inorganic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$Na_{5}(NH_{4})Mn_{3}[B_{9}P_{6}O_{33}(OH)_{3}] \cdot 1.5H_{2}O$

Zhi-Sheng Lin,^{a,b,c} Ya-Xi Huang,^{b,d} Yurii Prots,^b Jing-Tai Zhao^a and Rüdiger Kniep^b*

^aState Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China, ^bMax-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany, ^cGraduate School of Chinese Academy of Sciences, Beijing, People's Republic of China, and ^dDepartment of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China

Correspondence e-mail: kniep@cpfs.mpg.de

Received 6 November 2008; accepted 14 November 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean $\sigma(O-B) = 0.006$ Å; Hatom completeness 31%; disorder in solvent or counterion; R factor = 0.040; wR factor = 0.099; data-to-parameter ratio = 15.1.

The overall hexagonal framework of the title compound, pentasodium ammonium trimanganese(II) borophosphate sesquihydrate, consists of tube-like borophosphate anions, ${}_{\infty}^{1}$ [[B₃P₂O₁₁(OH)]⁴⁻], made up of corner-sharing PO₄ and BO₄ tetrahedra and BO₂(OH) triangles, forming ten-membered ring windows. The tubes are interconnected via distorted MnO₆ octahedra, establishing a three-dimensional openframework structure with two different types of ring-channels (12- and six-membered) that run along [001]. The 12membered ring channels are occupied by NH4⁺ ions and water molecules. The ten-membered ring windows in the walls of the tubes are occupied by Na⁺ ions. The remaining Na⁺ ions and the water molecules, one of which is half-occupied, reside within the six-membered ring channels. The structural setup is consolidated by an $O-H \cdots O$ hydrogen bond between the OH group and an opposite O atom of the framework. Donoracceptor distances ranging from 2.80 to 3.35 Å between the ammonium N atom, water O atoms and framework O atoms indicate further hydrogen-bonding interactions.

Related literature

Reviews on the preparation, crystal chemistry and applications of borophosphates are given in Kniep et al. (1998) and Ewald et al. (2007). For isostructural compounds, see Yang, Li et al. (2006) for Na₂Mn[B₃P₂O₁₁(OH)]·0.67H₂O; Yang, Yu et al. (2006) for Na₅(H₃O)Mn₃[B₉P₆O₃₃(OH)₃]·2H₂O; Liu et al. (2006) for $Na_6Cu_3[B_9P_6O_{33}(OH)_3]\cdot 2H_2O$.

Experimental

Crystal data

Na₅(NH₄)Mn₃[B₉P₆O₃₃(OH)₃]--1.5(H₂O) $M_r = 2373.94$ Hexagonal, P63 a = 11.9331 (2) Å c = 12.1290 (4) Å

Data collection

Rigaku Mercury AFC7 CCD	
diffractometer	
Absorption correction: multi-scan	
(Blessing, 1995)	
$T_{\min} = 0.779, T_{\max} = 0.931$	

Refinement

Table 1

$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of
$wR(F^2) = 0.099$	independent and constrained
S = 1.12	refinement
2891 reflections	$\Delta \rho_{\rm max} = 0.66 \ {\rm e} \ {\rm \AA}^{-3}$
191 parameters	$\Delta \rho_{\rm min} = -0.81 \text{ e} \text{ Å}^{-3}$
1 restraint	Absolute structure: Flack (1983),
	1374 Friedel pairs

V = 1495.76 (6) Å³

Mo Ka radiation

 $0.08 \times 0.04 \times 0.04~\mathrm{mm}$

12243 measured reflections 2891 independent reflections

Flack parameter: 0.43 (3)

2784 reflections with $I > 2\sigma(I)$

 $\mu = 1.79 \text{ mm}^-$

T = 295 K

 $R_{\rm int} = 0.030$

Z = 1

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O12−H1···O4 ⁱ	0.86 (7)	2.11 (7)	2.959 (3)	167 (3)
O13···O10 ⁱⁱ	-	_	2.8035 (11)	-
O13···N ⁱⁱⁱ	-	-	3.077 (16)	-
$O14 \cdot \cdot \cdot O8^{iv}$	-	-	3.284 (5)	-
$O14 \cdot \cdot \cdot O6^{iv}$	-	-	3.333 (3)	-
$N \cdot \cdot \cdot O13^{v}$	-	-	2.988 (16)	-
$N \cdots O3^{vi}$	-	-	2.991 (3)	-
$N \cdot \cdot \cdot O7^v$	-	-	3.047 (3)	-
			. ,	

