Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(Croconato- $\boldsymbol{\kappa}^{2} \mathrm{O}, \mathrm{O}^{\prime}$)bis(1,10-phenanthro-line- $\left.\kappa^{2} N, N^{\prime}\right)$ zinc(II)

Hongyu Chen, ${ }^{\text {a* }}$ Ping Li, ${ }^{\text {a }}$ Lihua Dong, ${ }^{a}$ Xiaohui Zhu ${ }^{\text {a }}$ and Qi Fang ${ }^{\text {b }}$

${ }^{\text {a }}$ School of Chemistry and Chemical Engineering, TaiShan Medical University, Tai'an 271016, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong Province, People's Republic of China Correspondence e-mail: binboll@126.com

Received 5 August 2008; accepted 15 October 2008
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.029 ; w R$ factor $=0.096$; data-to-parameter ratio $=14.7$.

In the title compound, $\left[\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$, the Zn atom is in a slightly distorted octahedral environment. The molecule lies across a twofold rotation axis, around which two 1,10phenanthroline ligands are arranged. There are short contacts between the 1,10 -phenanthroline groups and the O atoms of the croconate ligand, which probably stabilize the crystal structure via weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Related literature

For related literature, see: Braga et al. (2002); Carranza et al. (2004); Castro et al. (1992, 2002); Chen et al. (2005, 2007, 2008); Faus et al. (1994); Maji et al. (2003); Seitz \& Imming (1992); Sletten et al. (1998); Wang et al. (2002).

Experimental

Crystal data

$$
\begin{array}{ll}
{\left[\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]} & b=11.0133(3) \AA \\
M_{r}=565.83 & c=17.2745(5) \AA \\
\text { Orthorhombic, } P b c n & V=2332.55(12) \AA^{3} \\
a=12.2605(4) \AA & Z=4
\end{array}
$$

Mo $K \alpha$ radiation
$\mu=1.11 \mathrm{~mm}^{-1}$

Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (APEX2; Bruker, 2005)
$T_{\text {min }}=0.743, T_{\text {max }}=0.782$
$($ expected range $=0.805-0.847)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.096$
$S=1.28$
2627 reflections
$T=293$ (2) K
$0.28 \times 0.23 \times 0.15 \mathrm{~mm}$

9769 measured reflections
2627 independent reflections 2164 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

179 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.32$ e \AA^{-3}

Table 1
Selected bond lengths (\AA).

$\mathrm{N} 1-\mathrm{Zn} 1$	$2.1493(15)$	$\mathrm{O} 1-\mathrm{Zn} 1$	$2.1325(14)$
$\mathrm{N} 2-\mathrm{Zn} 1$	$2.1664(17)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H6} \cdots \mathrm{O}^{\text {i }}$	0.93	2.47	3.295 (2)	149
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\text {ii }}$	0.93	2.55	3.147 (2)	122

Symmetry codes: (i) $x,-y, z-\frac{1}{2}$; (ii) $x-\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the National Natural Science Foundation of China (grant No. 50673054).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2254).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Braga, D., Maini, L. \& Grepioni, F. (2002). Chem. Eur. J. 8, 1804-1812.
Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Carranza, J., Sletten, J., Brennan, C., Lloret, F., Cano, J. \& Julve, M. (2004). Dalton Trans. p. 3997-4000.
Castro, I., Calatayud, M. L., Lloret, F., Sletten, J. \& Julve, M. (2002). J. Chem. Soc. Dalton Trans. pp. 2397-2403.
Castro, I., Sletten, J., Faus, J., Julve, M., Journaux, Y., Lloret, F. \& Alvarez, S. (1992). Inorg. Chem. 31, 1889-1894.

