

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetraaquahexakis(µ2-quinoline-4carboxylato)diyttrium(III) dihydrate

Chao-Yan Zhang, Qian Gao, Yue Cui and Ya-Bo Xie*

College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022, People's Republic of China Correspondence e-mail: xieyabo@bjut.edu.cn

Received 14 November 2008; accepted 24 November 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.073; data-to-parameter ratio = 11.9.

In the title centrosymmetric binuclear complex, $[Y_2(C_{10}H_6NO_2)_6(H_2O)_4]$ ·2H₂O, each Y^{III} atom is ninecoordinated by nine O atoms from five ligands and two water molecules in a slightly distorted monocapped square-antiprismatic coordination environment. The Y^{III} atoms are separated by a distance of 4.0363 (9) Å. The ligands coordinate in three different modes: chelating, bridging and a mixed chelating bridging mode. In the crystal structure, the binuclear complexes are linked by O-H···O and O-H···N hydrogen bonds, forming a three-dimensional network.

Related literature

For transition metal complexes of 4-quinolinecarboxylic acid, see: Bu et al. (2005); Chen et al. (2002); Morsy & Vratislav (2006).

 $V = 2798.7 (10) \text{ Å}^3$

Mo Ka radiation

 $0.30 \times 0.28 \times 0.26 \text{ mm}$

9525 measured reflections

4898 independent reflections

3615 reflections with $I > 2\sigma(I)$

 $\mu = 2.15 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.031$

Z = 2

Experimental

Crystal data

 $[Y_2(C_{10}H_6NO_2)_6(H_2O)_4] \cdot 2H_2O$ $M_r = 1318.86$ Monoclinic, $P2_1/n$ a = 11.623 (2) Å b = 16.361 (3) Å c = 15.312 (3) Å $\beta = 106.03 \ (3)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1998) $T_{\min} = 0.565, T_{\max} = 0.605$ (expected range = 0.535–0.573)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	H atoms treated by a mixture of
$wR(F^2) = 0.073$	independent and constrained
S = 0.91	refinement
4898 reflections	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
412 parameters	$\Delta \rho_{\rm min} = -0.30 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Y1-01	2.398 (2)	Y1-O5	2.419 (3)
Y1 - O1W	2.337 (3)	Y1-O6	2.735 (2)
Y1-O2	2.461 (2)	Y1-O3 ⁱ	2.3264 (19)
Y1 - O2W	2.370 (3)	$Y1-O6^{i}$	2.309 (2)
Y1-O4	2.3245 (19)		.,

Symmetry code: (i) -x + 1, -y + 2, -z + 2.

Table 2			
Hydrogen-bond	geometry	(Å,	°)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1W−H1WA···O3W ⁱⁱ	0.75 (4)	1.99 (4)	2.727 (4)	168 (3)
$O2W - H2WA \cdots O3W^{ii}$	0.78 (3)	2.00(3)	2.751 (4)	161 (3)
O3W−H3WA···N2 ⁱⁱⁱ	0.87 (4)	1.84 (4)	2.708 (4)	172 (4)
$O1W-H1WB\cdots N3^{iv}$	0.78 (4)	1.96 (4)	2.735 (4)	173 (4)
$O2W - H2WB \cdot \cdot \cdot N1^{v}$	0.78 (4)	1.99 (4)	2.739 (4)	161 (4)
O3W−H3WB···O2W ^{vi}	0.67 (4)	2.30 (3)	2.865 (4)	143 (3)

 $\frac{1}{2}$, $-y + \frac{1}{2}$, z $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}; (v) - x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{5}{2}; (vi) x, y, z - 1.$

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Sixth Technology Fund for Postgraduates (ykj-2007-1517) of Beijing University of Technology, and the Beijing Municipal Natural Science Foundation (No. 2082004).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2081).

References

- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bu, X. H., Tong, M. L., Xie, Y. B., Li, J. R., Chang, H. C., Susumu, K. & Joan, R. (2005). Inorg. Chem. 44, 9837–9846.

Chen, Z. F., Zhang, P., Xiong, R. G., Liu, D. J. & You, X. Z. (2002). Inorg. Chem. Commun. 5, 35–37.

- Morsy, A. & Vratislav, L. (2006). Polyhedron, 25, 1187-1194.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, m1631-m1632 [doi:10.1107/S1600536808039421]

Tetraaquahexakis(µ2-quinoline-4-carboxylato)diyttrium(III) dihydrate

Chao-Yan Zhang, Qian Gao, Yue Cui and Ya-Bo Xie

S1. Comment

Some crystal structures of transition metal complexes with the ligand 4-quinolinecarboxylic acid (HL) have been published previously, for example, with cadmium(II) (Morsy & Vratislav, 2006; Chen *et al.*, 2002), copper(II), cobalt(II) and manganese(II) (Bu *et al.*, 2005). However, no rare earth metal complexes of HL have been reported to date. Herein, we report on the synthesis and crystal structure of a new binuclear yittrium(III) complex of 4-quinolinecarboxylic acid, (I).

