Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[4,4'-iminodipyridinium [di- μ_4 isophthalato- κ^4 O:O':O'':O''-di- μ_3 -isophthalato- κ^3 O:O':O''; κ^4 O:O':O'',O'''trizinc(II)] dihydrate]

Maxwell A. Braverman and Robert L. LaDuca*

Lyman Briggs College, Department of Chemistry, Michigan State University, East Lansing, MI 48825, USA Correspondence e-mail: laduca@msu.edu

Received 14 November 2008; accepted 17 November 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; Hatom completeness 94%; disorder in solvent or counterion; R factor = 0.034; wR factor = 0.081; data-to-parameter ratio = 15.4.

In the title compound, $\{(C_{10}H_{11}N_3)[Zn_3(C_8H_4O_4)_4]\cdot 2H_2O\}_n$, divalent Zn atoms are linked into trinuclear units featuring tetrahedral, octahedral and distorted tetrahedral, octahedral and square-pyramidal coordination geometries. These trinuclear units are connected by isopthalate dianions into $[Zn_3(isophthalate)_4]_n^{2n-}$ anionic layers, which aggregate into the three-dimensional structure *via* hydrogen-bonding pathways mediated by doubly protonated 4,4'-iminodipyridinium cations and water molecules of crystallization. One solvent water molecule was found to be disordered over two positions, each with a 50% site-occupancy factor.

Related literature

For divalent metal phthalate/4,4'-iminodipyridinium coordination polymers, see: Braverman *et al.* (2007). For the preparation of 4,4'-dipyridylamine, see: Zapf *et al.* (1998).

Experimental

Crystal data

 $\begin{array}{l} (C_{10}H_{11}N_3)[Zn_3(C_8H_4O_4)_4]\cdot 2H_2O\\ M_r = 1061.81\\ Triclinic, P\overline{1}\\ a = 9.5780 \ (13) \ \text{\AA}\\ b = 10.2149 \ (14) \ \text{\AA}\\ c = 21.246 \ (3) \ \text{\AA}\\ a = 78.801 \ (2)^{\circ}\\ \beta = 86.868 \ (2)^{\circ} \end{array}$

Data collection

Bruker SMART 1K diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.617, T_{max} = 0.802$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.034\\ wR(F^2) &= 0.081\\ S &= 1.07\\ 9553 \text{ reflections}\\ 619 \text{ parameters}\\ 6 \text{ restraints} \end{split}$$

$$\begin{split} \gamma &= 87.773 \ (2)^{\circ} \\ V &= 2035.2 \ (5) \ \text{\AA}^3 \\ Z &= 2 \\ \text{Mo } K\alpha \text{ radiation} \\ \mu &= 1.84 \ \text{mm}^{-1} \\ T &= 173 \ (2) \ \text{K} \\ 0.54 \ \times \ 0.20 \ \times \ 0.12 \ \text{mm} \end{split}$$

24469 measured reflections 9553 independent reflections 8108 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.024$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.92\ e\ {\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.54\ e\ {\rm \AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1A\cdots O8^{i}$	0.863 (18)	1.921 (19)	2.778 (3)	172 (4)
$O1W-H1B\cdots O4$	0.863 (18)	1.874 (19)	2.733 (3)	174 (4)
$N1 - H1N \cdots O2WA$	0.901 (19)	2.03 (3)	2.808 (6)	144 (4)
$N1 - H1N \cdots O2WB^{ii}$	0.901 (19)	1.96 (3)	2.757 (5)	147 (4)
$N2 - H2N \cdots O1W^{iii}$	0.862 (17)	1.893 (18)	2.754 (3)	176 (3)
$N3 - H3N \cdots O12^{iv}$	0.880 (17)	1.93 (2)	2.764 (3)	157 (3)
			(****	

Symmetry codes: (i) x, y + 1, z; (ii) -x, -y + 2, -z; (iii) x - 1, y, z; (iv) -x - 1, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalMaker* (Palmer, 2007); software used to prepare material for publication: *SHELXL97*.

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund and Michigan State University for funding this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2328).

References

- Braverman, M. A., Supkowski, R. M. & LaDuca, R. L. (2007). *Inorg. Chim.* Acta, **360**, 2353–2362.
- Bruker (2006). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Palmer, D. (2007). CrystalMaker. CrystalMaker Software Ltd, Bicester, Oxfordshire, England.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zapf, P. J., LaDuca, R. L., Rarig, R. S., Johnson, K. M. III & Zubieta, J. (1998). Inorg. Chem. 37, 3411–3414.

supporting information

Acta Cryst. (2008). E64, m1601 [doi:10.1107/S1600536808038373]

Poly[4,4'-iminodipyridinium [di- μ_4 -isophthalato- $\kappa^4 O:O':O'':O''$ -di- μ_3 -isophthalato- $\kappa^3 O:O':O'';\kappa^4 O:O':O'',O'''$ -trizinc(II)] dihydrate]

Maxwell A. Braverman and Robert L. LaDuca

S1. Comment

Recently, we reported Co and Ni phthalate 1-D coordination polymers containing the hydrogen-bonding capable, dipodal tethering ligand 4,4'-dipyridylamine (dpa) (Braverman *et al.*, 2007). In an attempt to extend this chemistry into a zinc isophthalate coordination polymer system, colourless crystals of the title compound, (I), were obtained.

The asymmetric unit of (I) contains three divalent Zn atoms, four crystallographically distinct doubly deprotonated isophthalate dianions, one doubly protonated H_2dpa^{2+} dication and two water molecules of crystallization, one of which is disordered equally over two positions, Fig. 1. The Zn atoms are linked into a trinuclear cluster by bridging carboxylate groups and O atoms from the isophthalate ions, in which Zn2, Zn1 and Zn3 adopt tetrahedral, octahedral and distorted square pyramidal coordination geometries, respectively.

Each trinuclear unit is linked to two others along the *a*-axis by two sets of two exotetradentate isophthalate dianions, which bridge two Zn atoms through a carboxylate bridge and two other Zn atoms through a single O atom connection. The trinuclear units also conjoin along the *b*-axis. Here, each trinuclear unit again connects to two others, *via* two sets of two crystallographically distinct exotridentate isophthalate dianions. One of these adopts a bis-bridging/chelating binding mode, while the other possesses a bis-bridging/monodentate binding mode. The resulting $[Zn_3(isophthalate)_4]_n^{2n}$ anionic layers contain incipient voids occupied by H_2dpa^{2+} dications and water molecules of crystallization, Fig. 2. These layers are arranged parallel to the *bc*-plane. Abutting $[Zn_3(isophthalate)_4]_n^{2n-}$ layers aggregate into the 3-D structure through hydrogen-bonding patterns between the protonated pyridyl-N atoms of the H_2dpa^{2+} dications, carboxylate-O atoms and water molecules of crystallization, Table 1 and Fig. 3.

