)	0.8116 (5)	0.5564 (2)	0.0332 (7)	
H1A	0.9244	0.9328	0.5825	0.050*	
H1B	0.9627	0.7954	0.5084	0.050*	
H1C	0.9241	0.7119	0.5969	0.050*	
01	0.4059 (3)	0.9677 (5)	0.1703 (2)	0.0561 (8)	
O2	0.4110 (3)	0.8206 (5)	0.30813 (19)	0.0555 (8)	
03	0.0729 (3)	1.0097 (4)	0.30549 (18)	0.0462 (7)	
O4	0.0532 (3)	0.7277 (4)	0.39073 (15)	0.0375 (6)	
C1	0.2425 (4)	0.6942 (6)	0.1932 (2)	0.0347 (9)	
C2	0.1041 (4)	0.6869 (6)	0.2345 (2)	0.0323 (8)	
C3	-0.0013 (4)	0.5489 (7)	0.1999 (2)	0.0375 (9)	
C4	0.0307 (5)	0.4133 (7)	0.1295 (3)	0.0431 (10)	
C5	0.1686 (5)	0.4186 (7)	0.0903 (2)	0.0408 (9)	
C6	0.2727 (4)	0.5608 (7)	0.1215 (2)	0.0380 (9)	
C7	0.3626 (4)	0.8340 (6)	0.2319 (3)	0.0378 (9)	
C8	0.0731 (4)	0.8226 (6)	0.3175 (2)	0.0305 (8)	
C9	0.5402 (5)	1.0814 (9)	0.1945 (4)	0.0701 (15)	
H9A	0.6216	0.9874	0.2027	0.105*	

H9B	0.5265	1.1554	0.2505	0.105*	
H9C	0.5614	1.1766	0.1464	0.105*	
C10	0.7440 (4)	0.8028 (6)	0.5251 (3)	0.0367 (9)	
C11	0.7195 (5)	0.9690 (7)	0.4533 (3)	0.0511 (11)	
H11A	0.7391	1.1011	0.4804	0.077*	
H11B	0.6186	0.9642	0.4305	0.077*	
H11C	0.7852	0.9469	0.4038	0.077*	
C12	0.7164 (4)	0.5891 (7)	0.4845 (3)	0.0469 (10)	
H12A	0.7874	0.5622	0.4383	0.070*	
H12B	0.6180	0.5831	0.4576	0.070*	
H12C	0.7264	0.4878	0.5321	0.070*	
C13	0.6520 (4)	0.8364 (7)	0.6089 (3)	0.0487 (11)	
H13A	0.5497	0.8082	0.5938	0.073*	
H13B	0.6622	0.9763	0.6290	0.073*	
H13C	0.6859	0.7459	0.6571	0.073*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U ¹³	U ²³
Cl1	0.0399 (6)	0.0959 (10)	0.0596 (7)	-0.0201 (6)	0.0101 (5)	-0.0272 (7)
Cl2	0.0733 (8)	0.0769 (10)	0.0685 (8)	-0.0297 (7)	-0.0010 (6)	-0.0322 (7)
C13	0.0782 (8)	0.0697 (9)	0.0532 (6)	0.0129 (7)	0.0033 (5)	-0.0277 (7)
Cl4	0.0511 (6)	0.0811 (9)	0.0627 (7)	0.0029 (6)	0.0236 (5)	-0.0087 (7)
N1	0.0333 (15)	0.0302 (17)	0.0364 (16)	0.0004 (13)	0.0033 (12)	0.0002 (14)
01	0.0603 (19)	0.059 (2)	0.0495 (17)	-0.0197 (15)	0.0029 (14)	0.0158 (15)
O2	0.0606 (18)	0.061 (2)	0.0437 (16)	-0.0225 (16)	-0.0119 (14)	0.0098 (15)
03	0.0623 (18)	0.0323 (18)	0.0439 (15)	-0.0008 (13)	0.0001 (13)	-0.0013 (12)
O4	0.0446 (14)	0.0374 (15)	0.0308 (13)	0.0003 (13)	0.0076 (11)	-0.0008 (12)
C1	0.039 (2)	0.035 (2)	0.0301 (18)	0.0012 (16)	-0.0010 (15)	0.0053 (16)
C2	0.0373 (19)	0.034 (2)	0.0259 (17)	-0.0030 (16)	0.0004 (15)	0.0015 (15)
C3	0.0349 (19)	0.045 (2)	0.0321 (18)	-0.0021 (19)	0.0002 (14)	-0.0037 (19)
C4	0.050 (2)	0.042 (2)	0.036 (2)	-0.0076 (19)	-0.0054 (18)	-0.0059 (18)
C5	0.050(2)	0.042 (2)	0.0309 (19)	0.0048 (19)	0.0001 (17)	-0.0057 (17)
C6	0.0403 (19)	0.045 (2)	0.0286 (17)	0.007 (2)	0.0061 (15)	0.0042 (19)
C7	0.036 (2)	0.040 (2)	0.038 (2)	-0.0019 (17)	0.0050 (17)	0.0023 (18)
C8	0.0290 (18)	0.028 (2)	0.0340 (19)	-0.0036 (16)	-0.0012 (15)	0.0000 (16)
C9	0.064 (3)	0.070 (4)	0.078 (3)	-0.032 (3)	0.022 (2)	0.003 (3)
C10	0.0268 (17)	0.033 (2)	0.050 (2)	0.0016 (16)	-0.0027 (15)	-0.0039 (18)
C11	0.045 (2)	0.050 (3)	0.057 (3)	0.007 (2)	-0.011 (2)	0.010 (2)
C12	0.039 (2)	0.042 (3)	0.059 (3)	-0.0065 (19)	-0.0001 (18)	-0.013 (2)
C13	0.040 (2)	0.045 (3)	0.062 (3)	0.006 (2)	0.0158 (19)	-0.007 (2)