The molecular structute of title compound (I), a centrosymmetric binuclear complex, is illustrated in Fig. 1. The complex is composed of two yttrium(III) atoms and six 4-quinolinecarboxylate ligands, along with four coordinated and two uncoordinated water molecules. Each yttrium atom is nine-coordinated, with nine oxygen atoms from five ligands and two water molecules, showing a slightly distorted monocapped square-antiprism coordination environment (Table 1). The Y1—O bond distances vary from 2.309 (2) to 2.735 (2) Å, while the Y1…Y1ⁱ separation is 4.0363 (9) Å [Symmetry code: (i) -*x* + 1, -*y* + 2, -*z* + 2]. The six 4-quinolinecarboxylate ligands adopt three different coordination modes; chelating, bridging, and a mixed mode of chelating and bridging (Table 1).

In the crystal structure O—H···O and O—H···N hydrogen bonds link the binuclear complexes and uncoordinated water molecules to form a three-dimensional network (Table 2).

S2. Experimental

A mixture of 4-quinolinecarboxylic acid, sodium hydroxide and yttrium nitrate, in the molar ratio 3:6:1, were dissolved in a mixture of ethanol and water. The resulting solution was filtered and the filtrate allowed to stand in the air for several days. Finally colorless block-like crystals, suitable for X-ray analysis, were obtained with a yield of 25%.

S3. Refinement

The water H atoms were located in difference Fourier maps and freely refined; O—H = 0.67 (3) - 0.88 (4) Å, with $U_{iso}(H) = 1.5U_{eq}(O)$. The C-bound H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of complex (I), with displacement ellipsoids drawn at the 30% probability level (C-bound Hatoms have been removed for clarity; Symmetry code: (A) -x + 1, -y + 2, -z + 2])

Tetraaquahexakis(µ2-quinoline-4-carboxylato)diyttrium(III) dihydrate

Crystal data

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1998) $T_{\min} = 0.565, T_{\max} = 0.605$ F(000) = 1344 $D_x = 1.565 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6629 reflections $\theta = 3.0-27.5^{\circ}$ $\mu = 2.15 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.30 \times 0.28 \times 0.26 \text{ mm}$

9525 measured reflections 4898 independent reflections 3615 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -13 \rightarrow 13$ $k = -19 \rightarrow 19$ $l = -18 \rightarrow 18$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.073$	neighbouring sites
S = 0.91	H atoms treated by a mixture of independent
4898 reflections	and constrained refinement
412 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0401P)^2]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.003$
direct methods	$\Delta ho_{ m max} = 0.38 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Y1	0.33612 (2)	0.97169(1)	1.01215 (2)	0.0277 (1)	
01	0.3073 (2)	0.93621 (12)	1.15662 (15)	0.0601 (9)	
O1W	0.1551 (2)	0.91430 (16)	0.92842 (18)	0.0555 (9)	
O2	0.32722 (19)	0.83332 (12)	1.07294 (14)	0.0534 (8)	
O2W	0.1754 (2)	1.05108 (15)	1.0333 (2)	0.0506 (9)	
03	0.58136 (16)	0.91289 (11)	0.90536 (13)	0.0421 (7)	
04	0.39176 (15)	0.88949 (10)	0.90683 (13)	0.0382 (6)	
05	0.27258 (18)	1.06412 (15)	0.88454 (17)	0.0733 (10)	
06	0.46548 (16)	1.05938 (11)	0.92006 (13)	0.0427 (7)	
N1	0.3198 (2)	0.68024 (15)	1.35199 (18)	0.0506 (10)	
N2	0.4858 (2)	0.66536 (15)	0.71325 (17)	0.0456 (9)	
N3	0.3578 (2)	1.28030 (15)	0.68068 (18)	0.0477 (9)	
C1	0.3158 (2)	0.86114 (17)	1.1454 (2)	0.0372 (10)	
C2	0.3135 (2)	0.80178 (16)	1.22069 (19)	0.0373 (10)	
C3	0.3322 (3)	0.72121 (17)	1.2052 (2)	0.0470 (11)	
C4	0.3354 (3)	0.66315 (19)	1.2734 (2)	0.0549 (13)	
C5	0.2994 (2)	0.75971 (18)	1.3694 (2)	0.0426 (10)	
C6	0.2815 (3)	0.7777 (2)	1.4548 (2)	0.0567 (12)	
C7	0.2608 (3)	0.8547 (2)	1.4768 (2)	0.0644 (14)	
C8	0.2557 (3)	0.9187 (2)	1.4147 (2)	0.0566 (12)	
C9	0.2729 (3)	0.90404 (18)	1.3318 (2)	0.0466 (11)	
C10	0.2956 (2)	0.82397 (17)	1.30585 (19)	0.0371 (9)	
C11	0.4845 (2)	0.87364 (15)	0.88500 (18)	0.0336 (9)	
C12	0.4823 (2)	0.79992 (15)	0.82552 (19)	0.0338 (9)	
C13	0.5075 (2)	0.80853 (17)	0.7444 (2)	0.0420 (10)	

