organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ammonium 1-ammonioethane-1,1diylbis(hydrogenphosphonate) dihydrate

V. V. Bon,* A. V. Dudko, A. N. Kozachkova and V. I. Pekhnyo

V. I. Vernadskii Institute of General and Inorganic Chemistry, Kyiv 03680, Ukraine Correspondence e-mail: bon@ionc.kiev.ua

Received 6 November 2008; accepted 10 November 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.074; data-to-parameter ratio = 11.8.

The title compound, $NH_4^+ \cdot C_2 H_8 NO_6 P_2^- \cdot 2H_2 O$, was obtained by the reaction between 1-aminoethane-1,1-diyldiphosphonic acid and ammonium hydroxide (1:1) in an aqueous solution. The asymmetric unit contains one anion with two H atoms transferred from the phosphonic acid groups to the amino group of the anion and to an ammonia molecule, giving an ammonium cation. The structure displays $N-H\cdots O$ and O- $H\cdots O$ hydrogen bonding, which creates a three-dimensional network.

Related literature

Diphosphonic acids are efficient drugs for the prevention of calcification and the inhibition bone resorption (Tromelin *et al.*, 1986, Matczak-Jon & Videnova-Adrabinska, 2005) and are used in the treatment of Pagets disease, osteoporosis and tumoral osteolysis (Szabo *et al.*, 2002). For related structures, see: Bruckmann *et al.* (1999); Olive *et al.* (2000); Coiro *et al.* (1989). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} \mathrm{NH_4^+}{\cdot}\mathrm{C_2H_8NO_6P_2^-}{\cdot}\mathrm{2H_2O} \\ M_r = 258.11 \\ \mathrm{Monoclinic}, \ P2_1/c \\ a = 8.8922 \ (3) \\ \mathrm{\AA} \\ b = 6.9390 \ (3) \\ \mathrm{\AA} \\ c = 18.9576 \ (8) \\ \mathrm{\AA} \\ \beta = 117.957 \ (2)^{\circ} \end{array}$

 $V = 1033.23 (7) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.45 \text{ mm}^{-1}$ T = 173 (2) K $0.23 \times 0.19 \times 0.09 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.906, T_{max} = 0.963$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.074$ S = 1.052126 reflections 180 parameters 2 restraints 14152 measured reflections 2126 independent reflections 1710 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.50\ \text{e}\ \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.42\ \text{e}\ \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3O····O4 ⁱ	0.78 (3)	1.74 (3)	2.523 (2)	179 (3)
O6−H6O···O5 ⁱⁱ	0.81 (3)	1.71 (3)	2.526 (2)	175 (3)
$N1 - H11N \cdot \cdot \cdot O2^{iii}$	0.94 (3)	1.83 (3)	2.759 (2)	169 (2)
$N1 - H12N \cdot \cdot \cdot O8^{i}$	0.90 (3)	2.00 (3)	2.873 (3)	164 (2)
$N1 - H13N \cdot \cdot \cdot O3^{i}$	0.87 (3)	2.08 (3)	2.928 (2)	167 (2)
$N2-H21N\cdots O7$	0.88 (3)	2.00 (3)	2.860 (3)	165 (3)
$N2 - H22N \cdot \cdot \cdot O2^{iv}$	0.85 (3)	2.14 (3)	2.914 (3)	151 (2)
$N2 - H23N \cdots O1$	0.93 (3)	1.91 (3)	2.832 (3)	171 (3)
$N2-H24N \cdots O1^{v}$	0.90(2)	1.97 (3)	2.850 (3)	165 (2)
O7−H71 <i>O</i> ···O8	0.83 (3)	1.99 (3)	2.817 (3)	177 (3)
$O7-H72O\cdots O5^{vi}$	0.80 (3)	1.97 (3)	2.745 (2)	165 (3)
O8−H81 <i>O</i> ···O1 ^{vii}	0.768 (17)	2.244 (19)	2.984 (2)	162 (3)
$O8-H82O\cdots O7^{viii}$	0.775 (18)	1.999 (19)	2.770 (3)	173 (4)
Summating and an (i)		3. (::)		

