metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[4,4'-iminodipyridinium [tetra- μ_3 oxido-tetraoxido-di- μ_4 -phosphato- κ^4 O:O':O'':O'''-tetravanadium(V)]]

Gregory A. Farnum and Robert L. LaDuca*

Lyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA Correspondence e-mail: laduca@msu.edu

Received 7 November 2008; accepted 17 November 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; *R* factor = 0.038; *wR* factor = 0.101; data-to-parameter ratio = 14.3.

In the title salt, $\{(C_{10}H_{11}N_3)[V_4O_8(PO_4)_2]\}_n$, cubane-like $[V_4O_8]^{4+}$ clusters are connected by phosphate anions into anionic $[V_4P_2O_{16}]_n^{2n-}$ layers. These aggregate into the three-dimensional structure *via* N-H···O hydrogen-bonding mechanisms imparted by 4,4'-iminodipyridinium dications situated between the layers.

Related literature

For a nickel vanadate phase incorporating 4,4'-dipyridylamine, see: LaDuca *et al.* (2001). For a related layered vanadium phosphate solid containing doubly protonated 4,4'-bipyridine cations, see: Shi *et al.* (2004).

Experimental

Crystal data $(C_{10}H_{11}N_3)[V_4O_8(PO_4)_2]$ $M_r = 694.92$

Monoclinic, $P2_1/n$ *a* = 7.4431 (10) Å b = 14.524 (2) Åc = 18.825 (3) Å $\beta = 94.363 (2)^{\circ}$ $V = 2029.1 (5) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART 1K diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.786, T_{max} = 0.922$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.101$ S = 1.09 4652 reflections 325 parameters3 restraints H atoms treated by a mixture of independent and constrained

Mo $K\alpha$ radiation

 $0.20 \times 0.20 \times 0.04$ mm

21687 measured reflections

4652 independent reflections

3678 reflections with $I > 2\sigma(I)$

 $\mu = 2.04 \text{ mm}^{-1}$

T = 173 (2) K

 $R_{\rm int} = 0.047$

refinement $\Delta \rho_{\text{max}} = 1.03 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.76 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1N···O10	0.93 (4)	2.14 (4)	2.885 (4)	136 (4)
$N1 - H1N \cdot \cdot \cdot O9^{i}$	0.93 (4)	2.45 (4)	3.018 (5)	119 (4)
N2-H2N···O2 ⁱⁱ	0.862 (19)	2.35 (2)	3.195 (4)	166 (4)
$N3-H3N\cdots O8^{iii}$	0.90 (5)	2.02 (5)	2.902 (4)	164 (4)
Symmetry codes: $x + \frac{3}{2}, -y + \frac{1}{2}, z - \frac{1}{2}.$	(i) $-x + \frac{3}{2}, y - \frac{3}{2}$	$-\frac{1}{2}, -z + \frac{1}{2};$ (ii)) $-x+2, -y$	+1, -z; (iii)

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalMaker* (Palmer, 2007); software used to prepare material for publication: *SHELXL97*.

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2326).

References

- Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- LaDuca, R. L., Rarig, R. S. & Zubieta, J. (2001). Inorg. Chem. 40, 607-612.
- Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, Oxfordshire, England.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Shi, F.-N., Paz, F. A. A., Rocha, J., Klinowski, Ja. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp.3031–3037.

supporting information

Acta Cryst. (2008). E64, m1602 [doi:10.1107/S1600536808038348]

Poly[4,4'-iminodipyridinium [tetra- μ_3 -oxido-tetraoxido-di- μ_4 -phosphato- $\kappa^4 O:O':O'':O'''$ -tetravanadium(V)]]

Gregory A. Farnum and Robert L. LaDuca

S1. Comment

The kinked and hydrogen-bonding capable imine 4,4'-dipyridylamine has proven useful in the construction of novel mixed metal oxide phases (LaDuca *et al.*, 2001). In an attempt to extend this chemistry into a metal phosphate oxide system, yellow plate-like crystals of the title compound (I) were obtained.

The asymmetric unit of (I) comprises a cluster of four pentavalent V atoms, four terminal O atoms, four triply bridging O atoms, two phosphate anions and an unligated 4,4'-iminodipyridinium dication (Fig. 1). Each V atom is octahedrally coordinated, with three μ_3 O atom donors, two O atoms from two different phosphate anions, and one terminal O atom with a formal V=O double bond. The four V=O groups and four μ_3 O atoms form a cubane-type $[V_4O_8]^{4+}$ cluster.