C14	0.5075 (3)	0.73995 (18)	0.6898 (2)	0.0471 (11)
C15	0.4610 (2)	0.65485 (16)	0.7944 (2)	0.0390 (10)
C16	0.4388 (3)	0.57510 (18)	0.8204 (2)	0.0537 (13)
C17	0.4165 (3)	0.56137 (19)	0.9005 (3)	0.0602 (13)
C18	0.4145 (3)	0.62605 (18)	0.9599 (2)	0.0553 (11)
C19	0.4325 (2)	0.70432 (17)	0.9368 (2)	0.0443 (11)
C20	0.4567 (2)	0.72081 (16)	0.85339 (19)	0.0356 (9)
C21	0.3686 (3)	1.08793 (16)	0.87468 (19)	0.0373 (10)
C22	0.3669 (2)	1.15372 (16)	0.80556 (19)	0.0343 (9)
C23	0.3456 (3)	1.23251 (17)	0.8256 (2)	0.0470 (11)
C24	0.3423 (3)	1.29366 (18)	0.7608 (2)	0.0528 (11)
C25	0.3782 (2)	1.20227 (18)	0.6586 (2)	0.0402 (10)
C26	0.3917 (3)	1.1866 (2)	0.5712 (2)	0.0581 (14)
C27	0.4122 (3)	1.1097 (2)	0.5471 (2)	0.0669 (14)
C28	0.4202 (3)	1.0448 (2)	0.6076 (2)	0.0633 (12)
C29	0.4065 (3)	1.05687 (18)	0.6915 (2)	0.0490 (11)
C30	0.3841 (2)	1.13619 (16)	0.71960 (19)	0.0371 (9)
O3W	0.0170 (2)	0.96786 (16)	0.11733 (18)	0.0562 (9)
H1WA	0.102 (3)	0.942 (2)	0.911 (3)	0.078 (15)*
H2WA	0.122 (3)	1.057 (2)	0.990 (2)	0.061 (13)*
H3A	0.34270	0.70490	1.14970	0.0560*
H1WB	0.153 (3)	0.874 (2)	0.901 (3)	0.082 (14)*
H4A	0.34970	0.60890	1.26140	0.0660*
H2WB	0.187 (3)	1.092 (2)	1.060 (3)	0.088 (16)*
H6A	0.28410	0.73580	1.49630	0.0680*
H7A	0.24980	0.86570	1.53350	0.0770*
H8A	0.24040	0.97160	1.43040	0.0680*
H9A	0.26970	0.94720	1.29170	0.0560*
H13A	0.52480	0.85990	0.72520	0.0500*
H14A	0.52380	0.74740	0.63420	0.0560*
H16A	0.43960	0.53150	0.78150	0.0640*
H17A	0.40220	0.50840	0.91680	0.0720*
H18A	0.40080	0.61540	1.01580	0.0660*
H19A	0.42880	0.74690	0.97620	0.0530*
H23A	0.33340	1.24550	0.88150	0.0560*
H24A	0.32830	1.34710	0.77580	0.0630*
H26A	0.38650	1.22940	0.53030	0.0700*
H27A	0.42100	1.09990	0.48940	0.0800*
H28A	0.43530	0.99240	0.59000	0.0760*
H29A	0.41170	1.01290	0.73090	0.0590*
H3WA	0.013 (4)	0.923 (2)	0.147 (3)	0.117 (17)*
H3WB	0.072 (3)	0.974 (2)	0.112 (2)	0.055 (13)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Y1	0.0339 (1)	0.0235 (1)	0.0277 (1)	-0.0005 (1)	0.0121 (1)	0.0002 (1)
01	0.1087 (18)	0.0350 (12)	0.0497 (14)	0.0074 (12)	0.0438 (14)	0.0098 (10)

