Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(1R,2S)- N, N^{\prime}-(1,2-Dihydroxyethylene)diformamide

Amir Taheri* and Sayed Mojtaba Moosavi

Department of Chemistry, Imam Hossein University, Tehran, Iran
Correspondence e-mail: amir.tahery1@gmail.com
Received 7 October 2008; accepted 5 November 2008
Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.042 ; w R$ factor $=0.107 ;$ data-to-parameter ratio $=17.3$.

The asymmetric unit of the title compound, $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$, contains one half-molecule which is completed via a crystallographic inversion centre. In the crystal structure, molecules are arranged in undulating layers parallel to (001). Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds consolidate this arrangement.

Related literature

The title compound has been synthesized as a by-product of a procedure described by Sidney et al. (1965) and Ferguson (1968a,b). For related literature regarding the synthesis, see: Mitsch (1965). For the application of the intermediates, see: Ramakrishnan et al. (1990); Vedachalam et al. (1991). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=148.12$
Orthorhombic, Pbca
$a=6.5065$ (11) £
$b=7.2634(12) \AA$
$c=12.772(2) \AA$

$$
\begin{aligned}
& V=603.59(17) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.15 \mathrm{~mm}^{-1} \\
& T=120(2) \mathrm{K} \\
& 0.20 \times 0.20 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: none 5931 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$	46 parameters
$w R\left(F^{2}\right)=0.107$	H -atom parameters constrained
$S=1.00$	$\Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3}$
796 reflections	$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{i}}$	0.88	2.04	2.9093 (16)	170
$\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{O} 2^{\text {ii }}$	0.86	1.81	2.6740 (14)	175

Data collection: SMART (Bruker, 1998); cell refinement: SAINTPlus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2200).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Ferguson, A. N. (1968a). US Patent 3369020.
Ferguson, A. N. (1968b). US Patent 3365454.
Mitsch, R. A. (1965). J. Am. Chem. Soc. 87, 328-333.
Ramakrishnan, V. T., Vedachalam, M. \& Boyer, J. H. (1990). Heterocycles, 31, 479-480.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sidney, V., Clifford, M. \& Barker, R. (1965). J. Org. Chem. 30, 1195-1199.
Vedachalam, M., Ramakrishnan, V. T., Boyer, H., Dagley, I. J., Nelson, K. A. \& Adolph, H. G. (1991). J. Org. Chem. 56, 3413-3419.

supporting information

Acta Cryst. (2008). E64, o2316 [doi:10.1107/S1600536808036209]

(1R,2S)-N, N^{\prime}-(1,2-Dihydroxyethylene)diformamide

Amir Taheri and Sayed Mojtaba Moosavi

S1. Comment

1,4-Diformyl-2,3,5,6-tetrahydroxypiperazine is an important intermediate (Mitsch, 1965) for the preparation of high energetic materials (Ramakrishnan et al. 1990; Vedachalam et al. 1991). The title compound, (I), was obtained as an unexpected by-product during synthesis of 1,4-diformyl-2,3,5,6-tetrahydroxypiperazine (Sidney et al., 1965; Ferguson, 1968a,b). In a modified procedure we have synthesized compound (I) in much better yield and present its crystal structure in this communication.
Formally, compound (I) is a derivative of ethane with two hydroxyl and two formyl groups as substitutes of the corresponding H atoms. The asymmetric unit of compound (I) contains one half of the molecule that is completed via an inversion centre, leading to a R, S conformation for the two C atoms (Fig. 1). The bond lengths (Allen et al., 1987) and angles in the molecule are within normal ranges.
In the crystal structure, molecules are arranged in undulated layers parallel to (001). Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds consolidate this arrangement (Fig. 2 and Table 1).

S2. Experimental

76 mass parts of glyoxal monohydrate were stirred with 90 parts of formamide at room temperature. Then 6 mass parts of sodium bicarbonate were added. After 3 days, the crude crystalline product was washed with cold methanol and was dried, yielding 84.2 mass parts of 1,4-diformyl-2,3,5,6-tetrahydroxypiperazine (decomposition temperature 463 K). After filtering off the crystals, the aqueous mother liquor was kept at 273 K for 1 day and 2.2 mass parts of 1,2-dihydroxy-1,2diformamidoethane were obtained (decomposition temperature 408-413 K). Crystals suitable for structure determination were grown by recrystallization from dimethyl sulfoxide (DMSO).