S2. Experimental

All chemicals were obtained commercially with the exception of 4,4'-dipyridylamine which was prepared according to a literature procedure (Zapf *et al.*, 1998). Zinc chloride dihydrate (64 mg, 0.37 mmol), isophthalic acid (62 mg, 0.37 mmol) and 4,4'-dipyridylamine (127 mg, 0.74 mmol) were placed into H_2O (10 ml) in a 23 ml Teflon-lined Parr acid digestion bomb. The bomb was heated at 393 K for 72 h and was then allowed to cool to room temperature. Colourless crystals of (I) were obtained along with a white powdery solid.

S3. Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.93 Å and refined in riding mode with $U_{iso} = 1.2U_{eq}(C)$. The H atoms bound to O atoms were found *via* a Fourier difference map, restrained at fixed positions or with O—H = 0.85 Å, and refined with $U_{iso}=1.2U_{eq}(O)$. The H atoms bound to N atoms were found *via* a Fourier difference map, restrained with N—H = 0.91 Å (for pyridyl N atoms) or with N—H = 0.89 Å (for the amine N atom), and refined with $U_{iso}=1.2U_{eq}(N)$. See Table 1 for O-H and N-H distances. One water molecule was found to be disorderd over

two sites, each with equal weight; the H atoms could not be located.

Figure 1

Coordination environment of (I), showing 50% probability ellipsoids and atom numbering scheme. Most hydrogen atom positions are shown as gray sticks. Unligated water molecules are not shown. Color codes: gray Zn, light blue N, red O, black C, pink H. Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) x, y - 1, z; (iv) x, y + 1, z

Figure 2

A single $[Zn_3(isophthalate)_4]_n^{2n}$ anionic layer in (I), showing $[H_2dpa]^{2+}$ cations within the incipient cavities in blue. Water molecules of crystallization are depicted in orange.

Figure 3

Packing diagram illustrating the *AB* layer stacking pattern, which forms the 3-D crystal structure of (I) through hydrogen bonding mediated by the protonated pyridyl groups and the amine groups of the $[H_2dpa]^{2+}$ cations. Hydrogen bonding is shown as dashed lines. The oxygen atoms of the water molecules of crystallization are shown in orange.

Poly[4,4'-iminodipyridinium [di- μ_4 -isophthalato- κ^4 O:O':O'':O''-di- μ_3 -isophthalato- κ^3 O:O':O''; κ^4 O:O':O'',O'''-trizinc(II)] dihydrate]

Crystal data	
$(C_{10}H_{11}N_3)[Zn_3(C_8H_4O_4)_4] \cdot 2H_2O$ $M_r = 1061.81$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 9.5780 (13) Å b = 10.2149 (14) Å c = 21.246 (3) Å $a = 78.801 (2)^{\circ}$ $\beta = 86.868 (2)^{\circ}$ $\gamma = 87.773 (2)^{\circ}$ $V = 2035.2 (5) \text{ Å}^3$	Z = 2 F(000) = 1072 $D_x = 1.729 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 24469 reflections $\theta = 2.0-28.3^{\circ}$ $\mu = 1.84 \text{ mm}^{-1}$ T = 173 K Block, colourless $0.54 \times 0.20 \times 0.12 \text{ mm}$
Data collection	
Bruker SMART 1K diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.617$, $T_{max} = 0.802$ 24469 measured reflections 9553 independent reflections 8108 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.024$	$k = -13 \rightarrow 13$
$\theta_{\rm max} = 28.3^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$	$l = -28 \rightarrow 27$
$h = -12 \rightarrow 12$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.081$	neighbouring sites
S = 1.07	H atoms treated by a mixture of independent
9553 reflections	and constrained refinement
619 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0267P)^2 + 2.909P]$
6 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.92 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.54 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zn1	0.19902 (3)	0.26767 (3)	0.246490 (13)	0.01234 (6)	
Zn2	0.26205 (3)	0.12585 (3)	0.120459 (13)	0.01308 (7)	
Zn3	0.12868 (3)	0.40139 (3)	0.372471 (12)	0.01223 (7)	
01	0.25397 (19)	0.31307 (16)	0.07148 (8)	0.0198 (4)	
O1W	0.3318 (2)	0.7891 (3)	0.26301 (11)	0.0473 (7)	
H1A	0.263 (3)	0.747 (4)	0.2846 (15)	0.057*	
H1B	0.304 (4)	0.816 (4)	0.2245 (10)	0.057*	
O2	0.24293 (18)	0.39914 (16)	0.16108 (8)	0.0163 (3)	
O2WB	0.0297 (4)	1.2705 (5)	-0.01008 (17)	0.0353 (10)	0.50
O3	0.3008 (2)	1.01970 (17)	0.04816 (8)	0.0221 (4)	
O2WA	0.0059 (6)	0.9448 (6)	0.0086 (2)	0.0554 (17)	0.50
O4	0.2498 (2)	0.89274 (18)	0.14176 (8)	0.0238 (4)	
05	0.16648 (18)	0.22390 (16)	0.42778 (8)	0.0176 (4)	
O6	0.15301 (18)	0.14730 (16)	0.33667 (8)	0.0167 (3)	
07	0.12225 (19)	-0.47631 (16)	0.43426 (8)	0.0177 (4)	
08	0.1139 (2)	-0.33392 (17)	0.34139 (8)	0.0214 (4)	
O9	0.01511 (17)	0.36945 (17)	0.24508 (8)	0.0181 (4)	
O10	-0.06132 (17)	0.39961 (17)	0.34319 (8)	0.0169 (3)	
011	-0.71777 (16)	0.41254 (16)	0.30577 (8)	0.0149 (3)	
012	-0.58193 (19)	0.4146 (2)	0.38758 (8)	0.0268 (4)	
O13	0.45204 (17)	0.12092 (17)	0.15619 (8)	0.0181 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