O1W	0.0402 (13)	0.0437 (15)	0.0760 (18)	0.0043 (12)	0.0051 (12)	-0.0294 (14)
02	0.0862 (16)	0.0393 (12)	0.0402 (13)	-0.0050 (11)	0.0266 (12)	0.0044 (10)
O2W	0.0427 (13)	0.0510 (15)	0.0561 (17)	0.0042 (12)	0.0101 (12)	-0.0255 (13)
03	0.0395 (11)	0.0357 (11)	0.0551 (13)	-0.0049 (9)	0.0196 (10)	-0.0150 (10)
04	0.0369 (10)	0.0381 (11)	0.0440 (12)	-0.0005 (9)	0.0186 (9)	-0.0099 (9)
05	0.0437 (13)	0.0940 (18)	0.0874 (19)	0.0106 (12)	0.0266 (13)	0.0621 (15)
O6	0.0416 (11)	0.0361 (11)	0.0428 (13)	0.0065 (9)	-0.0008 (10)	0.0073 (9)
N1	0.0554 (16)	0.0482 (16)	0.0518 (18)	0.0027 (13)	0.0206 (14)	0.0216 (13)
N2	0.0480 (15)	0.0426 (15)	0.0467 (17)	0.0014 (12)	0.0138 (13)	-0.0152 (12)
N3	0.0466 (15)	0.0436 (16)	0.0516 (18)	0.0016 (12)	0.0113 (13)	0.0206 (13)
C1	0.0385 (16)	0.0398 (17)	0.0346 (18)	-0.0005 (13)	0.0122 (13)	0.0088 (14)
C2	0.0348 (15)	0.0405 (17)	0.0375 (18)	-0.0027 (13)	0.0115 (13)	0.0092 (13)
C3	0.059 (2)	0.0392 (18)	0.048 (2)	0.0031 (15)	0.0235 (16)	0.0075 (15)
C4	0.067 (2)	0.0376 (18)	0.067 (3)	0.0054 (16)	0.0303 (19)	0.0186 (16)
C5	0.0377 (16)	0.0518 (19)	0.0395 (19)	-0.0067 (14)	0.0129 (14)	0.0115 (15)
C6	0.062 (2)	0.071 (2)	0.040 (2)	-0.0121 (18)	0.0190 (17)	0.0155 (17)
C7	0.076 (2)	0.083 (3)	0.041 (2)	-0.013 (2)	0.0276 (19)	-0.0033 (19)
C8	0.063 (2)	0.059 (2)	0.051 (2)	-0.0069 (17)	0.0212 (18)	-0.0075 (17)
C9	0.0524 (18)	0.0486 (19)	0.0389 (19)	-0.0032 (15)	0.0126 (15)	0.0057 (15)
C10	0.0321 (15)	0.0444 (17)	0.0355 (17)	-0.0031 (13)	0.0103 (13)	0.0094 (13)
C11	0.0398 (16)	0.0261 (14)	0.0358 (17)	-0.0004 (12)	0.0122 (13)	-0.0014 (12)
C12	0.0300 (14)	0.0335 (15)	0.0380 (17)	0.0013 (12)	0.0098 (13)	-0.0071 (13)
C13	0.0471 (17)	0.0365 (16)	0.0447 (19)	-0.0017 (13)	0.0166 (15)	-0.0053 (14)
C14	0.0510 (18)	0.054 (2)	0.0373 (18)	0.0011 (15)	0.0139 (15)	-0.0100 (15)
C15	0.0336 (15)	0.0333 (16)	0.048 (2)	0.0001 (12)	0.0077 (14)	-0.0098 (13)
C16	0.055 (2)	0.0370 (18)	0.070 (3)	-0.0015 (15)	0.0186 (18)	-0.0114 (17)
C17	0.061 (2)	0.0358 (18)	0.085 (3)	-0.0042 (16)	0.022 (2)	0.0041 (18)
C18	0.063 (2)	0.0447 (19)	0.065 (2)	0.0022 (16)	0.0291 (19)	0.0097 (17)
C19	0.0488 (18)	0.0429 (18)	0.045 (2)	0.0022 (14)	0.0192 (15)	-0.0037 (14)
C20	0.0294 (14)	0.0349 (16)	0.0412 (18)	0.0008 (12)	0.0075 (13)	-0.0052 (13)
C21	0.0468 (18)	0.0366 (16)	0.0309 (16)	0.0046 (14)	0.0146 (14)	0.0048 (13)
C22	0.0288 (14)	0.0371 (16)	0.0368 (17)	0.0047 (12)	0.0086 (12)	0.0112 (13)
C23	0.0570 (19)	0.0436 (18)	0.0441 (19)	0.0067 (15)	0.0202 (16)	0.0062 (15)
C24	0.060 (2)	0.0336 (17)	0.066 (2)	0.0050 (15)	0.0193 (18)	0.0120 (16)
C25	0.0325 (15)	0.0485 (19)	0.0396 (19)	0.0010 (13)	0.0099 (13)	0.0138 (14)
C26	0.053 (2)	0.083 (3)	0.040 (2)	0.0013 (18)	0.0155 (16)	0.0195 (18)
C27	0.065 (2)	0.097 (3)	0.043 (2)	0.005 (2)	0.0221 (18)	-0.002 (2)
C28	0.069 (2)	0.067 (2)	0.057 (2)	0.0112 (19)	0.0224 (19)	-0.0103 (19)
C29	0.0554 (19)	0.0471 (18)	0.046 (2)	0.0072 (15)	0.0164 (16)	0.0032 (15)
C30	0.0345 (15)	0.0421 (17)	0.0354 (17)	0.0026 (13)	0.0109 (13)	0.0082 (13)
O3W	0.0479 (15)	0.0555 (16)	0.0707 (17)	0.0086 (13)	0.0258 (13)	0.0282 (13)

Geometric parameters (Å, °)

Y1-Y1 ⁱ	4.0363 (9)	C11—C12	1.507 (4)	
Y1—01	2.398 (2)	C12—C20	1.420 (4)	
Y1—O1W	2.337 (3)	C12—C13	1.360 (4)	
Y1—02	2.461 (2)	C13—C14	1.399 (4)	