Quadruply bridging phosphate anions bridge these cationic clusters into anionic $[V_4O_8(PO_4)_2]_n^{2n-}$ layers that are situated parallel to the *bc*-planes (Fig. 2). The phosphate groups bracket rhomboid apertures within the layers, with through-space P…P contact distances of 7.2685 (2) and 7.4431 (2) Å. Adjacent $[V_4O_8(PO_4)_2]_n^{2n-}$ layers stack in an *AB* pattern into the 3-D structure by N—H…O hydrogen bonding mediated by the protonated pyridyl-N atoms and the central amine groups of the 4,4'-iminodipyridinium cations situated in the interlamellar regions (Fig. 3).

The overall structure of (I) is very similar to a related phase incorporating doubly protonated 4,4'-bipyridine cations (Shi *et al.*, 2004).

S2. Experimental

All chemicals were obtained commercially. Vanadium(V) oxide (140 mg, 0.77 mmol) and 4,4'-dipyridylamine (132 mg, 0.77 mmol) and phosphoric acid (526 mg of an 85.5% aqueous solution, 4.56 mmol) were placed into H_2O (10 ml) in a 23 ml Teflon-lined Parr acid digestion bomb. The bomb was heated at 393 K for 72 h and was then allowed to cool to room temperature. Yellow plates of (I) were obtained along with a reddish-brown amorphous solid.

S3. Refinement

All H atoms bound to C atoms were placed in calculated positions with C—H = 0.95 Å and refined in riding mode with $U_{iso} = 1.2U_{eq}$ (C). All H atoms bound to N atoms were found *via* Fourier difference map, restrained with N—H = 0.89 Å, and refined with $U_{iso}=1.2U_{eq}$ (N). The largest residual electron density peak of 1.03 e⁻ Å⁻³ was located 2.25 Å from the H2 atom.

Figure 1

Asymmetric unit of (I), showing 50% probability ellipsoids and atom numbering scheme. Most H atom positions are shown as gray sticks. Color code: dark blue V, violet P, light blue N, red O, black C, pink H.

Figure 3

Packing diagram illustrating the *ABAB* layer stacking pattern, which forms the 3-D crystal structure of (I) through hydrogen bonding between the inorganic layers and 4,4'-iminodipyridinium cations.

Poly[4,4'-iminodipyridinium [tetra- μ_3 -oxido-tetraoxidodi- μ_4 -phosphato- κ^4 O:O':O'':O'''-tetravanadium(V)]]

Crystal data

 $(C_{10}H_{11}N_3)[V_4O_8(PO_4)_2]$ $M_r = 694.92$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.4431 (10) Å b = 14.524 (2) Å c = 18.825 (3) Å $\beta = 94.363$ (2)° V = 2029.1 (5) Å³ Z = 4

Data collection

Bruker SMART 1K diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.786, T_{\max} = 0.922$ F(000) = 1368 $D_x = 2.275 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 21687 reflections $\theta = 1.8-28.2^{\circ}$ $\mu = 2.04 \text{ mm}^{-1}$ T = 173 KPlate, yellow $0.20 \times 0.20 \times 0.04 \text{ mm}$

21687 measured reflections 4652 independent reflections 3678 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$ $\theta_{max} = 28.2^{\circ}, \ \theta_{min} = 1.8^{\circ}$ $h = -9 \rightarrow 9$ $k = -19 \rightarrow 19$ $l = -24 \rightarrow 24$ Refinement