Chen, H.-F., Chen, H.-Y., Chen, X., Batsanov, A. S. \& Fang, Q. (2008). Acta Cryst. E64, m172.
Chen, X., Chen, H.-F., Xue, G., Chen, H.-Y., Yu, W.-T. \& Fang, Q. (2007). Acta Cryst. C63, m166-m168.
Chen, H.-Y., Fang, Q., Xue, G. \& Yu, W.-T. (2005). Acta Cryst. C61, m535m537.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

metal-organic compounds

Faus, J., Julve, M., Lloret, F., Real, J. A. \& Sletten, J. (1994). Inorg. Chem. 33, 5535-5540.
Maji, T. K., Konar, S., Mostafa, G., Zangrando, E., Lu, T. H. \& Chaudhuri, N. R. (2003). J. Chem. Soc. Dalton Trans. pp. 171-175.

Seitz, G. \& Imming, P. (1992). Chem. Rev. 92, 1227-1260

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sletten, J., Daraghmeh, H., Lloret, F. \& Julve, M. (1998). Inorg. Chim. Acta, 279, 127-135.
Wang, C.-C., Yang, C.-H. \& Lee, G.-H. (2002). Inorg. Chem. 41, 1015-1018.

supporting information

Acta Cryst. (2008). E64, m1507-m1508 [doi:10.1107/S1600536808033709]

(Croconato- $\left.\kappa^{2} \mathrm{O}, \mathrm{O}^{\prime}\right)$ bis(1,10-phenanthroline- $\kappa^{2} \mathrm{~N}, \mathrm{~N}^{\prime}$)zinc(II)

Hongyu Chen, Ping Li, Lihua Dong, Xiaohui Zhu and Qi Fang

S1. Comment

The dianion of croconic acid(4,5-dihydroxycyclopent-4-ene-1,2,3-trione), $\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)^{2-}$, is one of the cyclic aromatic oxocarbons (CO) ${ }_{\mathrm{n}}{ }^{2-}$ characterized by extensive delocalization of the π electrons all over the ring (Seitz \& Imming, 1992). Previous reports reveal that croconate is a polydent ligand(Chen et al., 2005, Maji et al., 2003, Wang et al., 2002, Sletten et al., 1998). According to the concept of 'molecular self-organization' and 'molecular engineering', transition metal croconates associated with another ligand such as terpyridine (Castro et al. 2002), bis((bis(2-pyridylcarbonyl) amido (Maji et al., 2003), 2,2'-bipyridine (Castro et al., 1992) or the tetrakis(2-pyridyl)pyrazine (Carranza et al. 2004) show interesting properties in magnetism, biochemistry, catalyst et al.
1,10-Phenanthroline(phen) is a well known neutral bidentate ligand. There have been considerable interests in the synthesis of open-framework phen-based metal complexes because of their interesting structure chemistry and potential applications(Faus et al. 1994). Recently, many research activities have focused on the synthesis of hybrid framework by incorporate organic ligand in the structure of phen-based complexes. Among the family of cyclic oxocarbons of the formula $(\mathrm{CO})_{\mathrm{n}}{ }^{2-}[\mathrm{n}=2-6$ for oxalate, deltate, squarate, croconate and rhodizonate anions, respectively], the croconate moiety, $\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)^{2-}$, was found to be a good candidate and has been successfully incorporated into phen-based frameworks in our previous work, $\left[M(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right](M=\mathrm{Cu}, \mathrm{Ni}, \mathrm{Co}, \mathrm{Mn})($ Chen et al., 2005, 2007, 2008). Here, we report a new member of this family: $\left[\mathrm{Zn}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$.
In the title structure, asymmetry unit contains a phen moiety and half a coroconte group coordinated with a zinc ion. The title compound lies across twofold rotation axes which passes through the Zn atom and bisects the croconate ligand, around which two phen ligand are arranged in a chiral propeller manner. A unit cell contains four $\left[\mathrm{Zn}(\mathrm{phen})_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ molecules.
As a good π-conjugation system, the croconate dianion('free' ligand) in its simple salt has a plannar $\mathrm{D}_{5 \mathrm{~h}}$ conformation with five almost identical C ? O bonds and five almost identical C ? C bonds, such as in $\mathrm{Rb}_{2} \mathrm{C}_{5} \mathrm{O}_{5}$ and $\mathrm{Cs}_{2} \mathrm{C}_{5} \mathrm{O}_{5}$ crystals (Braga et al., 2002). However, the coordinated ligand in title complex obvioulsy deviates from $\mathrm{D}_{5 \mathrm{~h}}$ symmetry. The C ? O bond involving coordinated O atoms is longer than that involving the uncoordinated O atoms. In the title complex, the C?O bond lengths are 1.229 (3) \AA and 1.228 (4) \AA for the uncoordinated O atoms and 1.277 (2) \AA for the coordinated O atoms.