Symmetry codes: (i) x - y + 1, $x, z + \frac{1}{2}$; (ii) -x + y, -x, z; (iii) $-x, -y, z + \frac{1}{2}$; (iv) $x - y, x, z + \frac{1}{2}$; (v) x, y, z - 1; (vi) x - 1, y - 1, z.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXL97.

This project was supported by the doctoral joint project between the Chinese Academy of Sciences and the Max-Planck Society, the State '973' project (grant No. 2007CB936704) and the Major Basic Research Programs of Shanghai (grant No. 07DJ14001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2204).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

- Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany. Ewald, B., Huang, Y.-X. & Kniep, R. (2007). Z. Anorg. Allg. Chem. 633, 1517-1540
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Kniep, R., Engelhardt, H. & Hauf, C. (1998). Chem. Mater. 10, 2930-2934.

- Liu, W., Huang, Y.-X., Cardoso, R., Schnelle, W. & Kniep, R. (2006). Z. Anorg. Allg. Chem. 632, 2413.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Yang, T., Li, G., Ju, J., Liao, F., Xiong, M. & Lin, J. (2006). J. Solid State Chem. **179**, 2534–2540.
- Yang, M., Yu, J., Di, J., Li, J., Chen, P., Fang, Q., Chen, Y. & Xu, R. (2006). *Inorg. Chem.* 45, 3588–3593.

supporting information

Acta Cryst. (2008). E64, i82-i83 [doi:10.1107/S1600536808037884]

$Na_5(NH_4)Mn_3[B_9P_6O_{33}(OH)_3] \cdot 1.5H_2O$

Zhi-Sheng Lin, Ya-Xi Huang, Yurii Prots, Jing-Tai Zhao and Rüdiger Kniep

S1. Comment

In the past several years, borophosphates have attracted extensive attention due to their rich structural chemistry and potential applications as catalysts (Kniep *et al.*, 1998; Ewald *et al.*, 2007). Although a large variety of borophosphate anions has been reported, tube-like borophosphate anions are particularly rare (Liu *et al.*, 2006; Yang *et al.*, 2006*a*; Yang *et al.*, 2006*b*). Up to now, only two manganese compounds containing borophosphate tubes, *viz*. Na₂Mn[B₃P₂O₁₁(OH)]⁻0.67H₂O (Yang *et al.*, 2006*a*) and Na₅(H₃O)Mn₃[B₉P₆O₃₃(OH)₃]⁻2H₂O (Yang *et al.*, 2006*b*) are listed in the literature. Here, we report on an ammonium substituted sodium manganese borophosphate, Na₅(NH₄)Mn₃[B₉P₆O₃₃(OH)₃]⁻1.5H₂O.

The crystal structure of the title compound comprises tube-like borophosphate anions, ${}_{\infty}{}^{1}$ {[B₃P₂O₁₁(OH)]⁺}, which are built from 12-membered rings of alternating BO₄ and PO₄ tetrahedra, further interlinked by sharing common O-corners of neighbouring rings, and loop-branched by BO₂(OH) triangles resulting in 10-membered ring windows on the walls of the tubes (Fig. 1). The manganese atoms are in a distorted octahedral coordination, surrounded by four oxygen atoms from phosphate tetrahedra (O1, O2, O5, O6) and two oxygen atoms from borate tetrahedra (O10, O11). The Mn-coordination octahedra interconnect the neighboring borophosphate tubes to form a three-dimensional framework with two different types of channels (Fig. 2), namely 6- and 12-membered ring channels. The 12-membered ring channels are occupied by NH₄⁺ ions and water molecules; the 10-membered ring windows in the walls of the tubes are occupied by Na⁺ ions. The remaining Na⁺ ions and water molecules reside in the 6-membered ring channels. The structural setup is consolidated by an O—H···O hydrogen bond between the OH group and an opposite O atom of the framework. Donor-acceptor distances ranging from 2.8 to 3.35 Å between the ammonium N atom, water O atoms and framework O atoms indicate further hydrogen bonding interactions, but the corresponding H atoms were not located.