0	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.101$	neighbouring sites
S = 1.09	H atoms treated by a mixture of independent
4652 reflections	and constrained refinement
325 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0382P)^2 + 6.7132P]$
3 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 1.03 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.76 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R* factors *R* are based on *F* with *F* set to zero for parentius F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Z	$\overline{U_{\rm iso}}^{*}/U_{\rm eq}$	
V1	0.62200 (8)	0.45521 (4)	0.16868 (3)	0.00774 (14)	
V2	0.65671 (8)	0.54528 (4)	0.33252 (3)	0.00778 (14)	
V3	0.91535 (8)	0.41272 (4)	0.30933 (3)	0.00822 (14)	
V4	0.89067 (8)	0.58608 (4)	0.19276 (3)	0.00808 (14)	
P1	0.27074 (12)	0.50073 (6)	0.25058 (5)	0.00875 (19)	
P2	0.74459 (12)	0.25121 (6)	0.21337 (5)	0.00750 (19)	
01	0.6496 (4)	0.53003 (17)	0.41627 (14)	0.0146 (6)	
O2	0.5880 (3)	0.47775 (17)	0.08568 (14)	0.0141 (6)	
O3	0.9438 (4)	0.38002 (18)	0.38988 (14)	0.0157 (6)	
04	0.3769 (3)	0.45212 (17)	0.19477 (14)	0.0117 (5)	
05	0.8869 (3)	0.62016 (17)	0.11231 (14)	0.0144 (5)	
O6	0.6464 (3)	0.57326 (16)	0.20696 (13)	0.0093 (5)	
07	0.6413 (3)	0.32294 (16)	0.16610 (13)	0.0095 (5)	
08	0.6626 (3)	0.42384 (16)	0.29886 (13)	0.0093 (5)	
09	0.3989 (3)	0.54901 (17)	0.30680 (14)	0.0115 (5)	
O10	0.8333 (3)	0.18063 (16)	0.16577 (13)	0.0093 (5)	
011	0.8977 (3)	0.29677 (16)	0.26015 (14)	0.0101 (5)	
012	0.6105 (3)	0.20382 (16)	0.25905 (14)	0.0104 (5)	
013	0.8962 (3)	0.54013 (16)	0.31834 (14)	0.0095 (5)	
O14	0.1453 (3)	0.57446 (16)	0.21577 (14)	0.0114 (5)	
015	0.1609 (3)	0.42794 (16)	0.28734 (14)	0.0121 (5)	
016	0.8712 (3)	0.46004 (16)	0.18407 (13)	0.0096 (5)	
N1	1.1851 (5)	0.2291 (3)	0.1230 (2)	0.0247 (8)	
H1N	1.113 (5)	0.212 (3)	0.1588 (19)	0.030*	

N2	1.5138 (4)	0.3207 (2)	-0.02781 (18)	0.0157 (7)	
H2N	1.481 (6)	0.370 (2)	-0.050(2)	0.019*	
N3	1.9274 (4)	0.1840 (2)	-0.11738 (19)	0.0161 (7)	
H3N	2.016 (6)	0.152 (3)	-0.136 (2)	0.019*	
C1	1.1673 (5)	0.3154 (3)	0.0975 (2)	0.0215 (9)	
H1	1.0813	0.3544	0.1146	0.026*	
C2	1.2741 (5)	0.3461 (3)	0.0469 (2)	0.0174 (8)	
H2	1.2593	0.4054	0.0287	0.021*	
C3	1.4072 (5)	0.2878 (3)	0.0223 (2)	0.0128 (7)	
C4	1.4197 (5)	0.1975 (3)	0.0485 (2)	0.0180 (8)	
H4	1.5027	0.1566	0.0317	0.022*	
C5	1.3089 (6)	0.1704 (3)	0.0990 (2)	0.0223 (9)	
Н5	1.3182	0.1110	0.1172	0.027*	
C6	1.9152 (5)	0.1759 (3)	-0.0472 (2)	0.0183 (8)	
H6	1.9969	0.1389	-0.0205	0.022*	
C7	1.7833 (5)	0.2217 (3)	-0.0142 (2)	0.0159 (8)	
H7	1.7759	0.2167	0.0347	0.019*	
C8	1.6598 (5)	0.2760 (2)	-0.0557 (2)	0.0133 (7)	
С9	1.6813 (5)	0.2865 (2)	-0.1276 (2)	0.0128 (7)	
H9	1.6058	0.3257	-0.1553	0.015*	
C10	1.8149 (5)	0.2386 (2)	-0.1577 (2)	0.0142 (8)	
H10	1.8279	0.2440	-0.2063	0.017*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
V1	0.0072 (3)	0.0038 (3)	0.0120 (3)	0.0000 (2)	-0.0006 (2)	-0.0003 (2)
V2	0.0073 (3)	0.0036 (3)	0.0125 (3)	-0.0003 (2)	0.0011 (2)	-0.0002 (2)
V3	0.0071 (3)	0.0039 (3)	0.0134 (3)	0.0005 (2)	-0.0003(2)	0.0008 (2)
V4	0.0074 (3)	0.0041 (3)	0.0128 (3)	-0.0002 (2)	0.0014 (2)	0.0002 (2)
P1	0.0057 (4)	0.0041 (4)	0.0165 (5)	0.0002 (3)	0.0008 (3)	-0.0012 (3)
P2	0.0070 (4)	0.0027 (4)	0.0130 (4)	0.0005 (3)	0.0012 (3)	-0.0002 (3)
01	0.0196 (14)	0.0111 (13)	0.0135 (14)	-0.0002 (10)	0.0040 (11)	-0.0003 (10)
O2	0.0155 (13)	0.0113 (13)	0.0151 (14)	0.0003 (10)	-0.0013 (10)	0.0011 (10)
03	0.0179 (14)	0.0113 (13)	0.0174 (15)	0.0027 (10)	-0.0014 (11)	0.0018 (10)
O4	0.0079 (12)	0.0092 (12)	0.0181 (14)	-0.0003 (10)	0.0007 (10)	-0.0043 (10)
05	0.0172 (13)	0.0104 (13)	0.0160 (14)	-0.0013 (10)	0.0033 (11)	0.0007 (10)
06	0.0069 (11)	0.0049 (11)	0.0159 (13)	0.0026 (9)	0.0003 (9)	-0.0015 (9)
O7	0.0102 (12)	0.0027 (11)	0.0155 (14)	0.0013 (9)	-0.0006 (10)	-0.0007 (9)
08	0.0090 (12)	0.0044 (11)	0.0147 (13)	-0.0019 (9)	0.0021 (10)	-0.0006 (9)
09	0.0069 (12)	0.0094 (12)	0.0183 (14)	-0.0010 (9)	0.0019 (10)	-0.0049 (10)
O10	0.0094 (12)	0.0039 (11)	0.0148 (14)	0.0007 (9)	0.0020 (10)	0.0005 (9)
011	0.0084 (11)	0.0036 (11)	0.0180 (14)	0.0005 (9)	-0.0012 (10)	0.0002 (10)
012	0.0095 (12)	0.0052 (11)	0.0171 (14)	0.0000 (9)	0.0046 (10)	0.0012 (10)
013	0.0081 (12)	0.0030 (11)	0.0175 (14)	-0.0002 (9)	0.0005 (10)	-0.0013 (10)
014	0.0076 (11)	0.0043 (11)	0.0229 (15)	-0.0003 (9)	0.0050 (10)	0.0035 (10)
015	0.0080 (12)	0.0054 (12)	0.0227 (15)	0.0000 (9)	0.0004 (10)	0.0023 (10)
016	0.0090 (12)	0.0043 (11)	0.0157 (13)	0.0016 (9)	0.0014 (10)	-0.0007 (10)