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) -x + 2, -y + 1, -z + 2; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) x, y - 1, z; (v) -x + 1, -y + 1, -z + 2; (vi) x - 1, y, z; (vii) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (viii) $-x, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

The authors offer special thanks to Dr E. B. Rusanov for his help with the article preparation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2118).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Bruckmann, J., Krüger, C., Lehmann, C. W., Leitner, W., Rust, J. & Six, C. (1999). Acta Cryst. C55, 695–696.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Coiro, V. M. & Lamba, D. (1989). Acta Cryst. C45, 446-448.
- Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.
- Olive, G., Ellis, D. D., Siri, D., Le Moigne, F., Lutz, M., Spek, A. L., Tordo, P. & Reboul, J.-P. (2000). Acta Cryst. C56, 720–722.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Szabo, Ch. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894– 2903.
- Tromelin, A., El Manouni, D. & Burgada, R. (1986). Phosphorus Sulfur Relat. Elem. 27, 301–312.

supporting information

Acta Cryst. (2008). E64, o2340 [doi:10.1107/S1600536808037045]

Ammonium 1-ammonioethane-1,1-diylbis(hydrogenphosphonate) dihydrate

V. V. Bon, A. V. Dudko, A. N. Kozachkova and V. I. Pekhnyo

S1. Comment

The organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Tromelin *et al.*, 1986, Matczak-Jon & Videnova-Adrabinska, 2005). Diphosphonic acids are used in the treatment of Paget disease, osteoporosis and tumoral osteolysis (Szabo *et al.*, 2002). The asymmetric unit of title compound (Fig. 1) contains one molecule, which exists as anion with two protons transferred from the phosphonic group to the amino group and from another phosphonic group to ammonium cation. In the crystal structure of the title compound the phosphorus atom displays a slightly distorted tetrahedral geometry provided by three oxygen atoms and one carbon atom (Bruckmann *et al.* (1999); Olive *et al.* (2000); Coiro *et al.* (1989)). Bond lengths and angles have normal values (Allen *et al.*, 1987). One ammonium cation and two solvent water molecules are present in asymetric unit. The structure is stabilized by three-dimensional O–H…O and N–H…O hydrogen bonds network (Table 1, Fig.2).

S2. Experimental

The title compound was obtained by the reaction of 1-aminoethane-1,1-diyldiphosphonic acid and ammonium hydroxide (1:1) in the aqueous solution. The solution was left at room temperature. Colourless crystals of the title compound were obtained after 1 day staying.

S3. Refinement

All H atoms bonded to O and N atoms were located in a difference map. Other H atoms bonded to C were positioned geometrically and refined using a riding model with C-H = 0.98 Å for CH_3 with $U_{iso}(H) = 1.5Ueq(C)$.

Figure 1

The asymmetric unit of title compound with the atom numbering scheme. The displacement ellipsoids are shown at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Figure 2

Crystal packing of title compound, projection along b axis. Dashed lines indicate hydrogen bonds.