S2. Experimental

Transparent, colourless single crystals of the title compound were synthesized hydrothermally from a mixture of H_3BO_3 (32.2 mmol), $Mn(CH_3COO)_2 4H_2O$ (3 mmol), $(NH_4)_2HPO_4$ (6.4 mmol), NaF (5 mmol), and water (133.4 mmol). The educt mixture was transferred into a Teflon-lined stainless steel autoclave (internal volume 25 ml) and kept at 513 K for five days. The autoclave was cooled down to ambient temperature by removing out of the oven. The reaction products were washed with hot distilled water (333 K) until the boric acid was completely removed. Finally, the solids were dried in air at 333 K. Hexagonal prismatic crystals were selected for single-crystal diffraction. The NH_4^+ content was determined by elemental analysis and confirmed by IR spectroscopy.

S3. Refinement

The measured crystal was racemically twinned with an approximate twin fraction of 2:3. The hydrogen position bonded to O12 was found in a difference Fourier map and was refined freely. The hydrogen positions of the ammonium N atom

and of the uncoordinated water atoms at O13 and O14 were not localized. The occupancy of O13 was refined to 0.50 (2). In the last refinement cycle this value was fixed to 0.50.

Figure 1

Borophosphate tubes in the crystal structure of $Na_5(NH_4)Mn_3[B_9P_6O_{33}(OH)_3]$. 1.5 H_2O interconnected by MnO_6 coordination octahedra.

Figure 2

The overall framework of $Na_5(NH_4)Mn_3[B_9P_6O_{33}(OH)_3]$.1.5H₂O viewed along [001], showing the resulting channel-system.

Pentasodium ammonium trimanganese(II) borophosphate sesquihydrate

Crystal data

Na₅(NH₄)Mn₃[B₉P₆O₃₃(OH)₃]·1.5(H₂O) $D_{\rm x} = 2.635 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å $M_r = 2373.94$ Hexagonal, P63 Cell parameters from 7346 reflections Hall symbol: P 6c $\theta = 2.0 - 33.6^{\circ}$ *a* = 11.9331 (2) Å $\mu = 1.79 \text{ mm}^{-1}$ *c* = 12.1290 (4) Å T = 295 KV = 1495.76 (6) Å³ Prism, colourless Z = 1 $0.08 \times 0.04 \times 0.04 \text{ mm}$ F(000) = 1164Data collection Rigaku Mercury AFC7 CCD 12243 measured reflections diffractometer 2891 independent reflections Radiation source: fine-focus sealed tube 2784 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.030$ $\theta_{\rm max} = 30.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$ ω-scans $h = -16 \rightarrow 12$ Absorption correction: multi-scan $k = -16 \rightarrow 16$ (Blessing, 1995) $T_{\rm min} = 0.779, \ T_{\rm max} = 0.931$ $l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: difference Fourier map
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.040$	and constrained refinement
$wR(F^2) = 0.099$	$w = 1/[\sigma^2(F_o^2) + (0.0419P)^2 + 2.5644P]$
S = 1.12	where $P = (F_o^2 + 2F_c^2)/3$
2891 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
191 parameters	$\Delta \rho_{\rm max} = 0.66 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta \rho_{\rm min} = -0.81 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1374 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.43 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