N1	0.0218 (19)	0.033 (2)	0.0203 (19)	-0.0092 (16)	0.0068 (15)	-0.0002 (16)
N2	0.0182 (16)	0.0098 (15)	0.0197 (18)	0.0021 (13)	0.0064 (13)	0.0039 (13)
N3	0.0143 (16)	0.0121 (16)	0.0224 (19)	-0.0020 (13)	0.0040 (14)	-0.0034 (13)
C1	0.0154 (19)	0.029 (2)	0.021 (2)	-0.0051 (17)	0.0042 (16)	-0.0103 (17)
C2	0.0147 (19)	0.017 (2)	0.021 (2)	-0.0027 (15)	0.0012 (15)	-0.0053 (16)
C3	0.0111 (17)	0.0165 (18)	0.0107 (18)	-0.0032 (15)	0.0006 (13)	-0.0017 (14)
C4	0.0168 (19)	0.018 (2)	0.019 (2)	-0.0013 (15)	0.0033 (16)	0.0012 (16)
C5	0.021 (2)	0.023 (2)	0.023 (2)	-0.0058 (17)	0.0041 (17)	0.0069 (17)
C6	0.0160 (19)	0.0130 (19)	0.025 (2)	-0.0007 (15)	-0.0037 (16)	0.0032 (16)
C7	0.0170 (19)	0.0152 (19)	0.015 (2)	-0.0017 (15)	0.0013 (15)	0.0018 (15)
C8	0.0133 (17)	0.0080 (17)	0.018 (2)	-0.0048 (14)	-0.0003 (15)	-0.0016 (14)
C9	0.0157 (18)	0.0069 (16)	0.0155 (19)	-0.0057 (14)	0.0001 (14)	0.0002 (14)
C10	0.0185 (19)	0.0073 (17)	0.0171 (19)	-0.0077 (14)	0.0030 (15)	-0.0013 (14)

Geometric parameters (Å, °)