Y1—O2W	2.370 (3)	C15—C20	1.417 (4)
Y1—O4	2.3245 (19)	C15—C16	1.409 (4)
Y1—O5	2.419 (3)	C16—C17	1.341 (5)
Y1—O6	2.735 (2)	C17—C18	1.400 (5)
Y1-03 ⁱ	2.3264 (19)	C18—C19	1.360 (4)
Y1-06 ⁱ	2.309 (2)	C19—C20	1.408 (4)
01—C1	1.248 (3)	C21—C22	1.506 (4)
O2—C1	1.240 (4)	C22—C30	1.414 (4)
03—C11	1.258 (3)	C22—C23	1.364 (4)
04—C11	1.241 (3)	C23—C24	1.402 (4)
05	1 230 (4)	$C_{25} = C_{30}$	1 418 (4)
06—C21	1.230(1) 1 240(4)	$C_{25} = C_{26}$	1 413 (4)
01W H1WB	0.78(4)	$C_{25} = C_{20}$	1.113(1) 1.351(5)
O1W—H1WA	0.78(4)	$C_{20} = C_{27}$	1.301(3) 1 305(4)
O^{W} H2WB	0.73(4)	$C_{27} = C_{20}$	1.353(+) 1.352(4)
$O_2 W = H_2 W B$	0.78(4)	C_{20} C_{20} C_{20}	1.332(4)
$O_2 W = H_2 W A$	0.78(3)	C_{29} C_{30}	1.414(4)
	0.07(4)		0.9300
U3 w—H3 wA	0.87(4)	C4—H4A	0.9300
NI-CS	1.361 (4)	Сб—НбА	0.9300
NI-C4	1.296 (4)	C/—H/A	0.9300
N2—C14	1.316 (4)	C8—H8A	0.9300
N2—C15	1.362 (4)	С9—Н9А	0.9300
N3—C24	1.307 (4)	C13—H13A	0.9300
N3—C25	1.358 (4)	C14—H14A	0.9300
C1—C2	1.513 (4)	C16—H16A	0.9300
C2—C3	1.367 (4)	C17—H17A	0.9300
C2—C10	1.423 (4)	C18—H18A	0.9300
C3—C4	1.405 (4)	C19—H19A	0.9300
C5—C10	1.425 (4)	C23—H23A	0.9300
C5—C6	1.411 (4)	C24—H24A	0.9300
C6—C7	1.343 (5)	C26—H26A	0.9300
С7—С8	1.405 (4)	С27—Н27А	0.9300
C8—C9	1.360 (4)	C28—H28A	0.9300
C9—C10	1.415 (4)	С29—Н29А	0.9300
01—Y1—01W	94.29 (9)	C6—C7—C8	120.4 (3)
01—Y1—02	52.93 (7)	C7—C8—C9	120.7 (3)
O1—Y1—O2W	71.97 (9)	C8—C9—C10	120.8 (3)
O1—Y1—O4	129.52 (7)	C2—C10—C5	116.9 (2)
01—Y1—05	143.80 (8)	C2—C10—C9	125.4 (3)
01—Y1—06	147.07 (7)	C5-C10-C9	117.7 (3)
01 - Y1 - C1	26 54 (8)	03-C11-C12	1150(2)
$01 - Y1 - 03^{i}$	80.64 (7)	04—C11—C12	117.3 (2)
$01 - Y1 - 06^{i}$	84.75 (8)	03-01-04	1277(2)
01W - Y1 - 02	73 28 (9)	$C_{11} - C_{12} - C_{20}$	1212(2)
01W - Y1 - 02W	70 79 (9)	$C_{11} - C_{12} - C_{13}$	121.2(2) 1198(2)
01W - Y1 - 04	76 57 (8)	C13 - C12 - C20	119.0(2)
01W - Y1 - 05	77 31 (9)	C12 - C12 - C14	119.9(2)
	· · · · · · · · · · · · · · · · · · ·	012 013 017	***** (2)

O1W—Y1—O6	117.89 (8)	N2-C14-C13	123.3 (3)
O1W—Y1—C1	83.99 (9)	C16—C15—C20	118.9 (3)
O1W-Y1-O3 ⁱ	142.91 (8)	N2-C15-C20	122.6 (2)
O1W-Y1-06 ⁱ	142.58 (8)	N2—C15—C16	118.4 (3)
O2—Y1—O2W	109.60 (9)	C15—C16—C17	120.7 (3)
O2—Y1—O4	77.23 (7)	C16—C17—C18	120.7 (3)
O2—Y1—O5	147.69 (8)	C17—C18—C19	120.8 (3)
O2—Y1—O6	139.84 (7)	C18—C19—C20	120.0 (3)
O2—Y1—C1	26.42 (8)	C12—C20—C19	123.9 (3)
O2—Y1—O3 ⁱ	126.54 (7)	C15—C20—C19	118.9 (2)
O2—Y1—O6 ⁱ	76.61 (8)	C12—C20—C15	117.1 (2)
O2W—Y1—O4	142.44 (9)	O6—C21—C22	119.8 (3)
O2W—Y1—O5	72.03 (9)	O5—C21—C22	118.5 (3)
O2W—Y1—O6	110.45 (8)	O5—C21—O6	121.8 (3)
O2W—Y1—C1	91.51 (9)	C21—C22—C30	122.1 (2)
O2W—Y1—O3 ⁱ	72.74 (8)	C23—C22—C30	118.8 (3)
O2W—Y1—O6 ⁱ	141.84 (9)	C21—C22—C23	119.1 (3)
O4—Y1—O5	83.27 (8)	C22—C23—C24	119.1 (3)
O4—Y1—O6	69.39 (7)	N3—C24—C23	124.1 (3)
O4—Y1—C1	103.21 (8)	C26—C25—C30	119.2 (3)
O3 ⁱ —Y1—O4	133.97 (7)	N3—C25—C26	118.6 (3)
O4—Y1—O6 ⁱ	75.52 (7)	N3—C25—C30	122.2 (3)
O5—Y1—O6	49.03 (7)	C25—C26—C27	120.1 (3)
O5—Y1—C1	158.26 (8)	C26—C27—C28	120.8 (3)
O3 ⁱ —Y1—O5	85.37 (8)	C27—C28—C29	121.1 (3)
O5—Y1—O6 ⁱ	123.02 (8)	C28—C29—C30	120.2 (3)
O6—Y1—C1	152.67 (7)	C25—C30—C29	118.6 (3)
O3 ⁱ —Y1—O6	69.59 (7)	C22—C30—C29	123.7 (3)
O6—Y1—O6 ⁱ	74.00 (7)	C22—C30—C25	117.7 (2)
O3 ⁱ —Y1—C1	103.59 (8)	С2—С3—НЗА	120.00
O6 ⁱ —Y1—C1	78.69 (8)	С4—С3—НЗА	120.00
O3 ⁱ —Y1—O6 ⁱ	73.97 (7)	C3—C4—H4A	118.00
Y1-01-C1	94.29 (18)	N1—C4—H4A	118.00
Y1—O2—C1	91.54 (17)	С5—С6—Н6А	120.00
Y1 ⁱ O3C11	139.05 (17)	С7—С6—Н6А	120.00
Y1—O4—C11	137.44 (17)	С8—С7—Н7А	120.00
Y1—O5—C21	102.25 (19)	С6—С7—Н7А	120.00
Y1—O6—C21	86.73 (18)	С9—С8—Н8А	120.00
Y1-06-Y1 ⁱ	106.01 (8)	С7—С8—Н8А	120.00
Y1 ⁱ O6C21	167.1 (2)	С8—С9—Н9А	120.00
H1WA—O1W—H1WB	115 (4)	С10—С9—Н9А	120.00
Y1—O1W—H1WB	122 (3)	C12—C13—H13A	120.00
Y1—O1W—H1WA	119 (3)	C14—C13—H13A	120.00
H2WA—O2W—H2WB	109 (4)	C13—C14—H14A	118.00
Y1—O2W—H2WA	115 (2)	N2-C14-H14A	118.00
Y1—O2W—H2WB	121 (3)	C15—C16—H16A	120.00
H3WA—O3W—H3WB	112 (4)	C17—C16—H16A	120.00
C4—N1—C5	117.7 (3)	C18—C17—H17A	120.00

