

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-{2-[(2-hydroxybenzylidene)-amino]ethyl}-3-methyl-3H-imidazolium hexafluorophosphate

Bin Li,^a Yi-Qun Li,^a* Yue-Peng Cai^b and Mei-Yun Zhou^a

^aDepartment of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China, and ^bSchool of Chemistry and the Environment, South China Normal University, Guangzhou, Guangdong 510631, People's Republic of China

Correspondence e-mail: tlyg@jnu.edu.cn

Received 29 October 2008; accepted 10 November 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.009 Å; R factor = 0.066; wR factor = 0.215; data-to-parameter ratio = 13.4.

The title Schiff base compound, $C_{13}H_{16}N_3O^+ \cdot PF_6^-$, was derived from the condensation of 2-hydroxybenaldehyde with the ionic liquid 1-(2-aminoethyl)-3-methylimidazolium hexafluorophosphate in an ethanol solution. The asymmetric unit comprises one cation and two PF_6^- anions. The dihedral angle between the aromatic and imidazole rings is $15.2 (2)^{\circ}$. An intramolecular O-H···N hydrogen bond is found which generates an S(6) ring motif.

Related literature

For the synthesis of Schiff bases, see: Pradeep (2005); Butcher et al. (2005). For background on ionic liquids and their applications, see: Cai et al. (2006); Peng & Song (2006).

Experimental

Crystal data $C_{13}H_{16}N_3O^+ \cdot PF_6^-$

 $M_r = 375.26$

Monoclinic, $C2/c$	Z = 8
a = 28.239 (15) Å	Mo $K\alpha$ radiation
b = 7.134 (4) Å	$\mu = 0.24 \text{ mm}^{-1}$
c = 18.017 (9) Å	T = 298 (2) K
$\beta = 118.342 \ (6)^{\circ}$	$0.32 \times 0.25 \times 0.15 \text{ mm}$
V = 3194 (3) Å ³	

Data collection

Bruker SMART CCD area-detector	8091 measured reflections
diffractometer	2969 independent reflections
Absorption correction: multi-scan	1965 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.043$
$T_{\min} = 0.926, \ T_{\max} = 0.965$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	221 parameters
$vR(F^2) = 0.215$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.72 \ {\rm e} \ {\rm \AA}^{-3}$
969 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1-H1\cdots N1$	0.82	1.85	2.572 (5)	147

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We are grateful to the National Natural Science Foundation of China (No. 20672046) and the Guangdong Natural Science Foundation (No. 04010458) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2322).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Butcher, R. J., Basu Baul, T. S., Singh, K. S. & Smith, F. E. (2005). Acta Cryst. E61, o1007-o1009.

- Cai, Y.-Q., Peng, Y.-Q. & Song, G.-H. (2006). Catal. Lett. 109, 61-64.
- Peng, Y.-Q. & Song, G.-H. (2006). Catal. Commun. 8, 111-114.
- Pradeep, C. P. (2005). Acta Cryst. E61, 03825-03827.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o2365 [doi:10.1107/S1600536808037124]

1-{2-[(2-hydroxybenzylidene)-amino]-ethyl}-3-methyl-3*H*-imidazolium hexa-fluorophosphate

Bin Li, Yi-Qun Li, Yue-Peng Cai and Mei-Yun Zhou

S1. Comment

The use of functionalized ionic liquids continues to receive attention in chemical synthesis and engineering, including as catalysts in organic synthesis (Cai *et al.*, 2006; Peng & Song, 2006). Schiff base compounds are one of most prevalent mixed-donor ligands in the field of coordination chemistry (Pradeep, 2005; Butcher *et al.*, 2005). Herein, we report the crystal structure of the title salt, (I).

Compound (I) is a Schiff base formed from the reaciton of 2-hydroxybenaldehyde and ionic liquid 1-(2-aminoethyl)-3methylimidazolium hexafluorophosphate. The molecular structure of the cation is shown in Fig. 1. The aromatic and imidazole rings form a dihedral angle of 15.2 (2)°. In the cation, an intramolecular O1—H1…N1 hydrogen bond leads to a six-membered ring S(6) motif, Table 1.