Geometric parameters (Å, °)

Cl1—C3	1.724 (4)	C3—C4	1.392 (6)	
Cl2—C4	1.714 (4)	C4—C5	1.385 (6)	
Cl3—C5	1.718 (4)	C5—C6	1.385 (6)	
Cl4—C6	1.729 (4)	С9—Н9А	0.9600	

N1—C10	1.513 (5)	С9—Н9В	0.9600
N1—H1A	0.8900	С9—Н9С	0.9600
N1—H1B	0.8900	C10—C13	1.515 (5)
N1—H1C	0.8900	C10—C11	1.517 (6)
O1—C7	1.319 (5)	C10—C12	1.529 (6)
O1—C9	1.455 (5)	C11—H11A	0.9600
O2—C7	1.186 (4)	С11—Н11В	0.9600
O3—C8	1.230 (5)	C11—H11C	0.9600
O4—C8	1.252 (4)	С12—Н12А	0.9600
C1—C6	1.394 (5)	С12—Н12В	0.9600
C1—C2	1.404 (5)	C12—H12C	0.9600
C1—C7	1.511 (5)	С13—Н13А	0.9600
C2—C3	1.391 (5)	С13—Н13В	0.9600
C2—C8	1.532 (5)	C13—H13C	0.9600
			0.0000
C10—N1—H1A	109.5	O1—C9—H9A	109.5
C10—N1—H1B	109.5	O1—C9—H9B	109.5
H1A—N1—H1B	109.5	H9A—C9—H9B	109.5
C10—N1—H1C	109.5	O1—C9—H9C	109.5
H1A—N1—H1C	109.5	H9A—C9—H9C	109.5
H1B—N1—H1C	109.5	Н9В—С9—Н9С	109.5
C7—O1—C9	115.6 (3)	N1—C10—C13	107.2 (3)
C6—C1—C2	119.9 (3)	N1—C10—C11	107.5 (3)
C6—C1—C7	120.1 (3)	C13—C10—C11	112.5 (3)
C2—C1—C7	119.7 (3)	N1—C10—C12	107.2 (3)
C3—C2—C1	118.2 (3)	C13—C10—C12	110.9 (4)
C3—C2—C8	121.3 (3)	C11—C10—C12	111.2 (3)
C1—C2—C8	120.5 (3)	C10-C11-H11A	109.5
C2—C3—C4	121.5 (3)	C10-C11-H11B	109.5
C2—C3—Cl1	119.3 (3)	H11A—C11—H11B	109.5
C4—C3—Cl1	119.1 (3)	C10—C11—H11C	109.5
C5—C4—C3	119.8 (4)	H11A—C11—H11C	109.5
C5—C4—Cl2	119.8 (3)	H11B—C11—H11C	109.5
C3—C4—Cl2	120.3 (3)	C10-C12-H12A	109.5
C6—C5—C4	119.3 (4)	C10-C12-H12B	109.5
C6—C5—Cl3	120.4 (3)	H12A—C12—H12B	109.5