Ammonium 1-ammonioethane-1,1-diylbis(hydrogenphosphonate) dihydtare

Crystal data	
$H_4N^+ \cdot C_2H_8NO_6P_2^- \cdot 2H_2O$	F(000) = 544
$M_r = 258.11$	$D_{\rm x} = 1.659 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 511 K
Hall symbol: -P 2ybc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.8922 (3) Å	Cell parameters from 4102 reflections
b = 6.9390 (3) Å	$\theta = 2.4 - 26.4^{\circ}$
c = 18.9576 (8) Å	$\mu = 0.45 \text{ mm}^{-1}$
$\beta = 117.957 \ (2)^{\circ}$	T = 173 K
V = 1033.23 (7) Å ³	Needle, colourless
Z = 4	$0.23 \times 0.19 \times 0.09 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector	14152 measured reflections
diffractometer	2126 independent reflections
Radiation source: Fine-focus sealed tube	1710 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.057$
φ and ω scans	$\theta_{max} = 26.5^{\circ}, \ \theta_{min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(<i>SADABS</i> ; Bruker, 2005)	$k = -8 \rightarrow 8$
$T_{min} = 0.906, T_{max} = 0.963$	$l = -23 \rightarrow 23$
Refinement	
Refinement on F^2	Secondary atom site location: Difmap
Least-squares matrix: Full	Hydrogen site location: Geom
$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of independent
$wR(F^2) = 0.074$	and constrained refinement
S = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0326P)^2 + 0.4969P]$
2126 reflections	where $P = (F_o^2 + 2F_c^2)/3$
180 parameters	$(\Delta/\sigma)_{max} = 0.001$
2 restraints	$\Delta\rho_{max} = 0.50$ e Å ⁻³
Primary atom site location: Direct	$\Delta\rho_{min} = -0.42$ e Å ⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
P1	0.45684 (7)	0.78215 (7)	0.83905 (3)	0.00967 (14)	
P2	0.75545 (7)	0.49061 (7)	0.90274 (3)	0.00998 (14)	
C1	0.6842 (3)	0.7385 (3)	0.86839 (12)	0.0102 (4)	
C2	0.7977 (3)	0.8851 (3)	0.93146 (13)	0.0151 (5)	
H2A	0.9172	0.8604	0.9460	0.023*	
H2B	0.7816	0.8730	0.9790	0.023*	
H2C	0.7668	1.0157	0.9097	0.023*	
N1	0.7091 (2)	0.7652 (3)	0.79539 (11)	0.0110 (4)	
N2	0.4118 (3)	0.2940 (3)	0.92879 (12)	0.0156 (4)	
01	0.41873 (18)	0.6941 (2)	0.90108 (8)	0.0136 (3)	
O2	0.42601 (18)	0.99358 (19)	0.82470 (8)	0.0138 (3)	
O3	0.35764 (18)	0.6661 (2)	0.75879 (9)	0.0118 (3)	
O4	0.61946 (17)	0.3541 (2)	0.84970 (8)	0.0127 (3)	
05	0.92422 (18)	0.4672 (2)	0.90282 (8)	0.0137 (3)	
O6	0.7742 (2)	0.4803 (2)	0.98869 (9)	0.0142 (3)	
H3O	0.366 (3)	0.724 (4)	0.7255 (16)	0.033 (8)*	
H6O	0.873 (4)	0.492 (4)	1.0228 (18)	0.044 (9)*	

H11N	0.653 (3)	0.669 (4)	0.7568 (15)	0.022 (6)*	
H12N	0.822 (3)	0.761 (3)	0.8110 (14)	0.016 (6)*	
H13N	0.672 (3)	0.878 (4)	0.7751 (14)	0.019 (7)*	
H21N	0.303 (4)	0.265 (4)	0.9075 (17)	0.036 (8)*	
H22N	0.453 (3)	0.222 (4)	0.9061 (16)	0.028 (8)*	
H23N	0.418 (3)	0.422 (5)	0.9160 (17)	0.039 (8)*	
H24N	0.463 (3)	0.275 (3)	0.9819 (15)	0.013 (6)*	
07	0.0562 (2)	0.2189 (3)	0.83327 (12)	0.0225 (4)	
08	-0.0558 (2)	0.3200 (3)	0.67241 (11)	0.0235 (4)	
H71O	0.019 (4)	0.249 (4)	0.786 (2)	0.042 (9)*	
H72O	0.004 (3)	0.278 (4)	0.8504 (16)	0.025 (8)*	
H81O	-0.145 (3)	0.279 (4)	0.6455 (15)	0.034 (9)*	
H82O	-0.064 (4)	0.431 (3)	0.668 (2)	0.063 (12)*	