			_	II */II	O_{ab} (<1)
	X	У	Z	$U_{\rm iso} - U_{\rm eq}$	Occ. (<1)
Mn2	0.50444 (6)	0.50073 (7)	0.04544 (11)	0.01330 (12)	
P1	0.62139 (9)	0.81051 (9)	0.00965 (7)	0.0111 (2)	
P2	0.37924 (9)	0.19394 (10)	0.08857 (7)	0.0120 (2)	
B1	0.2928 (4)	0.2502 (4)	0.6961 (4)	0.0118 (7)	
B2	0.2992 (4)	0.2504 (5)	0.8974 (4)	0.0151 (8)	
B3	0.4938 (3)	0.4004 (3)	0.7921 (5)	0.0159 (6)	
01	0.5750 (3)	0.6785 (3)	0.9591 (3)	0.0169 (6)	
O2	0.7011 (3)	0.9084 (3)	0.9177 (2)	0.0162 (6)	
O3	0.7199 (3)	0.8385 (3)	0.1043 (2)	0.0150 (6)	
O4	0.5126 (3)	0.8296 (3)	0.0515 (3)	0.0177 (5)	
05	0.2925 (3)	0.0953 (3)	0.1789 (2)	0.0152 (5)	
06	0.4181 (3)	0.3245 (3)	0.1360 (3)	0.0179 (6)	
07	0.2859 (3)	0.1639 (3)	0.9886 (3)	0.0182 (6)	
08	0.6857 (3)	0.5090 (3)	0.0545 (3)	0.0175 (6)	
09	0.5731 (3)	0.6364 (3)	0.1961 (3)	0.0147 (5)	
O10	0.26579 (18)	0.17981 (18)	0.7974 (3)	0.0132 (3)	
011	0.4355 (3)	0.3637 (3)	0.8933 (3)	0.0157 (6)	
012	0.6273 (2)	0.4785 (2)	0.7907 (3)	0.0235 (5)	
H1	0.648 (7)	0.498 (7)	0.723 (6)	0.07 (2)*	
Na1	0.71486 (14)	0.73129 (14)	0.8014 (2)	0.0273 (3)	
Na2	0.3333	0.6667	0.9533 (3)	0.0251 (6)	
Ν	0.0000	0.0000	0.0452 (12)	0.0243 (10)	
Na3	0.6667	0.3333	0.9477 (3)	0.0248 (6)	