C4—C5—Cl3	120.2 (3)	C10-C12-H12C	109.5
C5—C6—C1	121.1 (3)	H12A—C12—H12C	109.5
C5—C6—Cl4	119.2 (3)	H12B—C12—H12C	109.5
C1—C6—Cl4	119.7 (3)	C10—C13—H13A	109.5
O2—C7—O1	125.4 (4)	C10-C13-H13B	109.5
O2—C7—C1	123.1 (4)	H13A—C13—H13B	109.5
O1—C7—C1	111.5 (3)	C10—C13—H13C	109.5
O3—C8—O4	127.6 (3)	H13A—C13—H13C	109.5
O3—C8—C2	117.2 (3)	H13B—C13—H13C	109.5
O4—C8—C2	115.2 (3)		
C6—C1—C2—C3	-2.0 (5)	Cl3—C5—C6—C1	-179.0 (3)

C7—C1—C2—C3	-176.8 (3)	C4—C5—C6—Cl4	-179.6 (3)	
C6—C1—C2—C8	175.9 (3)	Cl3—C5—C6—Cl4	-0.5 (5)	
C7—C1—C2—C8	1.2 (5)	C2—C1—C6—C5	-0.5 (5)	
C1—C2—C3—C4	3.3 (6)	C7—C1—C6—C5	174.2 (4)	
C8—C2—C3—C4	-174.6 (4)	C2C1C6Cl4	-179.1 (3)	
C1—C2—C3—Cl1	-174.8 (3)	C7—C1—C6—Cl4	-4.3 (5)	
C8—C2—C3—C11	7.3 (5)	C9—O1—C7—O2	11.0 (6)	
C2—C3—C4—C5	-2.0 (6)	C9—O1—C7—C1	-168.3 (4)	
Cl1—C3—C4—C5	176.1 (3)	C6—C1—C7—O2	-115.3 (4)	
C2—C3—C4—Cl2	178.5 (3)	C2—C1—C7—O2	59.4 (5)	
Cl1—C3—C4—Cl2	-3.4 (5)	C6-C1-C7-O1	64.0 (5)	
C3—C4—C5—C6	-0.6 (6)	C2—C1—C7—O1	-121.3 (4)	
Cl2—C4—C5—C6	178.8 (3)	C3—C2—C8—O3	-117.6 (4)	
C3—C4—C5—Cl3	-179.8 (3)	C1—C2—C8—O3	64.5 (5)	
Cl2—C4—C5—Cl3	-0.3 (5)	C3—C2—C8—O4	63.6 (5)	
C4—C5—C6—C1	1.9 (6)	C1—C2—C8—O4	-114.3 (4)	

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	D—H···A
N1—H1A····O4 ⁱ	0.89	1.97	2.838 (4)	165
N1—H1 <i>B</i> ···O4 ⁱⁱ	0.89	1.97	2.850 (4)	168
N1—H1 <i>C</i> ···O3 ⁱⁱⁱ	0.89	1.94	2.818 (4)	169

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) -*x*+1, *y*-1/2, -*z*+1.