The molecuar conformation of $\left[\mathrm{Zn}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ is close to $\left[\mathrm{Co}(\mathrm{phen})_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ and $\left[\mathrm{Ni}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ while different from $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ and $\left[\mathrm{Mn}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$. The dihedral angle between the two phen planes for the title compound is $85.3(1)^{\circ}$ and the croconate and phen planes are also effectively perpendicular, with a dihedral angle of $87.7(1)^{\circ}$. Compared with our previous reported result(Chen et al. 2005, 2007, 2008), the crystal growth method not only influence crystal packing motif, but also have effect on the moleular configuration. The crystal of $\left[\mathrm{Zn}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$,
$\left[\mathrm{Co}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ and $\left[\mathrm{Ni}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ are grown by hydrothermal method while the cyrstal of $\left[\mathrm{Cu}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ and $\left[\mathrm{Mn}(\mathrm{phen})_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ are obtained by solvent evaporation under room temperature. Correspondingly, the crystal packing
motif for crystal of Ni, Co, and Zn complexes are $\mathrm{P}_{\mathrm{bcn}}$, while it is $C 2 / c$ for Cu and Mn complexes. As for the molecular configuration, the dihendral angles between the two phen planes for the complexes of $\mathrm{Zn}, \mathrm{Co}, \mathrm{Ni}$ are $87.7(1)^{\circ}, 85.7(1)^{\circ}$, $86.0(1)^{\circ}$ which are almost perpendicular to each other, but they are $46.5(1)^{\circ}$ and $40.7(1)^{\circ}$ for Cu and Mn complexes. According to the Jahn-teller effect theotry (if a d-orbital of a transiton metal ion is empty or full-filled and the other equivalent orbital is half full-filled, the coordinate enviorment of the transition metal ion will be distorted to form a more stable configuration), Cu^{2+} and Mn^{2+} have a strong tendency to Jahn-teller distortion while Zn^{2+} and Ni^{2+} are not. So, the local polyhedral $\mathrm{MN}_{4} \mathrm{O}_{2}(M=\mathrm{Zn}, \mathrm{Co}, \mathrm{Ni})$ in their complexes are close to the octahedral while $\mathrm{MN}_{4} \mathrm{O}_{2}(M=\mathrm{Mn}$, Cui) in their complexes are severely distorted from the octahedral. In the tiltle comound, the values of the angles subtended by the bidentate at zinc atom $\left[77.37(6)^{\circ}\right]$ deviate significantly from the ideal vaue of 90° due to the small bite size of the fivememberbered plannar chelate rings.
As shown in Fig.2, the dipole moments of $\left[\mathrm{Zn}(\text { phen })_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ are arranged alternatively along +b and- b directions. There are short contacts between the phen groups and the O atoms of the croconate $[e . g . \mathrm{C}(6)-\mathrm{H}(6) \cdots \mathrm{O}(1)(x,-y,-1 / 2+z)$ and $\mathrm{C}(11)-\mathrm{H}(11) \cdots \mathrm{O}(3)(-1 / 2+x,-1 / 2+y, 3 / 2-z)$, which probably stablize the crystal structure.