V1—02	1.598 (3)	P2—O11	1.536 (2)
V1-016	1.857 (2)	P2—O7	1.538 (2)
V106	1.863 (2)	P2010	1.543 (3)
V104	1.925 (3)	N1—C1	1.345 (6)
V1-07	1.927 (2)	N1—C5	1.357 (6)
V1—O8	2.488 (3)	N1—H1N	0.93 (4)
V2—O1	1.597 (3)	N2—C3	1.364 (5)
V2—O13	1.824 (2)	N2—C8	1.401 (5)
V2—O8	1.876 (2)	N2—H2N	0.862 (19)
V2—O9	1.944 (2)	N3—C6	1.336 (5)
V2010 ⁱ	1.967 (2)	N3—C10	1.346 (5)
V2—O6	2.394 (3)	N3—H3N	0.90 (5)
V3—O3	1.588 (3)	C1—C2	1.362 (6)
V3—013	1.865 (2)	C1—H1	0.9300
V3—O8	1.883 (2)	C2—C3	1.408 (5)
V3—O15 ⁱⁱ	1.917 (3)	C2—H2	0.9300
V3—011	1.921 (2)	C3—C4	1.402 (5)
V3—016	2.454 (3)	C4—C5	1.363 (6)
V4—O5	1.592 (3)	C4—H4	0.9300
V4—O16	1.843 (2)	С5—Н5	0.9300
V4—O6	1.867 (2)	C6—C7	1.373 (6)
V4014 ⁱⁱ	1.919 (2)	С6—Н6	0.9300
V4012 ⁱ	1.936 (2)	C7—C8	1.404 (5)
V4—O13	2.454 (3)	С7—Н7	0.9300
P1—O15	1.533 (3)	C8—C9	1.384 (5)
P104	1.534 (3)	C9—C10	1.371 (5)
P1—O14	1.535 (3)	С9—Н9	0.9300
P109	1.539 (3)	C10—H10	0.9300
P2—O12	1.529 (3)		
O2—V1—O16	103.13 (13)	O12—P2—O11	111.02 (15)
O2—V1—O6	101.14 (12)	O12—P2—O7	108.15 (14)

016 111 06	80 (8 (10)	011 82 07	110.00 (12)
016-01-06	80.68 (10)	011—P2—07	110.88 (13)
O2—V1—O4	99.88 (13)	O12—P2—O10	110.73 (14)
016—V1—04	156.29 (11)	O11—P2—O10	106.72 (14)
O6—V1—O4	89.38 (11)	O7—P2—O10	109.35 (14)
O2—V1—O7	100.73 (12)	P1—O4—V1	135.36 (15)
O16—V1—O7	88.06 (10)	V1	95.95 (11)
O6—V1—O7	157.17 (11)	V1	102.74 (11)
O4—V1—O7	93.27 (11)	V4—O6—V2	101.53 (10)
O2—V1—O8	177.48 (11)	P2-07-V1	134.08 (15)
016—V1—08	78.94 (10)	V2-08-V3	95.40 (11)
06—V1—08	77 68 (10)	$V_{2} = 08 = V_{1}$	98 99 (10)
04 - V1 - 08	77.93 (10)	$V_{3} = 08 = V_{1}$	99.46 (10)
07 V1 08	80 71 (0)	P1 O0 V2	135.01 (16)
01 V2 013	104 17 (13)	$P_{2} = 010 V_{2}^{11}$	133.01(10) 132.20(15)
01 - V2 - 013	104.17(13) 101.02(12)	12 - 010 - V2	132.20(13)
$01 - \sqrt{2} - 08$	101.92(12)	$P_2 = 012 = V_4 i i i$	132.42(13)
$013 - \sqrt{2} - 08$	82.17 (10)	P2-012-V4***	133.42 (15)
01	98.26 (13)	V2—013—V3	97.83 (11)
013—V2—09	157.22 (12)	V2—O13—V4	100.65 (10)
08—V2—09	89.43 (10)	V3—O13—V4	100.26 (11)
O1—V2—O10 ⁱ	97.26 (12)	P1—O14—V4 ^{iv}	135.73 (15)
O13—V2—O10 ⁱ	90.42 (10)	P1—O15—V3 ^{iv}	136.61 (15)
O8—V2—O10 ⁱ	160.60 (11)	V4—O16—V1	97.02 (11)
O9—V2—O10 ⁱ	90.66 (10)	V4—O16—V3	100.90 (11)
O1—V2—O6	175.87 (11)	V1—O16—V3	101.46 (11)
O13—V2—O6	79.67 (10)	C1—N1—C5	121.2 (4)
O8—V2—O6	79.97 (10)	C1—N1—H1N	118 (3)
O9—V2—O6	78.02 (10)	C5—N1—H1N	121 (3)
O10 ⁱ —V2—O6	81.07 (9)	C3—N2—C8	127.3 (3)
O3—V3—O13	102.45 (13)	C3—N2—H2N	118 (3)
O3—V3—O8	100.68 (13)	C8—N2—H2N	114 (3)
013—V3—08	80.90 (10)	C6-N3-C10	121.6 (3)
$03 - V3 - 015^{ii}$	10040(13)	C6—N3—H3N	117(3)
$013 - V3 - 015^{ii}$	89 19 (11)	C10 N3 H3N	122(3)
$08 V3 015^{ii}$	158 20 (11)	N1 C1 C2	122(5) 1205(4)
$03 V_{3} 011$	101.28(12)	NI_C1_H1	120.5 (4)
$03 - \sqrt{3} - 011$	101.30(12) 155.60(11)	NI = CI = HI	119.7
013 - 13 - 011	133.00(11)	$C_2 = C_1 = H_1$	119.7
	89.03 (10)	C1 = C2 = C3	119.7 (4)
015"—V3—011	91.63 (11)	C1 = C2 = H2	120.1
03—V3—016	178.86 (12)	C3—C2—H2	120.1
O13—V3—O16	78.69 (10)	N2—C3—C4	123.0 (3)
08—V3—016	79.38 (10)	N2—C3—C2	118.5 (4)
O15 ⁱⁱ —V3—O16	79.66 (10)	C4—C3—C2	118.4 (4)
O11—V3—O16	77.48 (10)	C5—C4—C3	119.2 (4)
O5—V4—O16	103.23 (13)	C5—C4—H4	120.4
O5—V4—O6	102.74 (13)	C3—C4—H4	120.4
O16—V4—O6	80.95 (10)	N1—C5—C4	120.8 (4)
O5	100.81 (13)	N1—C5—H5	119.6
O16	90.13 (10)	С4—С5—Н5	119.6
	1 / / · · · ·		