supporting information

O13	0.0000	0.0000	0.8007 (19)	0.041 (2)*	0.50
O14	0.3333	0.6667	0.7692 (9)	0.090 (3)*	

Atomic displacement parameters $(Å^2)$

Mn2 0.0140 (2000) P1 0.0127 (2000) P2 0.0128 (2000) B1 0.0110 (2000)	$\begin{array}{cccc} 2) & 0.01171 (19) \\ 4) & 0.0114 (4) \\ 4) & 0.0126 (4) \\ 17) & 0.0120 (17) \\ 0.0153 (18) \\ 12) & 0.0151 (12) \end{array}$	0.0136 (2) 0.0093 (4) 0.0103 (4) 0.0113 (18) 0.014 (2)	0.00596 (15) 0.0061 (3) 0.0061 (4) 0.0050 (14)	-0.00045 (17) 0.0005 (3) -0.0003 (4) 0.0000 (15)	0.00050 (14) 0.0014 (3) 0.0009 (3)
P1 0.0127 (* P2 0.0128 (* B1 0.0110 (*	$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.0093 (4) 0.0103 (4) 0.0113 (18) 0.014 (2)	0.0061 (3) 0.0061 (4) 0.0050 (14)	0.0005(3) -0.0003(4) 0.0000(15)	0.0014 (3) 0.0009 (3)
P2 0.0128 (B1 0.0110 ($\begin{array}{llllllllllllllllllllllllllllllllllll$	0.0103 (4) 0.0113 (18) 0.014 (2)	0.0061 (4) 0.0050 (14)	-0.0003(4)	0.0009 (3)
B1 0.0110 ($\begin{array}{ccc} 17) & 0.0120 (17) \\ 0.0153 (18) \\ 12) & 0.0121 (12) \end{array}$	0.0113 (18)	0.0050 (14)	0.0000(15)	0 0 0 1 1 (1 5)
	0.0153 (18)	0.014(2)		0.0000 (13)	0.0011 (15)
B2 0.018 (2)	12) 0.0121 (12)	0.011(2)	0.0096 (16)	0.0016 (16)	0.0004 (16)
B3 0.0135 (13) 0.0121(12)	0.0206 (17)	0.0054 (10)	0.0010 (19)	0.0038 (19)
01 0.0212 (13) 0.0161 (12)	0.0113 (14)	0.0079 (11)	0.0016 (11)	0.0013 (10)
O2 0.0210 (14) 0.0136 (12)	0.0125 (12)	0.0076 (11)	0.0022 (11)	0.0018 (10)
O3 0.0168 (13) 0.0148 (12)	0.0128 (14)	0.0075 (10)	-0.0020 (11)	0.0041 (10)
O4 0.0158 (12) 0.0161 (12)	0.0214 (14)	0.0081 (11)	0.0002 (11)	-0.0001 (11)
O5 0.0188 (13) 0.0134 (12)	0.0129 (12)	0.0078 (10)	0.0019 (11)	0.0022 (10)
0.0211 (13) 0.0129 (12)	0.0184 (15)	0.0074 (11)	0.0021 (12)	0.0014 (11)
07 0.0179 (14) 0.0180 (13)	0.0150 (15)	0.0061 (11)	-0.0019 (12)	0.0034 (11)
0.0124 (11) 0.0162 (12)	0.0229 (14)	0.0064 (10)	0.0007 (11)	-0.0036 (11)
09 0.0159 (12) 0.0160 (12)	0.0086 (12)	0.0053 (10)	0.0001 (11)	-0.0001 (11)
010 0.0151 (8) 0.0132 (8)	0.0117 (8)	0.0074 (7)	-0.0023 (13)	-0.0018 (13)
011 0.0146 (12) 0.0156 (12)	0.0142 (14)	0.0055 (10)	-0.0013 (11)	-0.0007 (11)
012 0.0143 (10) 0.0297 (12)	0.0193 (13)	0.0055 (9)	-0.0020 (14)	0.0008 (15)
Na1 0.0289 (7) 0.0381 (7)	0.0212 (7)	0.0215 (6)	-0.0001 (10)	-0.0012 (11)
Na2 0.0238 (8) 0.0238 (8)	0.0278 (15)	0.0119 (4)	0.000	0.000
N 0.0161 (12) 0.0161 (12)	0.041 (3)	0.0081 (6)	0.000	0.000
Na3 0.0241 (8) 0.0241 (8)	0.0261 (14)	0.0121 (4)	0.000	0.000

Geometric parameters (Å, °)

Mn2—08	2.118 (3)	O5—B1 ^{ix}	1.475 (5)
Mn2—O1 ⁱ	2.126 (3)	O5—Na1 ^{iv}	2.584 (3)
Mn2—O6	2.127 (3)	O6—Na1 ^{iv}	2.434 (4)
Mn2—O4 ⁱⁱ	2.162 (3)	$O7$ — $P2^{vii}$	1.562 (3)
Mn2—09	2.303 (3)	$O8$ — $P2^x$	1.505 (3)
Mn2—O11 ⁱ	2.326 (4)	O8—Na3 ⁱ	2.376 (3)
Mn2—Na3 ⁱ	3.6069 (13)	O9—B3 ^{iv}	1.354 (6)
Mn2—Na2 ⁱ	3.6582 (12)	O9—B1 ^{iv}	1.493 (5)
P1—O1 ⁱ	1.513 (3)	O10—Na1 ⁱⁱⁱ	2.360 (2)
P104	1.514 (3)	O11—Mn2 ^{vii}	2.326 (4)
P1	1.550 (3)	O12—Na1	2.656 (3)
P103	1.555 (3)	O12—Na3	2.768 (4)
P1—Na2 ⁱ	3.0544 (12)	O12—H1	0.86 (8)
P1-Na1 ⁱ	3.094 (3)	Na1—O10 ^x	2.360 (2)
P2—O6	1.500 (3)	Na1—O6 ^{vi}	2.434 (4)
P2—O8 ⁱⁱⁱ	1.505 (3)	Na1—O5 ^{vi}	2.584 (3)
Р2—О5	1.562 (3)	Na1—P1 ^{vii}	3.094 (3)