O14	0.38613 (17)	0.17370 (17)	0.25117 (8)	0.0179 (4)
015	0.9879 (2)	0.1151 (2)	0.11281 (9)	0.0270 (4)
O16	1.11797 (17)	0.12825 (16)	0.19406 (8)	0.0156 (3)
N1	-0.1435 (3)	0.8121 (4)	0.11834 (13)	0.0565 (10)
H1N	-0.096 (4)	0.819 (4)	0.0802 (13)	0.068*
N2	-0.3877 (2)	0.7558 (2)	0.28617 (10)	0.0184 (4)
H2N	-0.4749 (19)	0.770 (3)	0.2783 (14)	0.022*
N3	-0.3498(2)	0.6593 (2)	0.48259 (11)	0.0261 (5)
H3N	-0.346(3)	0.635 (3)	0.5245 (9)	0.031*
C1	0.2898(3)	0.5447(2)	0.06242(11)	0.0159(5)
C2	0.2758(3)	0.6576(2)	0.09009(11)	0.0158(5)
H2	0.2443	0.6497	0.1328	0.019*
C3	0.2089(3)	0.7831(2)	0.05381(11)	0.019
C4	0.3613(3)	0.7031(2) 0.7939(2)	-0.00916(12)	0.0102(5)
С4 Н4	0.3863	0.8767	-0.0330	0.0214 (3)
C5	0.3764(3)	0.6809 (3)	-0.03659(12)	0.020
U5	0.3704 (3)	0.0809 (3)	-0.0787	0.0230 (0)
	0.4120 0.2284 (2)	0.0001	-0.0787	0.030°
	0.3364 (3)	0.3374 (3)	-0.00129(12)	0.0223 (3)
H0	0.3435	0.4827	-0.0204	0.027^{*}
C7	0.2587(2)	0.4086(2)	0.10189 (11)	0.0146 (5)
	0.2853 (3)	0.9050 (2)	0.08303(12)	0.0163(5)
CII	0.1663 (2)	-0.0103 (2)	0.43341 (11)	0.0142 (4)
C12	0.1514 (2)	-0.1155 (2)	0.40159 (11)	0.0148 (5)
H12	0.1466	-0.0985	0.3571	0.018*
C13	0.1436 (2)	-0.2461 (2)	0.43602 (11)	0.0139 (4)
C14	0.1530 (3)	-0.2708 (2)	0.50250 (11)	0.0179 (5)
H14	0.1470	-0.3577	0.5258	0.021*
C15	0.1712 (3)	-0.1665 (2)	0.53413 (12)	0.0216 (5)
H15	0.1796	-0.1837	0.5784	0.026*
C16	0.1768 (3)	-0.0366 (2)	0.49976 (12)	0.0200 (5)
H16	0.1877	0.0333	0.5212	0.024*
C17	0.1636 (2)	0.1306 (2)	0.39605 (11)	0.0135 (4)
C18	0.1254 (2)	-0.3577 (2)	0.40070 (11)	0.0138 (4)
C21	-0.2241 (2)	0.4197 (2)	0.26180 (11)	0.0133 (4)
C22	-0.3393 (2)	0.4109 (2)	0.30544 (11)	0.0138 (4)
H22	-0.3264	0.3884	0.3493	0.017*
C23	-0.4731 (2)	0.4356 (2)	0.28326 (11)	0.0136 (4)
C24	-0.4919 (3)	0.4767 (2)	0.21774 (11)	0.0159 (5)
H24	-0.5812	0.4978	0.2030	0.019*
C25	-0.3769(3)	0.4861 (2)	0.17443 (11)	0.0168 (5)
H25	-0.3895	0.5137	0.1307	0.020*
C26	-0.2433(3)	0.4545 (2)	0.19603 (11)	0.0162(5)
H26	-0.1671	0.4566	0.1668	0.019*
C27	-0.0791(2)	0.3933 (2)	0.28499 (11)	0.0140 (4)
C28	-0.5976(2)	0.4193(2)	0 32967 (11)	0.0150(5)
C31	-0.0791(3)	0.7817(4)	0.17389 (15)	0.0416(8)
H31	0.0181	0 7741	0.1731	0.050*
(32	-0.1520(3)	0.7618 (3)	0.23121 (13)	0.030
032	0.1520 (5)	0.7010(3)	0.20121 (10)	0.02 + 0 (0)

H32	-0.1054	0.7407	0.2693	0.030*
C33	-0.2983 (3)	0.7733 (2)	0.23259 (12)	0.0184 (5)
C34	-0.3620 (3)	0.8093 (3)	0.17313 (13)	0.0246 (6)
H34	-0.4588	0.8202	0.1723	0.030*
C35	-0.2832 (4)	0.8282 (4)	0.11717 (14)	0.0387 (8)
H35	-0.3259	0.8522	0.0781	0.046*
C36	-0.2372 (3)	0.6433 (3)	0.44465 (13)	0.0270 (6)
H36	-0.1537	0.6113	0.4632	0.032*
C37	-0.2419 (3)	0.6728 (3)	0.37923 (13)	0.0253 (6)
H37	-0.1625	0.6596	0.3537	0.030*
C38	-0.3657 (3)	0.7229 (2)	0.35070 (12)	0.0173 (5)
C39	-0.4817 (3)	0.7387 (3)	0.39210 (13)	0.0327 (7)
H39	-0.5664	0.7717	0.3752	0.039*
C40	-0.4708 (3)	0.7060 (4)	0.45719 (14)	0.0376 (8)
H40	-0.5486	0.7162	0.4842	0.045*
C41	0.6209 (2)	0.1089 (2)	0.23487 (11)	0.0134 (4)
C42	0.7377 (2)	0.1208 (2)	0.19237 (11)	0.0140 (4)
H42	0.7264	0.1428	0.1483	0.017*
C43	0.8713 (2)	0.0996 (2)	0.21573 (11)	0.0140 (4)
C44	0.8875 (2)	0.0575 (2)	0.28136 (12)	0.0158 (5)
H44	0.9766	0.0409	0.2970	0.019*
C45	0.7707 (3)	0.0402 (2)	0.32346 (11)	0.0174 (5)
H45	0.7816	0.0085	0.3671	0.021*
C46	0.6379 (3)	0.0698 (2)	0.30081 (12)	0.0166 (5)
H46	0.5604	0.0638	0.3294	0.020*
C47	0.4750 (2)	0.1373 (2)	0.21204 (11)	0.0137 (4)
C48	0.9977 (2)	0.1169 (2)	0.17032 (12)	0.0159 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.01115 (13)	0.01362 (13)	0.01198 (13)	0.00081 (10)	0.00085 (10)	-0.00242 (10)
Zn2	0.01370 (14)	0.01262 (13)	0.01368 (13)	-0.00055 (10)	-0.00062 (10)	-0.00445 (10)
Zn3	0.01145 (13)	0.01246 (13)	0.01351 (13)	-0.00087 (10)	-0.00011 (10)	-0.00432 (10)
01	0.0310 (10)	0.0129 (8)	0.0157 (8)	0.0005 (7)	-0.0012 (7)	-0.0039 (7)
O1W	0.0225 (11)	0.0826 (19)	0.0267 (12)	-0.0079 (12)	-0.0048 (9)	0.0168 (12)
O2	0.0202 (9)	0.0156 (8)	0.0124 (8)	-0.0043 (7)	0.0009 (7)	-0.0010 (6)
O2WB	0.032 (2)	0.065 (3)	0.0106 (17)	-0.002 (2)	0.0014 (16)	-0.0108 (18)
O3	0.0345 (11)	0.0132 (8)	0.0194 (9)	-0.0016 (7)	0.0004 (8)	-0.0051 (7)
O2WA	0.045 (3)	0.099 (5)	0.026 (3)	-0.019 (4)	0.005 (2)	-0.020 (3)
O4	0.0344 (11)	0.0198 (9)	0.0183 (9)	0.0018 (8)	0.0026 (8)	-0.0081 (7)
05	0.0249 (9)	0.0117 (8)	0.0170 (8)	-0.0014 (7)	-0.0015 (7)	-0.0042 (6)
O6	0.0215 (9)	0.0150 (8)	0.0134 (8)	-0.0041 (7)	-0.0018 (7)	-0.0013 (6)
07	0.0257 (9)	0.0121 (8)	0.0158 (8)	-0.0008 (7)	-0.0003 (7)	-0.0039 (6)
08	0.0312 (10)	0.0185 (9)	0.0152 (8)	-0.0039 (8)	-0.0011 (7)	-0.0043 (7)
09	0.0120 (8)	0.0227 (9)	0.0184 (9)	0.0038 (7)	0.0024 (7)	-0.0025 (7)
O10	0.0113 (8)	0.0234 (9)	0.0170 (8)	-0.0015 (7)	-0.0014 (6)	-0.0060 (7)
O11	0.0106 (8)	0.0171 (8)	0.0174 (8)	-0.0016 (6)	0.0007 (6)	-0.0043 (7)