O6—V4—O14 ⁱⁱ	156.16 (12)	N3—C6—C7	120.6 (4)
O5—V4—O12 ⁱ	99.84 (12)	N3—C6—H6	119.7
O16—V4—O12 ⁱ	156.34 (11)	С7—С6—Н6	119.7
06—V4—012 ⁱ	88.95 (10)	C6-C7-C8	118.8 (4)
014^{ii} V4 012 ⁱ	90.67 (11)	С6—С7—Н7	120.6
05-V4-013	177 67 (11)	C8—C7—H7	120.6
016 - V4 - 013	79.09 (10)	C9-C8-N2	120.0 117.8(3)
06 - V4 - 013	77 30 (10)	C9-C8-C7	117.0(3)
014^{ii} V4 013	79.32 (10)	$N_{2}^{-}C_{8}^{-}C_{7}^{-}$	119.1(4) 123.1(4)
012^{i} V4 013	77.83 (10)	C_{10} C_{9} C_{8}	123.1(4) 1193(4)
012 - 013	108 18 (14)	C_{10} C_{9} H_{9}	119.3 (+)
015 - P1 - 04	110.24(14)		120.3
015-11-014	110.24(14) 110.02(15)	$N_{2} = C_{10} = C_{0}$	120.3
04-r = 014	110.92(13) 100.12(15)	$N_{3} = C_{10} = C_{9}$	120.4 (4)
013 - F1 - 09	109.13(13) 110.95(14)	$N_{3} = C_{10} = H_{10}$	119.0
04 - P1 - 09	110.83(14) 107.51(14)	С9—С10—п10	119.8
014—P1—09	107.51 (14)		
015 P1 04 V1	122 2 (2)	O° V2 O11 D2	15.0(2)
013 - P1 - 04 - V1	-155.2(2)	$06 - V_{3} - 011 - P_{2}$	13.9 (2)
O14 P1 O4 V1	105.7 (2)	$015^{}V_{3} - 011 - P_{2}$	-142.4(2)
02 - VI - 04 - PI	-125.5(2)	016 - V3 - 011 - P2	-63.3(2)
016—V1—04—P1	40.4 (4)	011—P2—012—V4 ⁱⁱⁱ	-81.1(2)
06—V1—04—P1	-24.3(2)	$O/P2 = O12 = V4^{m}$	157.06 (19)
0/V104P1	133.0 (2)	010—P2—012—V4 ^m	37.3 (3)
O8—V1—O4—P1	53.2 (2)	01—V2—013—V3	85.66 (14)
02—V1—06—V4	-84.30 (13)	08—V2—013—V3	-14.73 (11)
016—V1—06—V4	17.36 (11)	09—V2—013—V3	-84.0 (3)
O4—V1—O6—V4	175.75 (12)	O10 ⁱ —V2—O13—V3	-176.74 (12)
O7—V1—O6—V4	78.8 (3)	O6—V2—O13—V3	-95.89 (11)
08—V1—06—V4	97.97 (11)	O1—V2—O13—V4	-172.29 (11)
O2—V1—O6—V2	172.42 (11)	08—V2—013—V4	87.33 (11)
O16—V1—O6—V2	-85.91 (11)	O9—V2—O13—V4	18.0 (3)
O4—V1—O6—V2	72.48 (11)	O10 ⁱ —V2—O13—V4	-74.69 (10)
O7—V1—O6—V2	-24.5 (3)	O6—V2—O13—V4	6.16 (8)
O8—V1—O6—V2	-5.31 (8)	O3—V3—O13—V2	-84.30 (14)
O5—V4—O6—V1	84.15 (13)	08—V3—013—V2	14.72 (11)
O16—V4—O6—V1	-17.49 (11)	O15 ⁱⁱ —V3—O13—V2	175.22 (12)
O14 ⁱⁱ —V4—O6—V1	-86.7 (3)	O11—V3—O13—V2	83.1 (3)
O12 ⁱ —V4—O6—V1	-176.00 (12)	O16—V3—O13—V2	95.61 (11)
O13—V4—O6—V1	-98.25 (11)	O3—V3—O13—V4	173.31 (11)
O5—V4—O6—V2	-171.52 (11)	O8—V3—O13—V4	-87.67 (10)
O16—V4—O6—V2	86.85 (11)	O15 ⁱⁱ —V3—O13—V4	72.83 (11)
O14 ⁱⁱ —V4—O6—V2	17.6 (3)	O11—V3—O13—V4	-19.3 (3)
O12 ⁱ —V4—O6—V2	-71.67 (11)	O16—V3—O13—V4	-6.78 (8)
O13—V4—O6—V2	6.09 (8)	O16—V4—O13—V2	-91.04 (12)
01—V2—06—V1	-110.6 (16)	O6—V4—O13—V2	-7.98 (11)
O13—V2—O6—V1	90.76 (11)	O14 ⁱⁱ —V4—O13—V2	176.74 (12)
08—V2—06—V1	6.99 (11)	012 ⁱ —V4—013—V2	83.71 (11)
O9—V2—O6—V1	-84.57 (11)	O16—V4—O13—V3	9.03 (11)