P2-07 ⁱ	1.562 (3)	Na1—P2 ^{vi}	3.118 (3)
P2—Na1 ^{iv}	3.118 (3)	Na1—H1	2.66 (8)
P2—Na3 ⁱ	3.4270 (19)	Na2—O14	2.232 (11)
B1—O10	1.430 (5)	Na2—O4 ^{xi}	2.370 (3)
B1—O5 ^v	1.475 (5)	Na2—O4 ^{vii}	2.370 (3)
B1—O3 ^{vi}	1.491 (5)	Na2—O4 ^{xii}	2.370 (3)
B1	1.493 (5)	Na2—O1 ^{viii}	2.817 (3)
B2—O10	1.416 (6)	Na2—O1 ⁱⁱ	2.817 (3)
B2—O7	1.466 (6)	Na2—P1 ^{xi}	3.0544 (12)
B2—O2 ⁱⁱ	1.494 (5)	Na2—P1 ^{vii}	3.0544 (12)
B2—O11	1.509 (5)	Na2—P1 ^{xii}	3.0544 (12)
B3—O9 ^{vi}	1.354 (6)	Na2—Mn2 ^{xi}	3.6582 (12)
B3—O11	1.371 (6)	Na2—Mn2 ^{xii}	3.6582 (12)
B3—O12	1.386 (4)	Na3—O8 ^{xiiii}	2.376 (3)
O1—P1 ^{vii}	1.513 (3)	Na3—O8 ^{xiv}	2.376 (3)
O1—Mn2 ^{vii}	2.126 (3)	Na3—O8 ^{vii}	2.376 (3)
O1—Na1	2.407 (4)	Na3—O12 ⁱⁱⁱ	2.768 (4)
O1—Na2	2.817 (3)	Na3—O12 ^x	2.768 (4)
O2—B2 ^{viii}	1.494 (5)	Na3—P2 ^{xiv}	3.4270 (19)
O2—P1 ^{vii}	1.550 (3)	Na3—P2 ^{xiii}	3.4270 (19)
O2—Na1	2.614 (4)	Na3—P2 ^{vii}	3.4270 (19)
O3—B1 ^{iv}	1.491 (5)	Na3—Mn2 ^{xiii}	3.6069 (13)
O4—Mn2 ^{viii}	2.162 (3)	Na3—Mn2 ^{xiv}	3.6069 (13)
O4—Na2 ⁱ	2.370 (3)	Na3—Mn2 ^{vii}	3.6069 (13)
$O8$ — $Mn2$ — $O1^{i}$	95.34 (12)	B3 ^{iv} —O9—Mn2	120.6 (2)
O8—Mn2—O6	89.88 (12)	B1 ^{iv} —O9—Mn2	118.7 (2)
O1 ⁱ —Mn2—O6	174.49 (15)	B2—O10—B1	118.2 (2)
O8—Mn2—O4 ⁱⁱ	174.93 (18)	B2—O10—Na1 ⁱⁱⁱ	115.7 (3)
O1 ⁱ —Mn2—O4 ⁱⁱ	88.22 (11)	B1—O10—Na1 ⁱⁱⁱ	119.3 (3)
O6—Mn2—O4 ⁱⁱ	86.46 (12)	B3—O11—B2	117.6 (3)
O8—Mn2—O9	86.00 (12)	B3—O11—Mn2 ^{vii}	122.7 (2)
O1 ⁱ —Mn2—O9	82.24 (11)	B2—O11—Mn2 ^{vii}	116.6 (3)
O6—Mn2—O9	96.39 (14)	B3—O12—Na1	115.5 (2)
O4 ⁱⁱ —Mn2—O9	90.91 (12)	B3—O12—Na3	94.0 (3)
O8—Mn2—O11 ⁱ	93.89 (12)	Na1—O12—Na3	125.72 (15)
$O1^{i}$ —Mn2—O11 ⁱ	97.79 (14)	B3—O12—H1	106 (5)
O6—Mn2—O11 ⁱ	83.59 (12)	Na1—O12—H1	81 (5)
O4 ⁱⁱ —Mn2—O11 ⁱ	89.20 (12)	Na3—O12—H1	135 (5)
O9—Mn2—O11 ⁱ	179.89 (14)	O10 ^x —Na1—O1	125.56 (16)
$O1^{i}$ —P1—O4	113.43 (17)	$O10^{x}$ —Na1— $O6^{vi}$	120.09 (16)
$O1^{i}$ — $P1$ — $O2^{i}$	105.09 (17)	O1—Na1—O6 ^{vi}	108.15 (9)
$O4$ — $P1$ — $O2^i$	112.12 (18)	O10 ^x —Na1—O5 ^{vi}	114.43 (12)
O1 ⁱ —P1—O3	111.51 (18)	O1—Na1—O5 ^{vi}	111.70 (11)
O4—P1—O3	109.4 (2)	O6 ^{vi} —Na1—O5 ^{vi}	57.80 (11)
O2 ⁱ —P1—O3	104.87 (18)	O10 ^x —Na1—O2	117.98 (12)
O6—P2—O8 ⁱⁱⁱ	114.34 (17)	O1—Na1—O2	57.76 (11)
O6—P2—O5	104.92 (18)	O6 ^{vi} —Na1—O2	111.69 (11)