S2. Experimental

A mixture of the ionic liquid 1-(2-aminoethyl)-3-methylimidazolium hexafluorophosphate (5 mmol) and 2-hydroxybenzaldehyde (5 mmol) in ethanol was stirred for 4 h. After the completion of the reaction, the excess ethanol was removed by distillation. The colorless solid obtained was filtered and washed with ethanol. Single crystals suitable for Xray diffraction were obtained by slow evaporation of an ethyl acetate solution of (I) at room temperature.

S3. Refinement

The H atom bound to O1 was located from a difference Fourier map and refined as riding, with O—H = 0.82 Å, and with $U_{iso}(H) = 1.5 U_{eq}(O)$. The remaining H atoms were located in a difference syntheses and refined with C—H = 0.93–0.97 Å, and with $U_{iso}(H) = 1.2 - 1.5U_{eq}(C)$].

Figure 1

The molecular structure of the cation in (I) showing the atom numbering Scheme. Displacement ellipsoids are drawn at the 50% probability level.

1-{2-[(2-hydroxybenzylidene)-amino]-ethyl}-3-methyl-3H-imidazolium hexafluorophosphate

F(000) = 1536

 $\theta = 2.9 - 22.9^{\circ}$

 $\mu = 0.24 \text{ mm}^{-1}$ T = 298 K

Prism, yellow

 $0.32 \times 0.25 \times 0.15 \text{ mm}$

 $D_{\rm x} = 1.561 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2060 reflections

Crystal data

C₁₃H₁₆N₃O⁺·PF₆⁻ $M_r = 375.26$ Monoclinic, C2/c Hall symbol: -C 2yc a = 28.239 (15) Å b = 7.134 (4) Å c = 18.017 (9) Å $\beta = 118.342$ (6)° V = 3194 (3) Å³ Z = 8

Data collection

Bruker SMART CCD area-detector	8091 measured reflections
diffractometer	2969 independent reflections
Radiation source: fine-focus sealed tube	1965 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.043$
φ and ω scans	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -19 \longrightarrow 34$
(SADABS; Sheldrick, 1996)	$k = -8 \rightarrow 8$
$T_{\min} = 0.926, \ T_{\max} = 0.965$	$l = -21 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: inferred from
$wR(F^2) = 0.215$	neighbouring sites
S = 1.01	H-atom parameters constrained
2969 reflections	$w = 1/[\sigma^2(F_o^2) + (0.095P)^2 + 15.5678P]$
221 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.72 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
0.7500	0.7500	0.0000	0.0501 (5)
1.0000	0.6525 (3)	0.2500	0.0583 (5)
0.81350 (11)	0.7434 (5)	0.05733 (18)	0.0696 (9)
0.74441 (13)	0.5737 (5)	0.04985 (19)	0.0742 (9)
	x 0.7500 1.0000 0.81350 (11) 0.74441 (13)	x y 0.7500 0.7500 1.0000 0.6525 (3) 0.81350 (11) 0.7434 (5) 0.74441 (13) 0.5737 (5)	x y z 0.7500 0.7500 0.0000 1.0000 0.6525 (3) 0.2500 0.81350 (11) 0.7434 (5) 0.05733 (18) 0.74441 (13) 0.5737 (5) 0.04985 (19)