C14—N2—C15	118 1 (3)	C16—C17—H17A	120.00
$C_{24} N_{3} C_{25}$	118.0(3)	C17 - C18 - H18A	120.00
Y1-C1-C2	176 23 (18)	C19-C18-H18A	120.00
Y1	62 04 (15)	C20-C19-H19A	120.00
01-C1-02	121 1 (3)	C18 - C19 - H19A	120.00
$0^{2}-C^{1}-C^{2}$	1184(2)	C_{22} C_{23} H_{23A}	120.00
02 - C1 - C2	120.5(3)	$C_{22} = C_{23} = H_{23} A$	120.00
V1_C1_01	59.18 (16)	C_{23} C_{24} C_{23} C	120.00
$C_1 = C_2 = C_1 O_1$	1240(2)	$C_{25} = C_{24} = H_{24A}$	118.00
$C_1 = C_2 = C_{10}$	124.9(2) 1184(3)	112 + 12 + 12 + 12 + 12 + 12 + 12 + 12	120.00
C_{1} C_{2} C_{3}	116.7(3)	$C_{23} = C_{20} = H_{20} A$	120.00
$C_1 = C_2 = C_3$	110.7(3)	$C_{27} = C_{20} = H_{20A}$	120.00
$C_2 = C_3 = C_4$	119.7(3) 124.2(3)	C_{26} C_{27} H_{27A}	120.00
N1 = C4 = C3	124.2(3) 123 0(3)	$C_{20} = C_{27} = H_{27} = H$	120.00
N1_C5_C6	123.0(3) 117.2(2)	C_{2}^{2} C_{2	120.00
N1 = C5 = C10	117.3(3) 1106(2)	$C_{29} = C_{20} = H_{20A}$	119.00
$C_0 - C_3 - C_{10}$	119.0(3)	$C_{20} = C_{20} = H_{20A}$	120.00
05-06-07	120.7 (3)	C30—C29—H29A	120.00
01W - V1 - 01 - C1	67 34 (18)	$V_{1} = 0_{1} = 0_{1} = 0_{2}$	175.6(2)
02 - Y1 - 01 - C1	2.06(16)	$Y_1 = 0^2 = C_1 = 0^1$	37(3)
02W - Y1 - 01 - C1	13554(19)	$Y_1 = 0^2 = C_1 = C_2^2$	-1757(2)
04 - V1 - 01 - C1	-88(2)	$V_{1i} = 03 = C_{11} = 04$	0.8(5)
05 - V1 - 01 - C1	141.65(17)	V_{1}^{i} 03 C11 C12	17945(18)
$06 \times 1 01 C1$	-124.49(17)	V1 04 C11 03	-15.6(4)
00-11-01-01	-14969(17)	$V_1 = 04 = C_{11} = C_{12}$	15.0(4) 165 79 (17)
06^{i} V1 01 C1	-75.11(17)	V1 05 C21 06	54(3)
$01 \times 1 \times 02 \times 01$	-2.07(16)	11 - 05 - 021 - 00	-1745(2)
01 - 11 - 02 - 01	-111.02(18)	V1 06 C21 05	-46(3)
01 w - 11 - 02 - 01	-111.02(18) -40.16(18)	1 - 00 - 021 - 03	-4.0(3)
02 w = 11 = 02 = 01	-49.10(10)	1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1/3.2(2)
04-11-02-01	109.30(10) 126.22(17)	$C_3 = N_1 = C_4 = C_3$	-0.2(3)
05 - 1 - 02 - 01	-130.32(17) 125.20(16)	C4 NI C5 C6	-0.0(4)
00 - 1 - 02 - 01	133.30(10)	C4 - N1 - C3 - C0	1/9.3(3)
03 - 1 - 02 - 01	55.5(2)	C14 - N2 - C15 - C20	0.6(4)
06 - 1 - 02 - 01	91.48 (17)	C15 - N2 - C14 - C13	0.7 (5)
06-YI=03-CII	-36.8(3)	C14 - N2 - C15 - C16	-1/9.4(3)
	-124.0(3)	$C_{24} = N_{3} = C_{25} = C_{30}$	-0.6 (4)
	151.3 (2)	C_{25} N3 C_{24} C_{23}	0.1 (5)
02 - YI - 03 - CII	-95.9 (3)	$C_{24} = N_{3} = C_{25} = C_{26}$	1/8.2 (3)
$O_2W - YI - O_3 - CII$	162.1 (3)	02-C1-C2-C3	4.2 (4)
$O4^{I}$ YI ^I $O3$ $C11$	13.5 (3)	01	3.5 (4)
05 ¹ —Y1 ¹ —03—C11	89.5 (3)	02-C1-C2-C10	-177.0 (3)
$O6^{1} - Y1^{1} - O3 - C11$	41.7 (3)	01	-175.3 (3)
C1 - Y1 - O3 - C11	-110.5 (3)	C10—C2—C3—C4	-1.1 (4)
01—Y1—04—C11	-99.1 (3)	C1 - C2 - C10 - C9	2.5 (4)
UIW—YI—O4—C11	1/6.5 (3)	C3-C2-C10-C9	-178.7 (3)
02—Y1—04—C11	-107.9(3)	C1-C2-C3-C4	177.8 (3)
02w—Y1—04—C11	146.5 (2)	C_{3} — C_{2} — C_{10} — C_{5}	0.4 (4)
05—Y1—04—C11	98.0 (2)	C1—C2—C10—C5	-178.4 (2)