O8 ⁱⁱⁱⁱ —P2—O5	112.87 (17)	O5 ^{vi} —Na1—O2	67.76 (7)
$O6$ — $P2$ — $O7^i$	110.57 (19)	O10 ^x —Na1—O12	80.64 (8)
$O8^{iii}$ —P2—O7 ⁱ	109.5 (2)	O1—Na1—O12	85.06 (12)
$O5$ — $P2$ — $O7^i$	104.11 (17)	O6 ^{vi} —Na1—O12	79.46 (12)
O10—B1—O5 ^v	109.7 (3)	O5 ^{vi} —Na1—O12	136.89 (14)
O10-B1-O3 ^{vi}	108.1 (3)	O2—Na1—O12	142.78 (14)
O5 ^v —B1—O3 ^{vi}	108.4 (3)	O14—Na2—O4 ^{xi}	120.17 (10)
O10—B1—O9 ^{vi}	110.9 (3)	O14—Na2—O4 ^{vii}	120.17 (10)
O5 ^v —B1—O9 ^{vi}	110.6 (3)	O4 ^{xi} —Na2—O4 ^{vii}	96.95 (13)
$O3^{vi}$ B1 $O9^{vi}$	109.0 (3)	O14—Na2—O4 ^{xii}	120.17 (10)
O10—B2—O7	109.1 (4)	O4 ^{xi} —Na2—O4 ^{xii}	96.95 (13)
O10—B2—O2 ⁱⁱ	109.2 (3)	O4 ^{vii} —Na2—O4 ^{xii}	96.95 (13)
O7—B2—O2 ⁱⁱ	107.9 (3)	O14—Na2—O1 ^{viii}	91.45 (9)
O10—B2—O11	111.2 (3)	O4 ^{xi} —Na2—O1 ^{viii}	57.64 (10)
O7—B2—O11	110.1 (4)	O4 ^{vii} —Na2—O1 ^{viii}	69.66 (9)
O2 ⁱⁱ —B2—O11	109.2 (4)	O4 ^{xii} —Na2—O1 ^{viii}	147.64 (16)
O9 ^{vi} —B3—O11	123.0 (3)	O14—Na2—O1 ⁱⁱ	91.45 (9)
O9 ^{vi} —B3—O12	120.0 (5)	O4 ^{xi} —Na2—O1 ⁱⁱ	69.66 (10)
O11—B3—O12	117.0 (5)	O4 ^{vii} —Na2—O1 ⁱⁱ	147.64 (16)
P1 ^{vii} —O1—Mn2 ^{vii}	126.55 (19)	O4 ^{xii} —Na2—O1 ⁱⁱ	57.64 (10)
P1 ^{vii} —O1—Na1	101.82 (16)	O1 ^{viii} —Na2—O1 ⁱⁱ	119.937 (9)
Mn2 ^{vii} —O1—Na1	121.96 (15)	O14—Na2—O1	91.45 (9)
P1 ^{vii} —O1—Na2	83.98 (13)	O4 ^{xi} —Na2—O1	147.64 (16)
Mn2 ^{vii} —O1—Na2	94.45 (11)	O4 ^{vii} —Na2—O1	57.64 (10)
Na1—O1—Na2	123.48 (15)	O4 ^{xii} —Na2—O1	69.66 (9)
$B2^{viii}$ — $O2$ — $P1^{vii}$	135.3 (3)	O1 ^{viii} —Na2—O1	119.937 (9)
B2 ^{viii} —O2—Na1	132.2 (3)	O1 ⁱⁱ —Na2—O1	119.937 (8)
P1 ^{vii} —O2—Na1	92.40 (14)	O8 ^{xiii} —Na3—O8 ^{xiv}	93.15 (13)
B1 ^{iv} —O3—P1	127.0 (3)	O8 ^{xiii} —Na3—O8 ^{vii}	93.15 (13)
P1—O4—Mn2 ^{viii}	127.87 (17)	O8 ^{xiv} —Na3—O8 ^{vii}	93.15 (13)
P1—O4—Na2 ⁱ	101.43 (16)	O8 ^{xiii} —Na3—O12 ⁱⁱⁱ	120.52 (9)
$Mn2^{viii}$ —O4—Na 2^{i}	107.56 (13)	O8 ^{xiv} —Na3—O12 ⁱⁱⁱ	78.10 (11)
B1 ^{ix} —O5—P2	131.9 (3)	O8 ^{vii} —Na3—O12 ⁱⁱⁱ	145.34 (9)
B1 ^{ix} —O5—Na1 ^{iv}	133.0 (2)	O8 ^{xiii} —Na3—O12 ^x	78.10 (10)
P2—O5—Na1 ^{iv}	94.29 (14)	O8 ^{xiv} —Na3—O12 ^x	145.34 (9)
P2—O6—Mn2	125.0 (2)	O8 ^{vii} —Na3—O12 ^x	120.52 (9)
P2—O6—Na1 ^{iv}	102.20 (17)	O12 ⁱⁱⁱ —Na3—O12 ^x	77.89 (13)
Mn2—O6—Na1 ^{iv}	128.53 (15)	O8 ^{xiii} —Na3—O12	145.34 (9)
B2—O7—P2 ^{vii}	127.6 (3)	O8 ^{xiv} —Na3—O12	120.52 (9)
P2 ^x	128.59 (17)	O8 ^{vii} —Na3—O12	78.10 (10)
P2 ^x O8Na3 ⁱ	122.40 (16)	O12 ⁱⁱⁱ —Na3—O12	77.89 (13)
Mn2—O8—Na3 ⁱ	106.59 (13)	O12 ^x —Na3—O12	77.89 (13)
$B3^{iv}$ —O9—B1 ^{iv}	119.0 (3)		