O10 ⁱ —V2—O6—V1	-177.17 (12)	O6—V4—O13—V3	92.09 (11)
O13—V2—O6—V4	-8.13 (11)	O14 ⁱⁱ —V4—O13—V3	-83.19 (11)
08—V2—06—V4	-91.91 (11)	O12 ⁱ —V4—O13—V3	-176.22 (12)
O9—V2—O6—V4	176.53 (12)	O15—P1—O14—V4 ^{iv}	-13.6 (3)
O10 ⁱ —V2—O6—V4	83.94 (11)	O4—P1—O14—V4 ^{iv}	106.2 (2)
012—P2—07—V1	104.0 (2)	O9—P1—O14—V4 ^{iv}	-132.5(2)
O11—P2—O7—V1	-18.0(3)	O4—P1—O15—V3 ^{iv}	-129.8(2)
O10—P2—O7—V1	-135.4 (2)	O14—P1—O15—V3 ^{iv}	-8.3 (3)
O2—V1—O7—P2	149.9 (2)	09—P1—O15—V3 ^{iv}	109.6 (2)
O16—V1—O7—P2	46.9 (2)	O5—V4—O16—V1	-83.47 (14)
O6—V1—O7—P2	-13.3 (4)	O6—V4—O16—V1	17.59 (11)
O4—V1—O7—P2	-109.4(2)	O14 ⁱⁱ —V4—O16—V1	175.38 (12)
08—V1—07—P2	-32.2(2)	012 ⁱ —V4—016—V1	83.4 (3)
01 - V2 - 08 - V3	-88.41(13)	013 - V4 - 016 - V1	96.29 (11)
013—V2—08—V3	14.51 (11)	05-V4-016-V3	173.38 (11)
09 - V2 - 08 - V3	173.26 (12)	06-V4-016-V3	-85.56(11)
010^{i} V2 08 V3	82.9(3)	014^{ii} V4 016 V3	72.23 (11)
06-V2-08-V3	95.33 (10)	012^{i} V4 016 V3	-19.7(3)
01 - V2 - 08 - V1	171.10(11)	013 - V4 - 016 - V3	-6.86(8)
013 - V2 - 08 - V1	-85.99(11)	02-V1-016-V4	81.73 (13)
09 - V2 - 08 - V1	72.77 (10)	06-V1-016-V4	-17.64(11)
010^{i} V2 08 V1	-17.6(4)	04-V1-016-V4	-84.0(3)
06—V2—08—V1	-5.16 (8)	07—V1—016—V4	-177.70(12)
03 - V3 - 08 - V2	86.84 (13)	08-V1-016-V4	-96.79(11)
013 - V3 - 08 - V2	-14.23(11)	02-V1-016-V3	-175.60(11)
015^{ii} V3 08 V2	-78.2 (3)	06—V1—016—V3	85.03 (11)
011—V3—08—V2	-171.65(11)	04—V1—016—V3	18.7 (3)
016—V3—08—V2	-94.32(10)	07—V1—016—V3	-75.03(11)
O3—V3—O8—V1	-173.09 (11)	O8—V1—O16—V3	5.88 (8)
013—V3—08—V1	85.84 (10)	O13—V3—O16—V4	9.06 (11)
O15 ⁱⁱ —V3—O8—V1	21.9 (3)	O8—V3—O16—V4	91.79 (11)
O11—V3—O8—V1	-71.58 (10)	O15 ⁱⁱ —V3—O16—V4	-82.19 (11)
O16—V3—O8—V1	5.75 (8)	O11—V3—O16—V4	-176.21 (12)
O16—V1—O8—V2	89.44 (11)	O13—V3—O16—V1	-90.50 (12)
06—V1—08—V2	6.69 (10)	O8—V3—O16—V1	-7.77 (11)
O4—V1—O8—V2	-85.33 (11)	O15 ⁱⁱ —V3—O16—V1	178.25 (12)
07—V1—08—V2	179.27 (12)	O11—V3—O16—V1	84.23 (11)
O16—V1—O8—V3	-7.62 (10)	C5—N1—C1—C2	-0.2 (6)
06—V1—08—V3	-90.37 (11)	N1—C1—C2—C3	-1.5 (6)
O4—V1—O8—V3	177.60 (12)	C8—N2—C3—C4	-6.6 (6)
07—V1—08—V3	82.21 (11)	C8—N2—C3—C2	175.7 (4)
O15—P1—O9—V2	106.2 (2)	C1—C2—C3—N2	-179.2 (4)
O4—P1—O9—V2	-12.8 (3)	C1—C2—C3—C4	3.0 (5)
O14—P1—O9—V2	-134.2 (2)	N2—C3—C4—C5	179.5 (4)
O1—V2—O9—P1	-129.9 (2)	C2—C3—C4—C5	-2.8 (6)
O13—V2—O9—P1	40.0 (4)	C1—N1—C5—C4	0.3 (6)
O8—V2—O9—P1	-27.9 (2)	C3—C4—C5—N1	1.2 (6)
O10 ⁱ —V2—O9—P1	132.7 (2)	C10—N3—C6—C7	1.8 (6)
	. /		. /