F3	0.74598 (13)	0.8887 (5)	0.06617 (18)	0.0737 (9)
F4	1.0089 (2)	0.5007 (9)	0.3170 (3)	0.159 (2)
F5	0.93929 (17)	0.6504 (10)	0.2199 (4)	0.162 (2)
F6	1.0081 (3)	0.8057 (8)	0.3156 (3)	0.156 (2)
01	0.80570 (15)	0.2094 (7)	0.2303 (3)	0.0801 (12)
H1	0.8137	0.1973	0.1923	0.120*
N1	0.86812 (17)	0.1728 (6)	0.1638 (3)	0.0551 (10)
N2	0.86519 (16)	0.3299 (5)	-0.0349 (2)	0.0513 (10)
N3	0.85173 (18)	0.3101 (6)	-0.1622 (3)	0.0591 (11)
C1	0.8504 (2)	0.1958 (7)	0.3054 (3)	0.0566 (12)
C2	0.8461 (3)	0.2063 (8)	0.3792 (4)	0.0671 (15)
H2	0.8126	0.2218	0.3762	0.081*
C3	0.8914 (3)	0.1938 (8)	0.4566 (4)	0.0722 (16)
H3	0.8882	0.2028	0.5055	0.087*
C4	0.9408 (3)	0.1686 (8)	0.4625 (4)	0.0719 (16)
H4	0.9710	0.1597	0.5152	0.086*
C5	0.9460 (2)	0.1563 (7)	0.3911 (3)	0.0626 (13)
Н5	0.9799	0.1381	0.3956	0.075*
C6	0.90111 (19)	0.1708 (6)	0.3114 (3)	0.0491 (11)
C7	0.9077 (2)	0.1593 (7)	0.2363 (3)	0.0536 (12)
H7	0.9419	0.1416	0.2420	0.064*
C8	0.8777 (2)	0.1599 (7)	0.0908 (3)	0.0600 (13)
H8A	0.8596	0.0508	0.0571	0.072*
H8B	0.9160	0.1475	0.1095	0.072*
C9	0.8567 (2)	0.3333 (8)	0.0397 (3)	0.0634 (14)
H9A	0.8185	0.3450	0.0217	0.076*
H9B	0.8748	0.4416	0.0741	0.076*
C10	0.9137 (2)	0.3503 (8)	-0.0329 (3)	0.0612 (13)
H10	0.9466	0.3686	0.0150	0.073*
C11	0.9053 (2)	0.3392 (8)	-0.1120 (3)	0.0627 (13)
H11	0.9312	0.3494	-0.1297	0.075*
C12	0.8285 (2)	0.3056 (7)	-0.1133 (3)	0.0612 (13)
H12	0.7920	0.2881	-0.1319	0.073*
C13	0.8247 (3)	0.2925 (10)	-0.2541 (3)	0.087 (2)
H13A	0.7873	0.2649	-0.2742	0.131*
H13B	0.8410	0.1930	-0.2699	0.131*
H13C	0.8280	0.4080	-0.2786	0.131*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0469 (10)	0.0621 (11)	0.0450 (9)	0.0109 (8)	0.0248 (8)	0.0034 (8)
P2	0.0526 (11)	0.0736 (13)	0.0541 (10)	0.000	0.0296 (9)	0.000
F1	0.0422 (16)	0.088 (2)	0.0708 (19)	0.0081 (15)	0.0202 (14)	-0.0014 (16)
F2	0.084 (2)	0.075 (2)	0.0696 (19)	0.0024 (17)	0.0408 (17)	0.0159 (16)
F3	0.084 (2)	0.082 (2)	0.0611 (18)	0.0150 (17)	0.0393 (17)	-0.0107 (15)
F4	0.181 (5)	0.157 (5)	0.135 (4)	-0.002 (4)	0.073 (4)	0.072 (4)
F5	0.063 (3)	0.243 (7)	0.174 (5)	-0.004 (3)	0.051 (3)	-0.033 (5)

supporting information

F6	0.209 (6)	0.150 (5)	0.108 (4)	-0.003 (4)	0.076 (4)	-0.052 (3)
01	0.055 (2)	0.116 (3)	0.080 (3)	-0.006 (2)	0.040 (2)	-0.018 (2)
N1	0.058 (3)	0.061 (2)	0.057 (2)	0.001 (2)	0.035 (2)	-0.002 (2)
N2	0.056 (2)	0.051 (2)	0.046 (2)	0.0114 (18)	0.0238 (19)	0.0029 (17)
N3	0.069 (3)	0.056 (2)	0.051 (2)	0.004 (2)	0.027 (2)	0.0005 (19)
C1	0.062 (3)	0.053 (3)	0.070 (3)	-0.009 (2)	0.043 (3)	-0.004 (2)
C2	0.078 (4)	0.063 (3)	0.089 (4)	-0.009 (3)	0.062 (4)	-0.006 (3)
C3	0.111 (5)	0.056 (3)	0.077 (4)	-0.003 (3)	0.067 (4)	0.005 (3)
C4	0.092 (4)	0.068 (4)	0.060 (3)	0.007 (3)	0.040 (3)	0.009 (3)
C5	0.064 (3)	0.063 (3)	0.063 (3)	0.011 (3)	0.033 (3)	0.010 (3)
C6	0.056 (3)	0.046 (2)	0.053 (3)	0.002 (2)	0.031 (2)	0.003 (2)
C7	0.057 (3)	0.050 (3)	0.069 (3)	0.005 (2)	0.042 (3)	0.005 (2)
C8	0.072 (3)	0.061 (3)	0.062 (3)	0.003 (3)	0.044 (3)	-0.006 (2)
C9	0.079 (4)	0.065 (3)	0.057 (3)	0.016 (3)	0.042 (3)	0.003 (2)
C10	0.049 (3)	0.068 (3)	0.063 (3)	0.003 (2)	0.024 (2)	0.003 (3)
C11	0.065 (3)	0.067 (3)	0.067 (3)	0.006 (3)	0.040 (3)	0.008 (3)
C12	0.056 (3)	0.062 (3)	0.066 (3)	-0.001 (2)	0.029 (3)	-0.005 (3)
C13	0.105 (5)	0.101 (5)	0.047 (3)	0.002 (4)	0.029 (3)	-0.005 (3)