Symmetry codes: (i) x, y, z-1; (ii) -x+y, -x+1, z; (iii) -y+1, x-y, z; (iv) -x+1, -y+1, z-1/2; (v) x-y, x, z+1/2; (vi) -x+1, -y+1, z+1/2; (vii) x, y, z+1; (viii) -y+1, x-y+1, z; (ix) y, -x+y, z-1/2; (x) -x+y+1, -x+1, z; (xi) -y+1, x-y+1, z+1; (xii) -x+y, -x+1, z+1; (xiii) -x+y+1, -x+1, z+1; (xiv) -y+1, x-y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	D—H···A
012—H1…O4 ^{xv}	0.86 (7)	2.11 (7)	2.959 (3)	167 (3)
O13…O10 ^{xvi}			2.8035 (11)	
O13…N ^{xvii}			3.077 (16)	
O14…O8 ^v			3.284 (5)	
O14…O6 ^v			3.333 (3)	
N···O13 ⁱ			2.988 (16)	
N···O3 ^{xviii}			2.991 (3)	
N···O7 ⁱ			3.047 (3)	

Symmetry codes: (i) x, y, z-1; (v) x-y, x, z+1/2; (xv) x-y+1, x, z+1/2; (xvi) -x+y, -x, z; (xvii) -x, -y, z+1/2; (xviii) x-1, y-1, z.