012	0.0174 (9)	0.0480 (12)	0.0158 (9)	-0.0067 (8)	0.0021 (7)	-0.0078 (8)
013	0.0141 (8)	0.0237 (9)	0.0174 (8)	-0.0005 (7)	-0.0016 (7)	-0.0061 (7)
014	0.0129 (8)	0.0211 (9)	0.0205 (9)	0.0025 (7)	-0.0023 (7)	-0.0064 (7)
015	0.0216 (10)	0.0446 (12)	0.0166 (9)	-0.0027 (8)	0.0013 (7)	-0.0103 (8)
016	0.0112 (8)	0.0150 (8)	0.0214 (9)	-0.0012 (6)	0.0010 (7)	-0.0062 (7)
N1	0.0381 (17)	0.114 (3)	0.0187 (13)	-0.0153 (18)	0.0111 (12)	-0.0176 (16)
N2	0.0169 (10)	0.0220 (11)	0.0156 (10)	-0.0020 (8)	-0.0008 (8)	-0.0015 (8)
N3	0.0263 (12)	0.0364 (13)	0.0147 (11)	-0.0025 (10)	-0.0025 (9)	-0.0020 (10)
C1	0.0201 (12)	0.0134 (11)	0.0130 (11)	-0.0002 (9)	0.0001 (9)	0.0000 (9)
C2	0.0182 (12)	0.0160 (11)	0.0130 (11)	0.0010 (9)	0.0008 (9)	-0.0030 (9)
C3	0.0194 (12)	0.0141 (11)	0.0157 (11)	0.0004 (9)	-0.0014 (9)	-0.0044 (9)
C4	0.0323 (15)	0.0115 (11)	0.0185 (12)	0.0001 (10)	0.0038 (11)	0.0005 (9)
C5	0.0417 (17)	0.0186 (13)	0.0131 (12)	0.0007 (11)	0.0081 (11)	-0.0020 (10)
C6	0.0365 (15)	0.0153 (12)	0.0158 (12)	0.0008 (11)	0.0035 (11)	-0.0051 (9)
C7	0.0138 (11)	0.0135 (11)	0.0158 (11)	0.0007 (9)	-0.0016 (9)	-0.0007 (9)
C8	0.0165 (12)	0.0143 (11)	0.0193 (12)	0.0007 (9)	-0.0044 (9)	-0.0056 (9)
C11	0.0153 (11)	0.0122 (11)	0.0150 (11)	-0.0001 (9)	-0.0004 (9)	-0.0024 (9)
C12	0.0146 (11)	0.0157 (11)	0.0139 (11)	-0.0001 (9)	-0.0007 (9)	-0.0021 (9)
C13	0.0135 (11)	0.0132 (11)	0.0155 (11)	-0.0006 (8)	0.0000 (9)	-0.0039 (9)
C14	0.0252 (13)	0.0124 (11)	0.0152 (11)	-0.0012 (9)	0.0012 (10)	-0.0011 (9)
C15	0.0362 (15)	0.0177 (12)	0.0106 (11)	-0.0022 (11)	-0.0013 (10)	-0.0016 (9)
C16	0.0314 (14)	0.0150 (11)	0.0150 (11)	-0.0022 (10)	-0.0011 (10)	-0.0061 (9)
C17	0.0101 (11)	0.0136 (11)	0.0163 (11)	-0.0013 (8)	-0.0001 (9)	-0.0016 (9)
C18	0.0118 (11)	0.0128 (11)	0.0170 (11)	-0.0020 (8)	0.0025 (9)	-0.0041 (9)
C21	0.0123 (11)	0.0111 (10)	0.0166 (11)	-0.0007 (8)	-0.0004 (9)	-0.0032 (9)
C22	0.0151 (11)	0.0152 (11)	0.0116 (10)	-0.0018 (9)	-0.0012 (9)	-0.0030 (9)
C23	0.0133 (11)	0.0121 (10)	0.0158 (11)	-0.0022 (8)	0.0015 (9)	-0.0040 (9)
C24	0.0132 (11)	0.0165 (11)	0.0181 (12)	-0.0010 (9)	-0.0018 (9)	-0.0032 (9)
C25	0.0191 (12)	0.0203 (12)	0.0110 (11)	-0.0017 (9)	-0.0024 (9)	-0.0020 (9)
C26	0.0148 (11)	0.0173 (11)	0.0168 (11)	-0.0018 (9)	0.0035 (9)	-0.0047 (9)
C27	0.0138 (11)	0.0093 (10)	0.0188 (11)	-0.0023 (8)	0.0003 (9)	-0.0024 (9)
C28	0.0138 (11)	0.0143 (11)	0.0169 (11)	-0.0011 (9)	0.0012 (9)	-0.0036 (9)
C31	0.0277 (16)	0.069 (2)	0.0312 (17)	-0.0091 (16)	0.0051 (13)	-0.0172 (16)
C32	0.0250 (14)	0.0270 (14)	0.0231 (13)	-0.0051 (11)	-0.0018 (11)	-0.0071 (11)
C33	0.0265 (13)	0.0106 (11)	0.0186 (12)	-0.0045 (9)	0.0011 (10)	-0.0035 (9)
C34	0.0292 (15)	0.0229 (13)	0.0214 (13)	-0.0001 (11)	-0.0023 (11)	-0.0032 (10)
C35	0.0403 (19)	0.058 (2)	0.0184 (14)	-0.0066 (16)	-0.0017 (13)	-0.0067 (14)
C36	0.0232 (14)	0.0327 (15)	0.0224 (13)	0.0026 (11)	-0.0030 (11)	0.0010 (11)
C37	0.0216 (13)	0.0315 (15)	0.0202 (13)	0.0056 (11)	0.0014 (11)	-0.0001 (11)
C38	0.0199 (12)	0.0151 (11)	0.0166 (12)	-0.0025 (9)	-0.0016 (10)	-0.0022 (9)
C39	0.0151 (13)	0.061 (2)	0.0211 (14)	0.0032 (13)	-0.0022 (11)	-0.0054 (13)
C40	0.0201 (15)	0.069 (2)	0.0217 (14)	0.0003 (14)	0.0023 (11)	-0.0058 (14)
C41	0.0126 (11)	0.0103 (10)	0.0180 (11)	-0.0003 (8)	-0.0035 (9)	-0.0033 (9)
C42	0.0162 (11)	0.0131 (11)	0.0135 (11)	-0.0024 (9)	-0.0013 (9)	-0.0039 (9)
C43	0.0136 (11)	0.0118 (10)	0.0175 (11)	-0.0010 (8)	0.0002 (9)	-0.0055 (9)
C44	0.0141 (11)	0.0147 (11)	0.0200 (12)	-0.0013 (9)	-0.0067 (9)	-0.0046 (9)
C45	0.0214 (13)	0.0175 (12)	0.0135 (11)	-0.0026 (10)	-0.0030 (9)	-0.0026 (9)
C46	0.0164 (12)	0.0164 (11)	0.0172 (12)	-0.0019 (9)	0.0020 (9)	-0.0043 (9)