Atomic displacement parameters (\mathring{A}^2)

_	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0092 (3)	0.0081 (3)	0.0112 (3)	0.0005 (2)	0.0044 (2)	0.0006 (2)
P2	0.0099 (3)	0.0091 (3)	0.0099 (3)	0.0006 (2)	0.0038 (2)	0.0007 (2)
C1	0.0101 (10)	0.0095 (10)	0.0110 (10)	-0.0006 (8)	0.0049 (8)	0.0002 (8)
C2	0.0152 (11)	0.0123 (11)	0.0167 (11)	-0.0028 (9)	0.0065 (9)	-0.0034 (9)
N1	0.0104 (10)	0.0097 (9)	0.0125 (9)	0.0006 (8)	0.0051 (8)	0.0019 (8)
N2	0.0169 (11)	0.0169 (11)	0.0144 (11)	-0.0005 (9)	0.0084 (9)	-0.0014 (8)
O1	0.0138 (8)	0.0141 (8)	0.0144 (8)	0.0004 (6)	0.0078 (6)	0.0025 (6)
O2	0.0155 (8)	0.0104 (7)	0.0152 (7)	0.0010 (6)	0.0069 (6)	0.0004 (6)
O3	0.0130 (8)	0.0103 (7)	0.0108 (7)	-0.0015 (6)	0.0044 (6)	0.0010 (6)
O4	0.0131 (8)	0.0100 (7)	0.0142 (7)	-0.0009 (6)	0.0058 (6)	-0.0007 (6)
05	0.0117 (8)	0.0144 (8)	0.0141 (7)	0.0018 (6)	0.0052 (6)	-0.0001 (6)
O6	0.0107 (8)	0.0194 (8)	0.0114 (7)	0.0008 (6)	0.0042 (7)	0.0014 (6)
O7	0.0173 (9)	0.0237 (9)	0.0262 (10)	0.0030 (7)	0.0100 (8)	-0.0056 (8)
08	0.0164 (10)	0.0216 (10)	0.0324 (10)	0.0009 (8)	0.0115 (9)	-0.0013 (8)

Geometric parameters (Å, °)

P1—O2	1.4939 (14)	N1—H11N	0.94 (3)
P101	1.4982 (14)	N1—H12N	0.90 (3)
P1—O3	1.5760 (15)	N1—H13N	0.87 (3)
P1—C1	1.853 (2)	N2—H21N	0.88 (3)
P2—O4	1.4933 (15)	N2—H22N	0.85 (3)
P2—O5	1.5088 (15)	N2—H23N	0.93 (3)
P2—O6	1.5598 (15)	N2—H24N	0.90 (2)
P2—C1	1.843 (2)	O3—H3O	0.78 (3)
C1—N1	1.512 (3)	O6—H6O	0.81 (3)
C1—C2	1.534 (3)	O7—H71O	0.83 (3)
C2—H2A	0.9800	O7—H72O	0.80 (3)
C2—H2B	0.9800	O8—H81O	0.768 (17)
C2—H2C	0.9800	O8—H82O	0.775 (18)