O6—Y1—O4—C11	49.4 (2)	C2—C3—C4—N1	1.1 (5)
C1—Y1—O4—C11	-103.1 (2)	N1-C5-C10-C2	0.5 (4)
O3 ⁱ —Y1—O4—C11	21.1 (3)	C10—C5—C6—C7	0.1 (5)
O6 ⁱ —Y1—O4—C11	-28.7 (2)	C6-C5-C10-C9	-0.4 (4)
O1—Y1—O5—C21	131.34 (19)	N1-C5-C10-C9	179.6 (3)
O1W—Y1—O5—C21	-148.9(2)	C6-C5-C10-C2	-179.6(3)
O2—Y1—O5—C21	-124.1 (2)	N1—C5—C6—C7	-180.0(3)
O2W—Y1—O5—C21	137.5 (2)	C5—C6—C7—C8	0.5 (5)
O4—Y1—O5—C21	-71.21 (19)	C6—C7—C8—C9	-0.7 (5)
O6—Y1—O5—C21	-2.74 (16)	C7—C8—C9—C10	0.4 (5)
C1—Y1—O5—C21	179.8 (2)	C8—C9—C10—C2	179.3 (3)
O3 ⁱ —Y1—O5—C21	64.11 (19)	C8—C9—C10—C5	0.2 (5)
O6 ⁱ —Y1—O5—C21	-3.4 (2)	O3—C11—C12—C20	122.7 (3)
O1—Y1—O6—C21	-126.05 (18)	O3—C11—C12—C13	-56.0 (3)
O1W—Y1—O6—C21	40.58 (18)	O4—C11—C12—C13	122.9 (3)
O2—Y1—O6—C21	137.62 (16)	O4—C11—C12—C20	-58.4 (3)
O2W—Y1—O6—C21	-37.89 (18)	C13—C12—C20—C15	1.0 (4)
O4—Y1—O6—C21	101.90 (16)	C11—C12—C13—C14	178.9 (3)
O5—Y1—O6—C21	2.66 (16)	C20-C12-C13-C14	0.2 (4)
C1—Y1—O6—C21	-179.40 (18)	C11—C12—C20—C15	-177.7 (2)
O3 ⁱ —Y1—O6—C21	-99.42 (16)	C11—C12—C20—C19	-0.4 (4)
O6 ⁱ —Y1—O6—C21	-177.89 (17)	C13—C12—C20—C19	178.3 (3)
01-Y1-06-Y1 ⁱ	51.84 (15)	C12—C13—C14—N2	-1.1 (5)
O1W-Y1-06-Y1 ⁱ	-141.53 (9)	N2-C15-C20-C12	-1.4 (4)
O2-Y1-O6-Y1 ⁱ	-44.49 (13)	C16—C15—C20—C12	178.6 (3)
O2W-Y1-O6-Y1 ⁱ	140.00 (9)	N2-C15-C20-C19	-178.9 (2)
O4-Y1-O6-Y1 ⁱ	-80.21 (8)	C20-C15-C16-C17	-1.4 (5)
O5—Y1—O6—Y1 ⁱ	-179.45 (12)	N2-C15-C16-C17	178.6 (3)
C1-Y1-06-Y1 ⁱ	-1.51 (19)	C16—C15—C20—C19	1.1 (4)
$O3^{i}$ —Y1—O6—Y1 ⁱ	78.47 (8)	C15—C16—C17—C18	0.2 (5)
$O6^{i}$ —Y1— $O6$ —Y1 ⁱ	0.02 (9)	C16—C17—C18—C19	1.5 (6)
O3—Y1 ⁱ —O6—Y1	72.83 (8)	C17—C18—C19—C20	-1.7 (5)
01 ⁱ —Y1 ⁱ —O6—Y1	154.58 (8)	C18—C19—C20—C12	-176.9 (3)
$O1W^{i}$ — $Y1^{i}$ — $O6$ — $Y1$	-115.21 (13)	C18—C19—C20—C15	0.4 (4)
$O2^{i}$ — $Y1^{i}$ — $O6$ — $Y1$	-152.32 (9)	O5—C21—C22—C23	75.9 (4)
$O2W^{i}$ — $Y1^{i}$ — $O6$ — $Y1$	102.90 (13)	O5—C21—C22—C30	-102.7 (3)
$O4^{i}$ — $Y1^{i}$ — $O6$ — $Y1$	-72.29 (7)	O6—C21—C22—C23	-103.9 (3)
$O5^{i}$ — $Y1^{i}$ — $O6$ — $Y1$	-0.49 (11)	O6—C21—C22—C30	77.5 (3)
$O6^{i}$ — $Y1^{i}$ — $O6$ — $Y1$	0.00 (6)	C21—C22—C30—C29	-1.3 (4)
$C1^{i}$ — $Y1^{i}$ — $O6$ — $Y1$	-179.30 (9)	C23—C22—C30—C25	0.0 (4)
O1W—Y1—C1—O1	-112.28 (18)	C23—C22—C30—C29	-179.9 (3)
O2—Y1—C1—O1	-176.3 (3)	C21—C22—C30—C25	178.6 (3)
O2W—Y1—C1—O1	-41.78 (18)	C21—C22—C23—C24	-179.1 (3)
O4—Y1—C1—O1	173.06 (17)	C30—C22—C23—C24	-0.5 (4)
O5—Y1—C1—O1	-81.7 (3)	C22—C23—C24—N3	0.4 (5)
O6—Y1—C1—O1	102.5 (2)	N3—C25—C26—C27	179.9 (3)
O3 ⁱ —Y1—C1—O1	30.82 (18)	C30—C25—C26—C27	-1.2 (5)
O6 ⁱ —Y1—C1—O1	101.06 (18)	N3—C25—C30—C22	0.5 (4)