supporting information

C47	0.0122 (11)	0.0098 (10)	0.0183 (11)	-0.0022 (8)	0.0009 (9)	-0.0008 (9)
C48	0.0142 (11)	0.0143 (11)	0.0194 (12)	-0.0011 (9)	0.0016 (9)	-0.0046 (9)

Geometric parameters (Å, °)

Zn1—014	1.9980 (17)	С6—Н6	0.9300
Zn1—09	2.0089 (17)	C11—C12	1.391 (3)
Zn1—O2	2.0705 (16)	C11—C16	1.391 (3)
Zn1—06	2.1005 (16)	C11—C17	1.503 (3)
Zn1—O16 ⁱ	2.1607 (16)	C12—C13	1.394 (3)
Zn1—O11 ⁱⁱ	2.3100 (16)	C12—H12	0.9300
Zn2—O1	1.9927 (17)	C13—C14	1.393 (3)
Zn2013	2.0048 (17)	C13—C18	1.502 (3)
Zn2—O16 ⁱ	2.0314 (17)	C14—C15	1.387 (3)
Zn2—O3 ⁱⁱⁱ	2.0559 (17)	C14—H14	0.9300
Zn2—O4 ⁱⁱⁱ	2.3422 (18)	C15—C16	1.386 (3)
Zn3—O10	1.9569 (16)	C15—H15	0.9300
Zn3—O11 ⁱⁱ	1.9766 (16)	C16—H16	0.9300
Zn3—O7 ^{iv}	1.9773 (16)	C21—C26	1.394 (3)
Zn3—O5	1.9917 (17)	C21—C22	1.396 (3)
O1—C7	1.274 (3)	C21—C27	1.496 (3)
O1W—H1A	0.863 (18)	C22—C23	1.386 (3)
O1W—H1B	0.863 (18)	C22—H22	0.9300
O2—C7	1.244 (3)	C23—C24	1.393 (3)
O3—C8	1.268 (3)	C23—C28	1.499 (3)
O4—C8	1.259 (3)	C24—C25	1.390 (3)
O5—C17	1.272 (3)	C24—H24	0.9300
O6—C17	1.249 (3)	C25—C26	1.388 (3)
O7—C18	1.281 (3)	С25—Н25	0.9300
O8—C18	1.246 (3)	C26—H26	0.9300
O9—C27	1.253 (3)	C31—C32	1.354 (4)
O10—C27	1.272 (3)	C31—H31	0.9300
O11—C28	1.293 (3)	C32—C33	1.401 (4)
O12—C28	1.239 (3)	С32—Н32	0.9300
O13—C47	1.262 (3)	C33—C34	1.411 (4)
O14—C47	1.254 (3)	C34—C35	1.358 (4)
O15—C48	1.234 (3)	C34—H34	0.9300
O16—C48	1.301 (3)	С35—Н35	0.9300
N1-C31	1.339 (4)	C36—C37	1.367 (4)
N1-C35	1.343 (4)	С36—Н36	0.9300
N1—H1N	0.901 (19)	C37—C38	1.396 (4)
N2-C38	1.373 (3)	С37—Н37	0.9300
N2-C33	1.374 (3)	C38—C39	1.403 (4)
N2—H2N	0.862 (17)	C39—C40	1.367 (4)
N3—C36	1.335 (4)	С39—Н39	0.9300
N3—C40	1.337 (4)	C40—H40	0.9300
N3—H3N	0.880 (17)	C41—C42	1.392 (3)
C1—C6	1.390 (3)	C41—C46	1.397 (3)