S2. Experimental

$\left[\mathrm{K}_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right](0.10 \mathrm{~g})$ and $\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} .2 \mathrm{H}_{2} \mathrm{O}(0.10 \mathrm{~g})$ were dissolved in solvent of water 15 ml . The mixture was heated to $340-350 \mathrm{~K}$ under continuous stirring for 20 min . To the resulting yellow solution, an ethanol solution (10 ml) of 1,10phenanthroline $(0.1 \mathrm{~mol} / L)$ was added to cause an immediate precipation of yellow microcrystal. After the solutions were left to stand at room temperature for 30 minutes, they were collected by filter suction, washed with water. Then the obtained precipation and 15 ml water was placed in the teflon liner of an autoclave, which was sealed and heated to 433 K for 48 h , cooled at speed of $10 \mathrm{~K} / \mathrm{min}$, whereupon yellow block of $\left[\mathrm{Zn}(\mathrm{phen})_{2}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\right]$ were obtained.

S3. Refinement

All H atoms were geometrically fixed and allowed to ride on their attached atoms, which $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ $U_{\text {eq }}(\mathrm{C})$.

Figure 1
Molecular structure with thermal ellipsoids at 30% probability levels. [symmetry code: $-x+1 / 2, y,-z+3 / 2$]

Figure 2
A packing diagram of the title compound.

(Croconato- $\left.\kappa^{2} O, O^{\prime}\right)$ bis(1,10-phenanthroline- $\left.\kappa^{2} N, N^{\prime}\right)$ zinc(II)

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{O}_{5}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$
$M_{r}=565.83$
Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
$a=12.2605$ (4) \AA
$b=11.0133$ (3) \AA
$c=17.2745(5) \AA$
$V=2332.55(12) \AA^{3}$
$Z=4$
$F(000)=1152$
$D_{\mathrm{x}}=1.611 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3967 reflections
$\theta=2.8-27.5^{\circ}$
$\mu=1.11 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, yellow
$0.28 \times 0.23 \times 0.15 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 10.0 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
$T_{\min }=0.743, T_{\text {max }}=0.782$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.096$
$S=1.28$
2627 reflections
179 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> 9769 measured reflections
> 2627 independent reflections
> 2164 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.019$
> $\theta_{\max }=27.6^{\circ}, \theta_{\min }=2.4^{\circ}$
> $h=-15 \rightarrow 14$
> $k=-14 \rightarrow 13$
> $l=-21 \rightarrow 21$

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0414 P)^{2}+0.6435 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.32 \mathrm{e} \AA^{-3}$
> Extinction correction: $S H E L X L 97($ Sheldrick, \quad 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
> Extinction coefficient: $0.0037(5)$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
C1	$1.14583(16)$	$-0.08987(18)$	$0.66696(12)$	$0.0370(4)$
H1	1.1977	-0.0725	0.7047	0.044^{*}
C2	$1.17077(19)$	$-0.1768(2)$	$0.61125(13)$	$0.0442(5)$
H2	1.2374	-0.2171	0.6123	0.053^{*}
C3	$1.09642(18)$	$-0.20164(18)$	$0.55543(12)$	$0.0411(5)$
H3	1.1121	-0.2598	0.5180	0.049^{*}
C4	$0.99594(16)$	$-0.14043(18)$	$0.55356(12)$	$0.0346(4)$
C5	$0.97663(15)$	$-0.05585(16)$	$0.61341(10)$	$0.0284(4)$
C6	$0.91524(18)$	$-0.15647(19)$	$0.49514(12)$	$0.0406(5)$
H6	0.9282	-0.2110	0.4551	0.049^{*}
C7	$0.82034(19)$	$-0.09419(19)$	$0.49667(13)$	$0.0434(5)$
H7	0.7700	-0.1051	0.4570	0.052^{*}
C8	$0.79598(16)$	$-0.01181(19)$	$0.55831(11)$	$0.0371(4)$
C9	$0.87469(15)$	$0.00774(16)$	$0.61615(11)$	$0.0305(4)$