Geometric parameters (Å, °)

P1—F1 ⁱ	1.589 (3)	C1—C6	1.396 (7)
P1—F1	1.589 (3)	C2—C3	1.377 (8)
P1—F3	1.594 (3)	С2—Н2	0.9300
$P1 - F3^i$	1.594 (3)	C3—C4	1.359 (8)
$P1$ — $F2^{i}$	1.596 (3)	С3—Н3	0.9300
P1—F2	1.596 (3)	C4—C5	1.366 (7)
P2—F5 ⁱⁱ	1.533 (4)	C4—H4	0.9300
P2—F5	1.533 (4)	C5—C6	1.398 (7)
P2—F6	1.544 (5)	С5—Н5	0.9300
P2—F6 ⁱⁱ	1.544 (5)	C6—C7	1.454 (6)
P2—F4 ⁱⁱ	1.550 (5)	С7—Н7	0.9300
P2—F4	1.550 (5)	C8—C9	1.487 (7)
01—C1	1.346 (6)	C8—H8A	0.9700
01—H1	0.8200	C8—H8B	0.9700
N1—C7	1.256 (6)	С9—Н9А	0.9700
N1—C8	1.467 (6)	С9—Н9В	0.9700
N2-C12	1.308 (6)	C10-C11	1.333 (7)
N2-C10	1.360 (6)	C10—H10	0.9300
N2-C9	1.474 (6)	C11—H11	0.9300
N3—C12	1.324 (6)	C12—H12	0.9300
N3—C11	1.360 (7)	C13—H13A	0.9600
N3—C13	1.464 (6)	C13—H13B	0.9600
C1—C2	1.392 (7)	С13—Н13С	0.9600
F1 ⁱ —P1—F1	180.00 (12)	C1—C2—H2	119.9
F1 ⁱ —P1—F3	90.50 (16)	C4—C3—C2	120.9 (5)
F1—P1—F3	89.50 (16)	С4—С3—Н3	119.6