C1—C2	1.392 (3)	C41—C47	1.503 (3)
C1—C7	1.509 (3)	C42—C43	1.392 (3)
C2—C3	1.400 (3)	C42—H42	0.9300
С2—Н2	0.9300	C43—C44	1.393 (3)
C3—C4	1.388 (3)	C43—C48	1.500 (3)
C3—C8	1.500 (3)	C44—C45	1.388 (3)
C4—C5	1.390 (4)	C44—H44	0.9300
C4—H4	0.9300	C45—C46	1 386 (3)
C5-C6	1387(3)	C45 - H45	0.9300
C5—H5	0.9300	C46—H46	0.9300
	0.9500		0.9500
014 - 7n1 - 09	176 55 (7)	C15—C14—C13	120 3 (2)
014 - 7n1 - 02	96 23 (7)	C_{15} C_{14} H_{14}	119.9
09-7n1-02	84 01 (7)	C13—C14—H14	119.9
014 - 7n1 - 06	85 68 (7)	C_{16} $-C_{15}$ $-C_{14}$	120.0(2)
09-7n1-06	93.84(7)	C_{16} C_{15} H_{15}	120.0 (2)
0^{2} 7^{1} 0^{6}	175 51 (6)	C_{14} C_{15} H_{15}	120.0
014 $7n^1$ 016^i	173.31(0) 01.83(7)	$C_{14} = C_{15} = C_{15}$	120.0 120.3(2)
$00 7n1 016^{i}$	91.03(7)	$C_{15} = C_{16} = C_{16}$	120.3 (2)
0^{2} 7^{n1} $0^{16^{1}}$	91.01(7)	$C_{11} = C_{10} = H_{10}$	119.0
02 - 2 = 010	90.24 (0)	C11—C10—H10	119.0 125.0(2)
00-211-010	95.70 (0) 99.41 (()	06 - C17 - C11	123.0(2)
$014-2\pi 1-011^{"}$	88.41 (0)	05 017 011	117.7(2)
09-2n1-011	88.14 (7)		117.3 (2)
02—Zn1— 011 "	91.68 (6)	08-018-07	122.5 (2)
O6—Zn1—O11"	84.30 (6)	08-018-013	120.5 (2)
$O16^{1}$ Zn1 $O11^{11}$	178.03 (6)	07	117.0 (2)
O1—Zn2—O13	100.18 (7)	C26—C21—C22	120.1 (2)
$O1-Zn2-O16^{1}$	103.26 (7)	C26—C21—C27	119.4 (2)
$O13$ — $Zn2$ — $O16^{i}$	107.64 (7)	C22—C21—C27	120.6 (2)
O1— $Zn2$ — $O3$ ⁱⁱⁱ	101.82 (7)	C23—C22—C21	119.9 (2)
O13—Zn2—O3 ⁱⁱⁱ	101.12 (7)	C23—C22—H22	120.0
O16 ⁱ —Zn2—O3 ⁱⁱⁱ	137.35 (7)	C21—C22—H22	120.0
O1—Zn2—O4 ⁱⁱⁱ	159.21 (7)	C22—C23—C24	120.0 (2)
O13—Zn2—O4 ⁱⁱⁱ	92.86 (7)	C22—C23—C28	120.1 (2)
$O16^{i}$ —Zn2—O4 ⁱⁱⁱ	87.90 (6)	C24—C23—C28	119.9 (2)
O3 ⁱⁱⁱ —Zn2—O4 ⁱⁱⁱ	59.44 (6)	C25—C24—C23	119.9 (2)
O10—Zn3—O11 ⁱⁱ	116.47 (7)	C25—C24—H24	120.1
O10—Zn3—O7 ^{iv}	106.51 (7)	C23—C24—H24	120.1
$O11^{ii}$ —Zn3— $O7^{iv}$	119.79 (7)	C26—C25—C24	120.4 (2)
O10—Zn3—O5	107.06 (7)	C26—C25—H25	119.8
O11 ⁱⁱ —Zn3—O5	102.47 (7)	C24—C25—H25	119.8
O7 ^{iv} —Zn3—O5	102.88 (7)	C25—C26—C21	119.6 (2)
C7—O1—Zn2	118.93 (15)	C25—C26—H26	120.2
H1A—O1W—H1B	106 (3)	C21—C26—H26	120.2
C7—O2—Zn1	143.82 (16)	O9—C27—O10	125.5 (2)
C8—O3—Zn2 ^{iv}	96.33 (14)	O9—C27—C21	117.3 (2)
C8—O4—Zn2 ^{iv}	83.55 (14)	O10—C27—C21	117.2 (2)
C17—O5—Zn3	111.28 (15)	O12—C28—O11	123.6 (2)

C17—O6—Zn1	146.85 (15)	O12—C28—C23	119.8 (2)
C18—O7—Zn3 ⁱⁱⁱ	106.38 (14)	O11—C28—C23	116.6 (2)
C27—O9—Zn1	137.38 (16)	N1—C31—C32	121.6 (3)
C27—O10—Zn3	119.50 (15)	N1—C31—H31	119.2
C28—O11—Zn3 ⁱ	111.44 (14)	C32—C31—H31	119.2
C28—O11—Zn1 ⁱ	131.84 (15)	C31—C32—C33	119.4 (3)
$Zn3^{i}$ —O11— $Zn1^{i}$	98.76 (7)	С31—С32—Н32	120.3
C47—O13—Zn2	124.81 (15)	С33—С32—Н32	120.3
C47—O14—Zn1	136.38 (16)	N2—C33—C32	126.9 (2)
C48—O16—Zn2 ⁱⁱ	105.49 (14)	N2—C33—C34	115.8 (2)
C48—O16—Zn1 ⁱⁱ	133.79 (15)	C32—C33—C34	117.3 (2)
$Zn2^{ii}$ —O16—Zn1 ⁱⁱ	103.84 (7)	C35—C34—C33	120.6 (3)
C31—N1—C35	121.3 (3)	С35—С34—Н34	119.7
C31 - N1 - H1N	122 (3)	C33—C34—H34	119.7
C35—N1—H1N	117 (3)	N1—C35—C34	119.8 (3)
C_{38} N2 $-C_{33}$	132.6 (2)	N1—C35—H35	120.1
C_{38} N2 H2N	113 (2)	C34—C35—H35	120.1
C_{33} N2 H2N	115 (2)	N3-C36-C37	120.1 121.5(3)
$C_{36} N_{3} C_{40}$	1204(2)	N3-C36-H36	119.3
C_{36} N ₃ H ₃ N	120(2)	C37—C36—H36	119.3
C40-N3-H3N	119 (2)	$C_{36} - C_{37} - C_{38}$	120.0(3)
C6-C1-C2	119 4 (2)	C36—C37—H37	120.0
C6-C1-C7	1201(2)	C38—C37—H37	120.0
$C_{2}-C_{1}-C_{7}$	120.1(2) 120.4(2)	N_{2} C_{38} C_{37}	127.0(2)
C1-C2-C3	120.2(2)	N2-C38-C39	116.1(2)
C1-C2-H2	119.9	C37—C38—C39	116.9 (2)
C3—C2—H2	119.9	C40-C39-C38	120.3(3)
C4-C3-C2	119.8 (2)	C40—C39—H39	119.8
C4-C3-C8	120.6 (2)	C38—C39—H39	119.8
$C_{2}-C_{3}-C_{8}$	119.7 (2)	N3—C40—C39	120.9 (3)
$C_3 - C_4 - C_5$	119.9 (2)	N3—C40—H40	119.6
C3—C4—H4	120.0	C39—C40—H40	119.6
C5—C4—H4	120.0	C42—C41—C46	119.8 (2)
C6—C5—C4	120.1 (2)	C42—C41—C47	121.9 (2)
С6—С5—Н5	119.9	C46—C41—C47	118.2 (2)
C4—C5—H5	119.9	C43—C42—C41	120.1 (2)
C5—C6—C1	120.4 (2)	C43—C42—H42	120.0
С5—С6—Н6	119.8	C41—C42—H42	120.0
С1—С6—Н6	119.8	C42—C43—C44	119.8 (2)
O2—C7—O1	125.9 (2)	C42—C43—C48	120.3 (2)
O2—C7—C1	117.3 (2)	C44—C43—C48	119.9 (2)
O1—C7—C1	116.8 (2)	C45—C44—C43	120.0 (2)
O4—C8—O3	120.6 (2)	C45—C44—H44	120.0
O4—C8—C3	119.8 (2)	C43—C44—H44	120.0
O3—C8—C3	119.6 (2)	C46—C45—C44	120.3 (2)
O4—C8—Zn2 ^{iv}	66.84 (13)	C46—C45—H45	119.9
O3—C8—Zn2 ^{iv}	53.82 (12)	C44—C45—H45	119.9
C3—C8—Zn2 ^{iv}	173.03 (18)	C45—C46—C41	119.8 (2)