supporting information

O6—V2—O9—P1	51.9 (2)	N3—C6—C7—C8	0.9 (6)
O12—P2—O10—V2 ⁱⁱⁱ	-14.4 (2)	C3—N2—C8—C9	141.3 (4)
O11—P2—O10—V2 ⁱⁱⁱ	106.6 (2)	C3—N2—C8—C7	-38.6 (6)
O7—P2—O10—V2 ⁱⁱⁱ	-133.43 (19)	C6—C7—C8—C9	-4.0 (5)
O12—P2—O11—V3	-82.1 (2)	C6—C7—C8—N2	175.9 (3)
O7—P2—O11—V3	38.1 (3)	N2-C8-C9-C10	-175.4 (3)
O10-P2-O11-V3	157.15 (19)	C7—C8—C9—C10	4.5 (5)
O3—V3—O11—P2	116.7 (2)	C6—N3—C10—C9	-1.3 (5)
O13—V3—O11—P2	-50.7 (4)	C8—C9—C10—N3	-1.9 (5)

Symmetry codes: (i) -x+3/2, y+1/2, -z+1/2; (ii) x+1, y, z; (iii) -x+3/2, y-1/2, -z+1/2; (iv) x-1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A	
N1—H1 <i>N</i> ···O10	0.93 (4)	2.14 (4)	2.885 (4)	136 (4)	
N1—H1 <i>N</i> ···O9 ⁱⁱⁱ	0.93 (4)	2.45 (4)	3.018 (5)	119 (4)	
$N2 - H2N - O2^{v}$	0.86 (2)	2.35 (2)	3.195 (4)	166 (4)	
N3—H3 <i>N</i> ····O8 ^{vi}	0.90 (5)	2.02 (5)	2.902 (4)	164 (4)	

Symmetry codes: (iii) -x+3/2, y-1/2, -z+1/2; (v) -x+2, -y+1, -z; (vi) x+3/2, -y+1/2, z-1/2.