F1 ⁱ —P1—F3 ⁱ	89 50 (16)	С2—С3—Н3	119.6
$F1 P1 F3^{i}$	90.50 (16)	C_{3} C_{4} C_{5}	120.1 (6)
$F_{1} = F_{1}$	1800(2)	$C_3 = C_4 = C_3$	120.1 (0)
F_{1i} P_{1} F_{2i}	89.62 (17)	$C_5 C_4 H_4$	120.0
$\mathbf{F}_{1} = \mathbf{F}_{1} = \mathbf{F}_{2}$ $\mathbf{F}_{1} = \mathbf{F}_{1} = \mathbf{F}_{2}^{i}$	00.38(17)	C_{4} C_{5} C_{6}	120.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90.38 (17) 90.60 (17)	$C_{4} = C_{5} = C_{0}$	120.8 (3)
$\Gamma 3 - \Gamma 1 - \Gamma 2$ E2i D1 E2i	89.00(17)	C4 - C5 - H5	119.0
$F_3 - F_1 - F_2$	90.40(17)		119.0
FI - PI - FZ	90.38 (17)	CI = CG = CS	119.1 (4)
F1 - P1 - F2	89.62 (17)		121.1 (5)
$F_3 \longrightarrow P_1 \longrightarrow F_2$	90.40 (17)	C5C6C7	119.8 (4)
F3'	89.60 (17)	NI	121.3 (4)
$F2^{I}$ $P1$ $F2$	180.0 (2)	N1—C7—H7	119.4
$F5^{u}$ P2 F5	178.9 (5)	С6—С7—Н7	119.4
$F5^{n}$ —P2—F6	90.1 (4)	N1—C8—C9	108.2 (4)
F5—P2—F6	90.7 (3)	N1—C8—H8A	110.1
$F5^{ii}$ — $P2$ — $F6^{ii}$	90.7 (3)	С9—С8—Н8А	110.1
F5—P2—F6 ⁱⁱ	90.1 (3)	N1—C8—H8B	110.1
F6—P2—F6 ⁱⁱ	89.9 (5)	C9—C8—H8B	110.1
$F5^{ii}$ — $P2$ — $F4^{ii}$	90.6 (3)	H8A—C8—H8B	108.4
F5—P2—F4 ⁱⁱ	88.6 (3)	N2—C9—C8	111.1 (4)
F6—P2—F4 ⁱⁱ	179.0 (4)	N2—C9—H9A	109.4
$F6^{ii}$ — $P2$ — $F4^{ii}$	89.3 (3)	С8—С9—Н9А	109.4
F5 ⁱⁱ —P2—F4	88.6 (3)	N2—C9—H9B	109.4
F5—P2—F4	90.6 (3)	С8—С9—Н9В	109.4
F6—P2—F4	89.3 (3)	H9A—C9—H9B	108.0
F6 ⁱⁱ —P2—F4	179.0 (4)	C11—C10—N2	107.4 (5)
F4 ⁱⁱ —P2—F4	91.4 (5)	C11—C10—H10	126.3
C1-01-H1	109.5	N2—C10—H10	126.3
C7—N1—C8	118.3 (4)	C10-C11-N3	107.3 (5)
C12—N2—C10	108.3 (4)	C10-C11-H11	126.4
C12—N2—C9	126.8 (5)	N3—C11—H11	126.4
C10 - N2 - C9	124.9 (4)	N2-C12-N3	109.1 (5)
C12—N3—C11	107 9 (4)	N2-C12-H12	125.5
C12 - N3 - C13	1264(5)	N3-C12-H12	125.5
C11 - N3 - C13	125.7(5)	N3-C13-H13A	109 5
01-C1-C2	119 5 (5)	N3-C13-H13B	109.5
01 - C1 - C6	1216(4)	$H_{13}A - C_{13} - H_{13}B$	109.5
C_{2} C_{1} C_{6}	121.0(4) 1189(5)	N3C13H13C	109.5
$C_2 = C_1 = C_0$	110.9(5)	$H_{12} \wedge C_{12} H_{12} C$	109.5
$C_{3} = C_{2} = C_{1}$	120.5 (5)	H13R C13 H13C	109.5
05-02-112	119.9	1113 D C151115C	109.5
01 - C1 - C2 - C3	-179.6(5)	C7_N1_C8_C9	-123.0(5)
C6-C1-C2-C3	0.6(8)	$C_{12} N_{2} C_{9} C_{8}$	107 3 (6)
C1 - C2 - C3 - C4	-0.9(8)	$C10 - N^2 - C^9 - C^8$	-721(7)
$C_{2} = C_{3} = C_{4} = C_{5}$	0.4 (9)	N1_C8_C9_N2	179 9 (4)
$C_2 = C_3 = C_4 = C_5 = C_6$	0.7(9)	C12 N2 C10 C11	1, 5, 5 (-1)
01-C1-C6-C5	-179.6(5)	$C_{12} = 12 = 0.0 = 0.11$	180.0 (5)
$C_{1} = C_{1} = C_{0} = C_{3}$	179.0(3)	$N_2 = 10 = 0.11$ N/2	-0.6(6)
02 - 01 - 00 - 03	0.5(7)	1N2-010-011-IN3	0.0 (0)

O1—C1—C6—C7	0.3 (7)	C12—N3—C11—C10	0.5 (6)
C2—C1—C6—C7	-179.9 (5)	C13—N3—C11—C10	178.9 (5)
C4—C5—C6—C1	-0.8 (8)	C10—N2—C12—N3	-0.1 (6)
C4—C5—C6—C7	179.3 (5)	C9—N2—C12—N3	-179.6 (4)
C8—N1—C7—C6	-180.0 (4)	C11—N3—C12—N2	-0.2 (6)
C1—C6—C7—N1	0.5 (7)	C13—N3—C12—N2	-178.6 (5)
C1—C6—C7—N1 C5—C6—C7—N1	0.5 (7) -179.7 (5)	C13—N3—C12—N2	-178.6 (5)

Symmetry codes: (i) -x+3/2, -y+3/2, -z; (ii) -x+2, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
01—H1…N1	0.82	1.85	2.572 (5)	147