C10	$0.69824(18)$	$0.0534(2)$	$0.56380(14)$	$0.0503(6)$
H10	0.6443	0.0438	0.5264	0.060^{*}
C11	$0.68264(19)$	$0.1309(2)$	$0.62399(15)$	$0.0535(6)$
H11	0.6177	0.1740	0.6281	0.064^{*}
C12	$0.76426(18)$	$0.1457(2)$	$0.67964(13)$	$0.0460(5)$
H12	0.7522	$0.1985(185)$	0.7208	0.055^{*}
C13	$0.96697(16)$	$0.35065(18)$	$0.78378(11)$	$0.0334(4)$
C14	$0.94811(17)$	$0.47521(18)$	$0.80990(13)$	$0.0409(5)$
C15	1.0000	$0.5549(3)$	0.7500	$0.0419(7)$
N1	$1.05186(12)$	$-0.03074(13)$	$0.66885(9)$	$0.0290(3)$
N2	$0.85892(13)$	$0.08653(15)$	$0.67547(9)$	$0.0352(4)$
O1	$0.93325(12)$	$0.25245(13)$	$0.81491(8)$	$0.0415(3)$
O2	$0.89952(16)$	$0.50881(16)$	$0.86832(11)$	$0.0659(5)$
O3	1.0000	$0.6664(2)$	0.7500	$0.0560(7)$
Zn1	1.0000	$0.10546(3)$	0.7500	$0.03197(13)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0350(10)$	$0.0405(11)$	$0.0355(11)$	$0.0036(8)$	$-0.0035(8)$	$0.0000(8)$
C2	$0.0441(11)$	$0.0421(11)$	$0.0465(13)$	$0.0118(9)$	$0.0055(10)$	$-0.0014(9)$
C3	$0.0551(13)$	$0.0326(10)$	$0.0356(11)$	$0.0030(9)$	$0.0093(9)$	$-0.0061(9)$
C4	$0.0457(11)$	$0.0278(8)$	$0.0302(10)$	$-0.0086(8)$	$0.0057(8)$	$-0.0008(8)$
C5	$0.0348(9)$	$0.0270(9)$	$0.0235(9)$	$-0.0044(7)$	$-0.0003(7)$	$0.0029(7)$
C6	$0.0579(13)$	$0.0387(11)$	$0.0253(10)$	$-0.0166(10)$	$-0.0015(9)$	$-0.0029(8)$
C7	$0.0504(12)$	$0.0458(12)$	$0.0340(12)$	$-0.0204(10)$	$-0.0078(9)$	$0.0041(9)$
C8	$0.0347(9)$	$0.0427(11)$	$0.0340(11)$	$-0.0090(8)$	$-0.0040(8)$	$0.0107(8)$
C9	$0.0325(9)$	$0.0317(9)$	$0.0275(10)$	$-0.0034(7)$	$0.0032(7)$	$0.0062(7)$
C10	$0.0369(11)$	$0.0632(15)$	$0.0507(14)$	$-0.0041(10)$	$-0.0093(10)$	$0.0208(12)$
C11	$0.0378(11)$	$0.0656(15)$	$0.0572(15)$	$0.0163(11)$	$0.0031(10)$	$0.0239(13)$
C12	$0.0486(12)$	$0.0514(13)$	$0.0380(12)$	$0.0166(10)$	$0.0035(9)$	$0.0067(10)$
C13	$0.0377(9)$	$0.0342(10)$	$0.0283(10)$	$-0.0010(8)$	$0.0009(8)$	$-0.0019(8)$
C14	$0.0403(11)$	$0.0357(10)$	$0.0468(13)$	$0.0004(9)$	$0.0011(9)$	$-0.0078(9)$
C15	$0.0364(14)$	$0.0334(15)$	$0.056(2)$	0.000	$-0.0102(13)$	0.000
N1	$0.0323(8)$	$0.0298(8)$	$0.0250(8)$	$0.0014(6)$	$0.0021(6)$	$0.0004(6)$
N2	$0.0361(8)$	$0.0388(9)$	$0.0307(9)$	$0.0075(7)$	$0.0039(7)$	$0.0040(7)$
O1	$0.0567(9)$	$0.0360(7)$	$0.0320(8)$	$-0.0025(6)$	$0.0138(6)$	$0.0001(6)$
O2	$0.0795(12)$	$0.0528(10)$	$0.0653(12)$	$-0.0019(9)$	$0.0307(10)$	$-0.0207(9)$
O3	$0.0662(16)$	$0.0286(11)$	$0.0731(18)$	0.000	$-0.0109(12)$	0.000
Zn1	$0.0409(2)$	$0.03008(19)$	$0.0249(2)$	0.000	$0.00062(12)$	0.000