O2—P1—O1	116.99 (8)	H2A—C2—H2B	109.5
O2—P1—O3	110.75 (8)	C1—C2—H2C	109.5
O1—P1—O3	108.61 (9)	H2A—C2—H2C	109.5
O2—P1—C1	107.25 (9)	H2B—C2—H2C	109.5
O1—P1—C1	108.31 (9)	C1—N1—H11N	111.7 (15)
O3—P1—C1	104.13 (9)	C1—N1—H12N	108.2 (15)
O4—P2—O5	115.05 (8)	H11N—N1—H12N	110 (2)
O4—P2—O6	109.31 (8)	C1—N1—H13N	109.0 (15)
O5—P2—O6	112.01 (8)	H11N—N1—H13N	110 (2)
O4—P2—C1	108.55 (9)	H12N—N1—H13N	108 (2)
O5—P2—C1	106.13 (9)	H21N—N2—H22N	106 (3)
O6—P2—C1	105.23 (9)	H21N—N2—H23N	107 (2)
N1—C1—C2	107.87 (16)	H22N—N2—H23N	110 (3)
N1—C1—P2	105.33 (13)	H21N—N2—H24N	110 (2)
C2—C1—P2	110.63 (14)	H22N—N2—H24N	112 (2)
N1—C1—P1	108.22 (14)	H23N—N2—H24N	112 (2)
C2—C1—P1	110.60 (14)	Р1—О3—НЗО	107 (2)
P2-C1-P1	113.86 (10)	Р2—О6—Н6О	112 (2)
C1—C2—H2A	109.5	Н710—07—Н720	108 (3)
C1—C2—H2B	109.5	H810—O8—H82O	106 (3)
04—P2—C1—N1	-77 19 (14)	Ω^2 —P1—C1—N1	-71 57 (14)
05-P2-C1-N1	47.00(15)	01 - P1 - C1 - N1	161 33 (13)
06-P2-C1-N1	165 88 (13)	O3 - P1 - C1 - N1	45 86 (15)
04-P2-C1-C2	166.50 (13)	02 - P1 - C1 - C2	46.40 (16)
05-P2-C1-C2	-69.31(15)	01 - P1 - C1 - C2	-80.71(15)
06-P2-C1-C2	49.58 (16)	03 - P1 - C1 - C2	163.82 (14)
O4—P2—C1—P1	41.22 (13)	O2—P1—C1—P2	171.69 (10)
O5—P2—C1—P1	165.41 (10)	O1—P1—C1—P2	44.58 (13)
O6—P2—C1—P1	-75.71 (12)	O3—P1—C1—P2	-70.88 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O3—H3 <i>O</i> …O4 ⁱ	0.78 (3)	1.74 (3)	2.523 (2)	179 (3)
O6—H6 <i>O</i> ···O5 ⁱⁱ	0.81 (3)	1.71 (3)	2.526 (2)	175 (3)
N1—H11 <i>N</i> ···O2 ⁱⁱⁱ	0.94 (3)	1.83 (3)	2.759 (2)	169 (2)
N1—H12 N ···O8 ⁱ	0.90 (3)	2.00 (3)	2.873 (3)	164 (2)
N1—H13 <i>N</i> ···O3 ⁱ	0.87 (3)	2.08 (3)	2.928 (2)	167 (2)
N2—H21 <i>N</i> ···O7	0.88 (3)	2.00 (3)	2.860 (3)	165 (3)
N2—H22 N ···O2 ^{iv}	0.85 (3)	2.14 (3)	2.914 (3)	151 (2)
N2—H23 <i>N</i> ···O1	0.93 (3)	1.91 (3)	2.832 (3)	171 (3)
$N2-H24N\cdotsO1^{v}$	0.90 (2)	1.97 (3)	2.850 (3)	165 (2)
O7—H71 <i>O</i> …O8	0.83 (3)	1.99 (3)	2.817 (3)	177 (3)
$O7-H72O\cdots O5^{vi}$	0.80 (3)	1.97 (3)	2.745 (2)	165 (3)

supporting information

O8—H81 <i>O</i> …O1 ^{vii}	0.77 (2)	2.24 (2)	2.984 (2)	162 (3)
08—H82 <i>O</i> ···O7 ^{viii}	0.78 (2)	2.00(2)	2.770 (3)	173 (4)

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+3/2; (ii) -*x*+2, -*y*+1, -*z*+2; (iii) -*x*+1, *y*-1/2, -*z*+3/2; (iv) *x*, *y*-1, *z*; (v) -*x*+1, -*y*+1, -*z*+2; (vi) *x*-1, *y*, *z*; (vii) -*x*, *y*-1/2, -*z*+3/2; (viii) -*x*, *y*+1/2, -*z*+3/2.