S3. Refinement

H atoms were positioned geometrically, with $\mathrm{N}-\mathrm{H}=0.88 \AA$ (for NH), $\mathrm{O}-\mathrm{H}=0.86 \AA$ (for OH) and $\mathrm{C}-\mathrm{H}=0.95 \AA$ (for the aldehyde group) and and $\mathrm{C}-\mathrm{H}=1.00 \AA$ (for the aliphatic C atom), and constrained to ride on their parent atoms, with $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{N}, \mathrm{O}, \mathrm{C})$.

Figure 1
The molecular structure of the title compound, drawn with displacement ellipsoids at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Figure 2

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

(1R,2S)-1,2-Dihydroxy-1,2-diformamidoethane

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=148.12$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=6.5065$ (11) \AA
$b=7.2634(12) \AA$
$c=12.772(2) \AA$
$V=603.59(17) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans
$F(000)=312$
$D_{\mathrm{x}}=1.630 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 854 reflections
$\theta=3-30^{\circ}$
$\mu=0.15 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Prism, colourless
$0.20 \times 0.20 \times 0.15 \mathrm{~mm}$

5931 measured reflections
796 independent reflections
662 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=29.0^{\circ}, \theta_{\text {min }}=3.2^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.107$
$S=1.00$
796 reflections
46 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$l=-17 \rightarrow 17$

Secondary atom site location: difference Fourier
\quad map
Hydrogen site location: mixed
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0499 P)^{2}+0.531 P\right]$
\quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.41$ e \AA^{-3}
$\Delta \rho_{\min }=-0.24$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
N1	$0.07678(19)$	$0.16658(16)$	$0.39820(9)$	$0.0180(3)$
H1N	0.1170	0.2562	0.4397	0.022^{*}
O1	$-0.25095(15)$	$0.06643(13)$	$0.45643(7)$	$0.0193(3)$
H1O	-0.3145	0.0628	0.3970	0.023^{*}
O2	$0.07384(16)$	$0.05127(14)$	$0.23276(7)$	$0.0207(3)$
C1	$-0.0424(2)$	$0.01985(18)$	$0.44519(10)$	$0.0164(3)$
H1A	-0.0304	-0.0935	0.4012	0.020^{*}
C2	$0.1269(2)$	$0.16978(19)$	$0.29690(10)$	$0.0178(3)$
H2A	0.2085	0.2694	0.2725	0.021^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0226(6)$	$0.0168(5)$	$0.0147(5)$	$-0.0028(4)$	$-0.0004(4)$	$-0.0002(4)$
O1	$0.0165(5)$	$0.0254(5)$	$0.0160(4)$	$0.0025(4)$	$-0.0025(4)$	$-0.0020(4)$
O2	$0.0203(5)$	$0.0258(5)$	$0.0160(5)$	$-0.0010(4)$	$0.0020(4)$	$-0.0012(4)$
C1	$0.0164(6)$	$0.0182(6)$	$0.0146(6)$	$-0.0005(5)$	$-0.0003(5)$	$0.0004(5)$
C2	$0.0168(6)$	$0.0196(6)$	$0.0170(6)$	$0.0025(5)$	$0.0007(5)$	$0.0035(5)$

Geometric parameters $\left(\stackrel{A}{A}{ }^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 2$	$1.3344(17)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.2374(17)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.4483(17)$	$\mathrm{C} 1-\mathrm{C}^{\mathrm{i}}$	$1.532(3)$

$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	0.88	$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	1.0000
$\mathrm{O} 1-\mathrm{C} 1$	$1.4056(16)$	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9500
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	0.86		
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	$123.06(11)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.3
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	119.9	$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.3
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	117.0	$\mathrm{C} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.3
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	111.4	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 1$	$124.17(13)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$112.47(11)$	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	117.9
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C}^{\mathrm{i}}$	$107.45(13)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	117.9
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C}^{\mathrm{i}}$			
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{O} 1$			$1.6(2)$

Symmetry code: (i) $-x,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.88	2.04	$2.9093(16)$	170
$\mathrm{O} 1 — \mathrm{H} 1 O \cdots 2^{\mathrm{iii}}$	0.86	1.81	$2.6740(14)$	175

Symmetry codes: (ii) $x+1 / 2,-y+1 / 2,-z+1$; (iii) $x-1 / 2, y,-z+1 / 2$.