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{N} 1$	$1.324(2)$	$\mathrm{C} 10-\mathrm{H} 10$	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	$1.391(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.397(3)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9300	$\mathrm{C} 11-\mathrm{H} 11$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.355(3)$	$\mathrm{C} 12-\mathrm{N} 2$	$1.333(3)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300	$\mathrm{C} 12-\mathrm{H} 12$	0.9300

C3-C4	1.405 (3)
C3-H3	0.9300
C4-C5	1.412 (3)
C4-C6	1.424 (3)
C5-N1	1.358 (2)
C5-C9	1.433 (3)
C6-C7	1.351 (3)
C6-H6	0.9300
C7-C8	1.430 (3)
C7-H7	0.9300
C8-C10	1.400 (3)
C8-C9	1.406 (3)
C9-N2	1.357 (2)
C10-C11	1.359 (4)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	123.14 (19)
N1-C1-H1	118.4
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	118.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	118.91 (19)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.5
C2-C3-C4	120.63 (19)
C2-C3-H3	119.7
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.7
C3-C4-C5	116.54 (18)
C3-C4-C6	124.48 (19)
C5-C4-C6	118.96 (18)
N1-C5-C4	122.48 (17)
N1-C5-C9	118.00 (17)
C4-C5-C9	119.52 (17)
C7-C6-C4	121.43 (19)
C7-C6-H6	119.3
C4-C6-H6	119.3
C6-C7-C8	121.09 (19)
C6-C7-H7	119.5
C8-C7-H7	119.5
C10-C8-C9	117.4 (2)
C10-C8-C7	123.7 (2)
C9-C8-C7	118.88 (19)
N2-C9-C8	122.48 (18)
N2-C9-C5	117.50 (17)
C8-C9-C5	120.02 (18)
C11-C10-C8	119.6 (2)
C11-C10-H10	120.2
C8-C10-H10	120.2
C10-C11-C12	119.9 (2)
C10-C11-H11	120.0

$\mathrm{C} 13-\mathrm{O} 1$	$1.277(2)$
$\mathrm{C} 13-\mathrm{C} 13^{\mathrm{i}}$	$1.420(4)$
$\mathrm{C} 13-\mathrm{C} 14$	$1.462(3)$
$\mathrm{C} 14-\mathrm{O} 2$	$1.229(3)$
$\mathrm{C} 14-\mathrm{C} 15$	$1.498(3)$
$\mathrm{C} 15-\mathrm{O} 3$	$1.229(4)$
$\mathrm{C} 15-\mathrm{C} 14^{\mathrm{i}}$	$1.498(3)$
$\mathrm{N} 1-\mathrm{Zn} 1$	$2.1493(15)$
$\mathrm{N} 2-\mathrm{Zn} 1$	$2.1664(17)$
$\mathrm{O} 1-\mathrm{Zn} 1$	$2.1325(14)$
$\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.1325(14)$
$\mathrm{Zn} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.1493(15)$
$\mathrm{Zn} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.1664(17)$