119.6 (2)	C45—C46—H46	120.1
119.5 (2)	C41—C46—H46	120.1
120.9 (2)	O14—C47—O13	125.8 (2)
120.3 (2)	O14—C47—C41	116.3 (2)
119.8	013-C47-C41	117.9 (2)
119.8	015-C48-016	121.4(2)
119.5 (2)	015 - C48 - C43	121.1(2) 120.8(2)
1212(2)	016-C48-C43	120.0(2) 117.8(2)
121.2(2) 1194(2)		117.0 (2)
119.4 (2)		
-62.52(19)	Zn3 ⁱⁱⁱ —O7—C18—C13	-170.95 (16)
48.50 (19)	C14—C13—C18—O8	178.4 (2)
-166.28(18)	C12-C13-C18-O8	-1.7(3)
169.47 (18)	C14—C13—C18—O7	-1.6(3)
-171.67(16)	C_{12} C_{13} C_{18} O_{7}	178.3 (2)
74 6 (3)	$C_{26} - C_{21} - C_{22} - C_{23}$	0.6(3)
-1088(3)	C_{27} C_{21} C_{22} C_{23} C_{27} C_{21} C_{22} C_{23}	-1800(2)
-172(3)	$C_{21} = C_{22} = C_{23} = C_{24}$	-37(3)
163 2 (3)	$C_{21} = C_{22} = C_{23} = C_{24}$	176.8(2)
63 03 (17)	$C_{21} = C_{22} = C_{23} = C_{26}$	34(3)
-60.01(16)	$C_{22} = C_{23} = C_{24} = C_{25}$	-1772(2)
175.06 (15)	$C_{23} = C_{23} = C_{24} = C_{25} = C_{25}$	177.2(2)
82 3 (3)	$C_{23} = C_{24} = C_{23} = C_{20}$	-32(4)
-043(3)	$C_{24} = C_{23} = C_{20} = C_{21}$	3.2(4)
-94.3(3)	$C_{22} = C_{21} = C_{20} = C_{23}$	2.9(3)
-6.6(3)	7^{-1} 0^{-1} 7^{-1} 0^{-1} 7^{-1} 0^{-1} 0^{-1} 0^{-1} 0^{-1} 0^{-1}	-170.0(2)
-0.0(3)	$2\pi^{-1} - 09 - 027 - 010$	29.2 (4)
-155.4(2)	$2\pi 1 - 09 - 027 - 021$	-152.30(18)
20.6(2)	$2n_{3}$ 010 027 09	10.4(3)
114.5(2)	$2n_{3}$ 010 27 21	-168.02 (15)
-63.5(2)	$C_{26} = C_{21} = C_{27} = 09$	-18.2(3)
6.36 (19)	$C_{22} = C_{21} = C_{27} = 0.10$	162.4 (2)
142.94 (16)	C26—C21—C27—O10	160.4 (2)
-107.54 (17)	C22—C21—C27—O10	-19.0 (3)
97.71 (19)	Zn3 ¹ —O11—C28—O12	2.3 (3)
-9.8 (2)	Zn1'	-122.5 (2)
-157.96 (18)	Zn3'-011-C28-C23	-176.84 (15)
-98.55 (18)	Zn1 ¹ —O11—C28—C23	58.3 (3)
-127.97 (19)	C22—C23—C28—O12	16.8 (3)
-37.1 (2)	C24—C23—C28—O12	-162.7 (2)
147.0 (2)	C22—C23—C28—O11	-164.0 (2)
53.3 (2)	C24—C23—C28—O11	16.5 (3)
-128.6 (2)	C35—N1—C31—C32	2.1 (6)
0.7 (4)	N1—C31—C32—C33	-0.1 (5)
178.0 (2)	C38—N2—C33—C32	-0.5 (4)
-2.6 (4)	C38—N2—C33—C34	-179.2 (2)
176.4 (2)	C31—C32—C33—N2	179.6 (3)
2.1 (4)	C31—C32—C33—C34	-1.8 (4)
-176.9 (2)	N2-C33-C34-C35	-179.5 (3)
	119.6 (2) 119.5 (2) 120.9 (2) 120.3 (2) 119.8 119.8 119.8 119.5 (2) 121.2 (2) 119.4 (2) -62.52 (19) 48.50 (19) -166.28 (18) 169.47 (18) -171.67 (16) 74.6 (3) -108.8 (3) -17.2 (3) 163.2 (3) 63.03 (17) -60.01 (16) 175.06 (15) 82.3 (3) -94.3 (3) 173.8 (3) -6.6 (3) -155.4 (2) 20.6 (2) 114.5 (2) -63.5 (2) 6.36 (19) 142.94 (16) -107.54 (17) 97.71 (19) -98.55 (18) -127.97 (19) -37.1 (2) 147.0 (2) 53.3 (2) -128.6 (2) 0.7 (4) 178.0 (2) -2.6 (4) 176.9 (2)	119.6 (2) C45—C46—H46 119.5 (2) C41—C46—H46 120.9 (2) O14—C47—O13 120.3 (2) O14—C47—C41 119.8 O15—C48—O16 119.7 (2) O15—C48—C43 121.2 (2) O16—C48—C43 119.4 (2) -62.52 (19) -62.52 (19) Zn3 ⁱⁱⁱ —O7—C18—C13 48.50 (19) C14—C13—C18—O8 -166.28 (18) C12—C13—C18—O7 -171.67 (16) C12—C13—C18—O7 -174.6 (3) C26—C21—C22—C23 -172 (3) C21—C22—C23—C24 163.2 (3) C21—C22—C23—C24 163.2 (3) C21—C22—C23—C24 163.2 (3) C21—C22—C23—C24 163.2 (3) C21—C22—C23—C24 163.3 (3) C24—C25—C26 82.3 (3) C24—C25—C26 82.3 (3) C24—C25—C26 94.3 (3) C22—C21—C26—C25 -66.6 (3) Zn1—O9—C27—O10 -155.4 (2) Zn3—O10—C27—O9 142.94 (16) C26—C21—C27—O9 142.94 (16) C26—C21—C27—O10 -107.54 (17) C22—C23—C28—O12 -175.96 (18) <