O1—Y1—C1—O2	176.3 (3)	N3-C25-C30-C29	-179.6 (3)
O1W—Y1—C1—O2	64.02 (17)	C26—C25—C30—C22	-178.3 (3)
O2W—Y1—C1—O2	134.52 (17)	C26—C25—C30—C29	1.6 (4)
O4—Y1—C1—O2	-10.64 (18)	C25—C26—C27—C28	0.1 (5)
O5—Y1—C1—O2	94.7 (3)	C26—C27—C28—C29	0.7 (5)
O6—Y1—C1—O2	-81.2 (2)	C27—C28—C29—C30	-0.2 (5)
O3 ⁱ —Y1—C1—O2	-152.88 (16)	C28—C29—C30—C22	179.0 (3)
O6 ⁱ —Y1—C1—O2	-82.64 (17)	C28—C29—C30—C25	-0.9 (5)
Y1-01-C1-02	-3.8 (3)		

Symmetry code: (i) -x+1, -y+2, -z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O1W—H1 WA ···O3 W ⁱⁱ	0.75 (4)	1.99 (4)	2.727 (4)	168 (3)
O2W— $H2WA$ ···O $3W$ ⁱⁱ	0.78 (3)	2.00 (3)	2.751 (4)	161 (3)
O3 <i>W</i> —H3 <i>W</i> A···N2 ⁱⁱⁱ	0.87 (4)	1.84 (4)	2.708 (4)	172 (4)
$O1W$ — $H1WB$ ···· $N3^{iv}$	0.78 (4)	1.96 (4)	2.735 (4)	173 (4)
$O2W$ — $H2WB$ ···· $N1^{v}$	0.78 (4)	1.99 (4)	2.739 (4)	161 (4)
O3W— $H3WB$ ··· $O2W$ ^{vi}	0.67 (4)	2.30 (3)	2.865 (4)	143 (3)
С3—Н3А…О2	0.93	2.39	2.721 (4)	101
С9—Н9А…О1	0.93	2.24	2.868 (4)	125
C19—H19A…O2	0.93	2.56	3.421 (4)	154
C19—H19A…O4	0.93	2.55	3.081 (3)	117

Symmetry codes: (ii) -*x*, -*y*+2, -*z*+1; (iii) *x*-1/2, -*y*+3/2, *z*-1/2; (iv) -*x*+1/2, *y*-1/2, -*z*+3/2; (v) -*x*+1/2, *y*+1/2, -*z*+5/2; (vi) *x*, *y*, *z*-1.