119.0

$\mathrm{N} 2-\mathrm{C} 12-\mathrm{H} 12$	119.0
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{H} 12$	119.0

$\mathrm{O} 1-\mathrm{C} 13-\mathrm{C}^{\mathrm{C}}{ }^{\mathrm{i}} \quad 122.05$ (11)
$\mathrm{O} 1-\mathrm{C} 13-\mathrm{C} 14 \quad 127.84$ (18)
C13i-C13-C14 110.10 (12)
$\mathrm{O} 2-\mathrm{C} 14-\mathrm{C} 13 \quad 127.8$ (2)
$\mathrm{O} 2-\mathrm{C} 14-\mathrm{C} 15 \quad 126.6$ (2)
C13-C14-C15 105.61 (19)
$\mathrm{O} 3-\mathrm{C} 15-\mathrm{C} 14^{\mathrm{i}} \quad 125.84$ (13)
O3-C15-C14 125.84 (13)
C14-C15-C14 108.3 (3)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5 \quad 118.26$ (17)
$\mathrm{C} 1-\mathrm{N} 1 — \mathrm{Zn} 1 \quad 128.09$ (13)
C5—N1—Zn1 113.65 (12)
C12—N2—C9 118.54 (18)
C12—N2—Zn1 128.01 (15)
C9—N2—Zn1 113.37 (12)
$\mathrm{C} 13-\mathrm{O} 1-\mathrm{Zn} 1 \quad 107.30$ (12)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O}^{\mathrm{i}} \quad 81.23$ (7)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1 \quad 170.49$ (6)
O1ㄹZn1—N1 94.20 (5)
$\mathrm{O} 1 — \mathrm{Zn} 1 — \mathrm{~N} 1^{\mathrm{i}} \quad 94.20$ (5)
$\mathrm{Ol}^{\mathrm{i}}-\mathrm{Zn} 1 — \mathrm{~N} 1^{\mathrm{i}} \quad 170.49$ (6)
$\mathrm{N} 1 — \mathrm{Zn} 1 — \mathrm{~N} 1^{\mathrm{i}} \quad 91.48$ (8)
$\mathrm{O} 1 — \mathrm{Zn} 1 — \mathrm{~N} 2 \quad 94.54$ (6)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Zn} 1 — \mathrm{~N} 2 \quad 93.84$ (6)
$\mathrm{N} 1 — \mathrm{Zn} 1 — \mathrm{~N} 2 \quad 77.37$ (6)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Zn} 1 — \mathrm{~N} 2 \quad 94.83$ (6)
$\mathrm{O} 1-\mathrm{Zn} 1 — \mathrm{~N} 2^{\mathrm{i}} \quad 93.84$ (6)
$\mathrm{O}^{\mathrm{i}}-\mathrm{Zn} 1 — \mathrm{~N} 2^{\mathrm{i}} \quad 94.54$ (6)
$\mathrm{N} 1 — \mathrm{Zn} 1 — \mathrm{~N} 2^{\mathrm{i}} \quad 94.83$ (6)
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Zn} 1 — \mathrm{~N} 2^{\mathrm{i}} \quad 77.37$ (6)

$\mathrm{C} 12-\mathrm{C} 11-\mathrm{H} 11$	120.0	$\mathrm{~N} 2-\mathrm{Zn} 1-\mathrm{N} 2^{\mathrm{i}}$	$168.95(9)$
$\mathrm{N} 2-\mathrm{C} 12-\mathrm{C} 11$	$121.9(2)$		

Symmetry code: (i) $-x+2, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6 — \mathrm{H} 6 \cdots 1^{\mathrm{ii}}$	0.93	2.47	$3.295(2)$	149
$\mathrm{C} 11 — \mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.55	$3.147(2)$	122

Symmetry codes: (ii) $x,-y, z-1 / 2$; (iii) $x-1 / 2, y-1 / 2,-z+3 / 2$.