C3—C4—C5—C6	0.4 (4)	C32—C33—C34—C35	1.7 (4)
C4—C5—C6—C1	-2.3 (4)	C31—N1—C35—C34	-2.1 (6)
C2-C1-C6-C5	1.8 (4)	C33—C34—C35—N1	0.2 (5)
C7—C1—C6—C5	-175.6 (2)	C40—N3—C36—C37	-0.4 (5)
Zn1—O2—C7—O1	-2.7 (4)	N3-C36-C37-C38	1.0 (4)
Zn1—O2—C7—C1	178.93 (18)	C33—N2—C38—C37	-13.3 (4)
Zn2—O1—C7—O2	-13.8 (3)	C33—N2—C38—C39	168.3 (3)
Zn2—O1—C7—C1	164.62 (16)	C36—C37—C38—N2	-179.2 (3)
C6—C1—C7—O2	165.9 (2)	C36—C37—C38—C39	-0.8 (4)
C2-C1-C7-O2	-11.4 (3)	N2-C38-C39-C40	178.7 (3)
C6—C1—C7—O1	-12.6 (3)	C37—C38—C39—C40	0.1 (4)
C2-C1-C7-O1	170.1 (2)	C36—N3—C40—C39	-0.3 (5)
Zn2 ^{iv} —O4—C8—O3	-2.6 (2)	C38—C39—C40—N3	0.5 (5)
Zn2 ^{iv} —O4—C8—C3	177.7 (2)	C46—C41—C42—C43	-2.9 (3)
Zn2 ^{iv} —O3—C8—O4	3.0 (3)	C47—C41—C42—C43	177.0 (2)
Zn2 ^{iv} —O3—C8—C3	-177.37 (19)	C41—C42—C43—C44	4.5 (3)
C4—C3—C8—O4	-173.6 (2)	C41—C42—C43—C48	-177.9 (2)
C2—C3—C8—O4	7.3 (4)	C42—C43—C44—C45	-1.8 (3)
C4—C3—C8—O3	6.7 (4)	C48—C43—C44—C45	-179.4 (2)
C2—C3—C8—O3	-172.4 (2)	C43—C44—C45—C46	-2.6 (3)
C16—C11—C12—C13	1.5 (4)	C44—C45—C46—C41	4.2 (4)
C17—C11—C12—C13	-175.4 (2)	C42—C41—C46—C45	-1.5 (3)
C11—C12—C13—C14	-0.9 (3)	C47—C41—C46—C45	178.7 (2)
C11—C12—C13—C18	179.1 (2)	Zn1—O14—C47—O13	-20.3 (4)
C12—C13—C14—C15	-0.6 (4)	Zn1—O14—C47—C41	160.78 (16)
C18—C13—C14—C15	179.4 (2)	Zn2—O13—C47—O14	-8.5 (3)
C13—C14—C15—C16	1.5 (4)	Zn2—O13—C47—C41	170.41 (15)
C14-C15-C16-C11	-0.9 (4)	C42—C41—C47—O14	-153.6 (2)
C12—C11—C16—C15	-0.6 (4)	C46—C41—C47—O14	26.3 (3)
C17—C11—C16—C15	176.3 (2)	C42—C41—C47—O13	27.4 (3)
Zn1—O6—C17—O5	32.2 (4)	C46—C41—C47—O13	-152.7 (2)
Zn1—O6—C17—C11	-150.8 (2)	Zn2 ⁱⁱ —O16—C48—O15	-4.2 (3)
Zn3—O5—C17—O6	7.0 (3)	Zn1 ⁱⁱ —O16—C48—O15	123.4 (2)
Zn3—O5—C17—C11	-170.05 (15)	Zn2 ⁱⁱ —O16—C48—C43	173.05 (16)
C12—C11—C17—O6	-2.6 (3)	Zn1 ⁱⁱ —O16—C48—C43	-59.4 (3)
C16—C11—C17—O6	-179.5 (2)	C42—C43—C48—O15	-19.1 (3)
C12—C11—C17—O5	174.6 (2)	C44—C43—C48—O15	158.5 (2)
C16—C11—C17—O5	-2.3 (3)	C42—C43—C48—O16	163.6 (2)
Zn3 ⁱⁱⁱ —O7—C18—O8	9.1 (3)	C44—C43—C48—O16	-18.8 (3)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*; (iii) *x*, *y*-1, *z*; (iv) *x*, *y*+1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O1 <i>W</i> —H1 <i>A</i> ···O8 ^{iv}	0.86 (2)	1.92 (2)	2.778 (3)	172 (4)
O1 <i>W</i> —H1 <i>B</i> ···O4	0.86 (2)	1.87 (2)	2.733 (3)	174 (4)
N1— $H1N$ ···O2 WA	0.90 (2)	2.03 (3)	2.808 (6)	144 (4)

supporting information

N1—H1 N ···O2 WB^{v}	0.90 (2)	1.96 (3)	2.757 (5)	147 (4)
N2—H2 N ···O1 W ⁱ	0.86 (2)	1.89 (2)	2.754 (3)	176 (3)
N3—H3 <i>N</i> ···O12 ^{vi}	0.88 (2)	1.93 (2)	2.764 (3)	157 (3)

Symmetry codes: (i) *x*-1, *y*, *z*; (iv) *x*, *y*+1, *z*; (v) –*x*, –*y*+2, –*z*; (vi) –*x*-1, –*y*+1, –*z*+1.